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1 Introduction
This paper establishes an algorithm for the conversion of conformal geometric algebra
(GA) [3, 4] versor symbols of space group symmetry-operations [6–8, 10] to standard
symmetry-operation symbols of crystallography [5]. The algorithm is written in the
mathematical language of geometric algebra [2–4], but it takes up basic algorithmic
ideas from [1]. The geometric algebra treatment simplifies the algorithm, due to the
seamless use of the geometric product for operations like intersection, projection, re-
jection; and the compact conformal versor notation for all symmetry operations and for
geometric elements like lines and planes.

The transformations between the set of three geometric symmetry vectors a,b,c,
used for generating multivector versors, and the set of three conventional crystal cell
vectors a,b,c of [5] have already been fully specified in [8] complete with origin shift
vectors. In order to apply the algorithm described in the present work, all locations,
axis vectors and trace vectors must be computed and oriented with respect to the con-
ventional crystall cell, i.e. its origin and its three cell vectors.

Section 2 reviews the notation for symmetry operations used in ITA2005 [5] to-
gether with representative sets of examples in tabulated form. Section 3 reviews the
conformal geometric algebra description of points, affine points, lines and planes, their
direction, location, parallelness, intersection (meet), as well as the projection of trans-
lation vectors. Section 4 introduces the notions of coordinate system, reciprocal coordi-
nate vectors, coordinates, axis lines and basal planes. Section 5 shows how to determine
the conventional crystallographic location points of lines and planes. Section 6 shows
how to determine the crystallographic trace vectors of planes from intersections with
basal coordinate planes. Section 7 explains how to obtain the crystallographic positive
sense of a vector. Section 8 introduces to the choice of variable symbols t ∈ {x,y,z}
for parametrizing lines and planes. Finally Section 9 presents the full conversion algo-
rithm.

2 Specification of symmetry-operations in ITA2005
In this section we review how the symmetry-operations of reflections, glide reflections,
rotations, screw rotations, inversions and rotoinversions are specified in ITA2005, to-
gether with some concrete examples, similar to Wittgenstein’s definition of the mean-
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Table 1: Examples of reflections from ITA2005 [5].

m x,0,z m 0,y,z m x, 1
4 ,z m x,y,0

m x,x,z m x,x,z m x,2x,z m 2x,x,z
m x,y,y m x,y,x m x,y, 1

4 m x,y+ 1
2 ,y

m x+ 1
2 ,y,x m x+ 1

2 ,x,z

ing of words by their use. How the relevant parameter values, location vectors, axis
vectors, and trace vectors of planes can be derived from the geometric algebra versor
representation will be explained in subsequent sections.

Here we only point out that in geometric algebra the determination of the coordi-
nates of centers of (roto)inversion, and of rotation angles is straight forward, and is
therefore not further explained.

2.1 Reflections
In ITA2005 [5] reflections are specified in the following way

m t1vTrace1 + t2vTrace2 +vLocat, (1)

where the parameters t1, t2 ∈ {x,y,z}, t1 6= t2, and negative values are indicated by over-
bars

x =−x, y =−y, z =−z. (2)

The second part t1vTrace1 + t2vTrace2 + vShift specifies the reflection plane. The de-
termination of the trace vectors vTrace1,vTrace2, of the parameters t1, t2 and of the vLocat
will be explained in the following sections. Before explaining further details we give a
set of examples in Table 1.

The first entry in Table 1 is composed of

t1 = x, vTrace1 = (1,0,0), t2 = z, vTrace2 = (0,0,1), vLocat = (0,0,0). (3)

The second entry in column three of Table 1 is composed of

t1 = x, vTrace1 = (1,2,0), t2 = z, vTrace2 = (0,0,1), vLocat = (0,0,0). (4)

The last entry in Table 1 is composed of

t1 = x, vTrace1 = (1,−1,0), t2 = z, vTrace2 = (0,0,1), vLocat = (
1
2
,0,0). (5)

2.2 Glide reflections
In ITA2005 [5] glide reflections are specified in the following way

r t1vTrace1 + t2vTrace2 +vLocat, (6)

with r∈{a,b,c} for intrinsic (parallel to the glide plane) glide vectors wg ∈{a/2,b/2,c/2},
respectively (see Table 2). If the intrinsic glide vector does not equal half a crystallo-
graphic cell vector, instead the following notation is used

s wg t1vTrace1 + t2vTrace2 +vLocat, (7)
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Table 2: Examples of axial glide reflections from ITA2005 [5].

glide vector a/2 glide vector b/2 glide vector c/2
a x,y, 1

4 b x,y, 1
4 c x, 1

4 ,z

Table 3: Examples of glide reflections, diagonal glide reflections and two pairs of
diamond glide reflections from ITA2005 [5].

g (0, 1
2 , 1

2 ) x,y,y n ( 1
2 ,0, 1

2 ) x,0,z d ( 1
4 , 1

4 ,0) x,y, 1
8

g ( 1
4 , 1

4 , 1
2 ) x− 1

4 ,x,z n ( 1
2 , 1

2 ,0) x,y,0 d ( 1
4 , 3

4 ,0) x,y, 3
8

g (− 1
4 , 1

4 , 1
2 ) x+ 1

4 ,x,z n (0, 1
2 , 1

2 ) 0,y,z d (0, 1
4 , 1

4 ) 1
8 ,y,z

g ( 1
2 ,− 1

4 , 1
4 ) x,y+ 1

4 ,y d (0, 1
4 , 3

4 ) 3
8 ,y,z

Table 4: Examples of rotations from ITA2005 [5].

2 0,y,0 4+ 0,0,z 3+ 0,0,z 6+ 0,0,z
2 0,y, 1

4 4− 0,0,z 3− 0,0,z 6− 0,0,z
2 1

4 ,0,z 4+ 0, 1
2 ,z 3+ x,x,x

2 1
4 , 1

4 ,z 4− 1
2 ,0,z 3− x,x,x

4+ 1
4 , 1

4 ,z 3+ x,x,x
4− 1

4 , 1
4 ,z 3− x,x,x

with s = g for general glide vectors wg, s = n for face diagonal glide vectors wg, and
s = d for socalled (pairs of) Diamond glide planes wg, which occur in centered cells
only: orthorhombic F space groups, tetragonal I space groups, and in cubic I and F
space groups. They always occur in pairs with alternating glide vectors, e.g. wg =
1
4 (a±b). The second power of a glide reflection d always gives a centering vector. Or
in other words: The glide vector wg is always one half of a centering vector (see third
column of Table 3).

The other entities vTrace1,vTrace2, t1, t2 and vLocat specify the glide plane itself, ex-
actly like in the specification of reflection planes in Section 2.1. Before explaining
further details we give a set of examples in Tables 2 and 3.

2.3 Rotations
In ITA2005 [5] rotations are specified in the following way

n± t vAxis +vLocat, (8)

where the number n ∈ {2,3,4,6} specifies rotations by {360◦/n} around the axis,
which is in turn specified by the straight line tvAxis +vLocat with parameter t ∈ {x,y,z}.
The upper index + (−) indicates whether the rotation is right-handed relative to the
sense of vAxis (or left-handed). The number n = 2 carries no ± index. The choice
of t, vAxis, and vLocat will be explained in the following sections. We now give some
examples in Table 4.
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Table 5: Examples of screw rotations from ITA2005 [5].

2 (0, 1
2 ,0) 0,y,0 3+ (0,0, 1

3 ) 1
3 , 1

3 ,z 6− (0,0, 5
6 ) 0,0,z

2 (0, 1
2 ,0) 0,y, 1

4 3− (0,0, 1
3 ) 1

3 ,0,z 6+ (0,0, 1
6 ) 0,0,z

2 (0,0, 1
2 ) 1

4 ,0,z 3− (− 1
3 , 1

3 , 1
3 ) x+ 1

6 ,x+ 1
6 ,x 6− (0,0, 2

3 ) 0,0,z

4+ (0,0, 1
4 ) 0, 1

2 ,z 3+ ( 1
3 , 1

3 ,− 1
3 ) x+ 1

6 ,x+ 1
3 ,x 6+ (0,0, 1

3 ) 0,0,z
4− (0,0, 3

4 ) 1
2 ,0,z 3+ (− 1

6 , 1
6 , 1

6 ) x+ 2
3 ,x− 1

3 ,x 6− (0,0, 1
2 ) 0,0,z

4+ (0,0, 1
2 ) 0,0,z 3− ( 1

6 , 1
6 ,− 1

6 ) x+ 2
3 ,x+ 1

3 ,x 6+ (0,0, 1
2 ) 0,0,z

4− (0,0, 1
2 ) 0,0,z 3+ ( 1

6 ,− 1
6 , 1

6 ) x− 1
6 ,x+ 1

3 ,x
4+ (0,0, 1

4 ) − 1
4 , 1

4 ,z 3− ( 1
6 ,− 1

6 ,− 1
6 ) x+ 1

6 ,x+ 1
6 ,x

4− (0,0, 3
4 ) 1

4 ,− 1
4 ,z

For example the fourth entry in column 1 of Table 4 shows a 180◦ rotation around
the axis given by

t = z, vAxis = (0,0,1), vLocat = (
1
4
,

1
4
,0). (9)

The third entry in column 2 of Table 4 shows a right-handed 90◦ rotation around the
axis given by

t = z, vAxis = (0,0,1), vLocat = (0,
1
2
,0). (10)

The 6th entry in column 3 of Table 4 shows a left-handed 120◦ rotation around the axis
given by

t = x, vAxis = (1,−1,−1), vLocat = (0,0,0). (11)

The first entry in column 4 of Table 4 shows a right-handed 60◦ rotation around the
axis given by

t = z, vAxis = (0,0,1), vLocat = (0,0,0). (12)

2.4 Screw rotations
In ITA2005 [5] screw rotations are specified in the following way

n± wg t vAxis +vLocat, (13)

where wg specifies the intrinsic translation part of the screw rotation, parallel to the
rotation axis vAxis. All other entities n±, t, vAxis, and vLocat specify the screw axis
itself, exactly like in the specification of rotations in Section 2.3. Before explaining
further details we give a set of examples in Table 5.

2.5 Inversions
In ITA2005 [5] inversions are specified in the following way

1̄ vLocat, (14)

where 1̄ is the symbol, and vLocat the coordinate triplet of the center of inversion. Some
examples are given in Table 6.
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Table 6: Examples of inversions from ITA2005 [5].

1̄ 0,0,0 1̄ 1
4 , 1

4 ,0 1̄ 1
4 , 1

4 , 1
4

Table 7: Examples of rotoinversions from ITA2005 [5].

3̄+ 0,0,z ; 0,0,0 4̄+ 0,0,z ; 0,0, 1
4

3̄− 0,0,z ; 0,0,0 4̄− 0,0,z ; 0,0, 1
4

3̄+ 1
3 ,− 1

3 ,z ; 1
3 ,− 1

3 , 1
6 4̄+ 1

2 ,− 1
4 ,z ; 1

2 ,− 1
4 , 3

8
3̄− 1

3 , 2
3 ,z ; 1

3 , 2
3 , 1

6 4̄− 0, 3
4 ,z ; 0, 3

4 , 1
8

3̄+ x− 1
2 ,x+ 1

2 ,x ; 0, 1
2 , 1

2 6̄− 0,0,z ; 0,0, 1
4

3̄− x+ 1
2 ,x− 1

2 ,x ; 0,0, 1
2 6̄+ 0,0,z ; 0,0, 1

4
3̄+ x− 1

2 ,x+ 1
2 ,x ; − 1

8 , 1
8 , 1

8
3̄− x+1,x−1,x ; 1

8 ,− 1
8 , 7

8

2.6 Rotoinversions
First note, that rotoinversions (i.e. rotary inversions) do not occur in triclinic, mono-
clinic, and orthorhombic crystals. In ITA2005 [5] rotoinversions are specified in the
following way

n± t vAxis +vLocat ; wInv (15)

where wInv specifies the center of inversion on the rotation axis t vAxis + vLocat. Alter-
natively wInv can be regarded as the intersection of the rotation axis with the reflection
plane of an equivalent rotary reflection. The number n ∈ {3,4,6} specifies rotations
by {360◦/n} around the rotation axis. The upper index + (−) indicates again whether
the rotation is right-handed relative to the sense of vAxis (or left-handed). The overbar
of n± distinguishes rotary inversions from pure rotations. All other entities t, vAxis,
and vLocat specify the screw axis itself, exactly like in the specification of rotations in
Section 2.3. Before explaining further details we give a set of examples in Table 7.

For example the third entry on the left side of Table 7 shows a right-handed 120◦

rotoinversion given by

t = z, vAxis = (0,0,1), vLocat = (
1
3
,−1

3
,0), vInv = (

1
3
,−1

3
,

1
6
). (16)

The last entry on the left side of Table 7 shows a left-handed 120◦ rotoinversion given
by

t = x, vAxis = (1,−1,−1), vLocat = (1,−1,0), vInv = (
1
8
,−1

8
,

7
8
). (17)

The third on the right side of Table 7 shows a right-handed 90◦ rotoinversion given by

t = z, vAxis = (0,0,1), vLocat = (
1
2
,−1

4
,0), vInv = (

1
2
,−1

4
,

3
8
). (18)

The fifth on the right side of Table 7 shows a left-handed 60◦ rotoinversion given by

t = z, vAxis = (0,0,1), vLocat = (0,0,0), vInv = (0,0,
1
4
). (19)
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3 Geometric algebra description of geometric elements
and symmetry operations

In conformal geometric algebra a line is given by (E = e∞∧ e0)

Line = d∧C∧ e∞ = d∧ ce∞−dE = dc⊥e∞−dE, (20)

where
C = c+

1
2

c2e∞ + e0, (21)

is any conformal point on the line associated with the c ∈ R3. c⊥ is the distance vector
of the line from the origin, called vShift in [1]. The vector d ∈ R3 is the unit direction
vector of the line, called vAxis in [1]. The condition for C to be on the line (20) is

C ∈ Line ⇔ C∧Line = 0. (22)

A plane is represented by

Plane = i∧C∧ e∞ = i∧ ce∞− iE = ic⊥ e∞− iE, (23)

where again C is any conformal point on the plane associated with the c ∈ R3. c⊥ is
the distance vector of the plane from the origin, called vShift in [1]. The orientation of
the plane is given by its unit bivector i ∈Cl3,0. The condition for C to be on the plane
(23) is

C ∈ Plane ⇔ C∧Plane = 0. (24)

In general the shortest distance vShift of a line (20) (or plane (23)) F from the origin
is calculated [9] by

vShift = D−1(F ∧ e0)E, (25)

with

D =−F ·E =
{

d for F = Line
i for F = Plane . (26)

This solution for vShift is general, constructive and algebraic, no system of linear equa-
tion needs to be solved. Note further that (26) is the general way how to extract the
direction vector vAxis from a line (20)

vAxis = d =−Line ·E. (27)

An equivalent way of representing a plane dually with its Euclidean normal vector

n = i i−1 =
c⊥
|c⊥|

, n ∈ R3, (28)

is1

µ = Plane? = Plane I−1
5 = n+de∞, (29)

with oriented Euclidean distance of the plane from the origin

d = c⊥ ·n. (30)
1The star symbol in µ = Plane? = PlaneI−1

5 means multiplication by the inverse pseudoscalar of the
conformal model of three-dimensional Euclidean space, i.e. multiplication by I−1

5 = i−1E = −iE. This is
the general method for calculating dual multivectors.
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Now the condition for a conformal point C to be on the plane µ is

C ∈ µ ⇔ C ·µ = 0, (31)

because the inner product · is dual to the outer product ∧.

Remark 3.1 Equation (28) assumes that the plane is in normal form, i.e. that the
scalar factor λ ∈ R \ {0} of the equivalent plane λPlane is chosen such that the unit
oriented right handed Euclidean pseudoscalar i = (c⊥/|c⊥|)i.

Parallel planes Plane (dual expression µ) and Plane′ (dual expression µ ′) are char-
acterized in GA by parallel bivector parts i = λ i′,λ ∈ R \ 0, or equivalently parallel
normal vectors n = λn′,λ ∈R\0. An algebraic way of checking parallelness of planes
is to verify the condition: n′n = nn′, or equivalently n∧n′ = 0. Or because the outer
product µ ∧ µ ′ = n∧ n′+ (d′n′− dn)e∞ we can also directly check parallelness by
verifying if

(µ ∧µ
′)e∞ = 0. (32)

We similarly have that for a plane Plane (dual expression µ) and a line Line (dual
expression Line?) parallelness can be checked by

(µ ∧Line?)e∞ = 0. (33)

Given according to (26) the direction of a plane D = i and of a line D = d, the trans-
lation part w of a symmetry operation is most easily split into parts parallel (intrinsic)

wg = (w ·D)D−1, D−1 =
D
D2 , (34)

and perpendicular
wL = (w∧D)D−1, (35)

to the plane or line.
In geometric algebra, like in Grassmann-Cayley algebra, the meet product (product

symbol ∨) computes the common subspace blade of two blades. It can thus be applied
in order to compute intersections like the intersection of a line and a plane, or of two
planes. Computing the meet of a conformal line and a plane results either in the line
itself, iff the line is part of the plane; or in an affine point, iff the line intersects the plane
(but is not parallel to the plane); or the direction of the line wedge infinity (d∧ e∞), iff
the line is parallel to the plane (but not part of the plane).

An affine point is a point pair C ∧ e∞ of a finite point like (21) and the point at
infinity e∞. The Euclidean part c ∈ R3 of an affine point can be extracted with

c = (C∧ e∞∧ e0)E. (36)

4 Coordinates
A crystallographic coordinate system is conventionally given by three coordinate axis
vectors

e1,e2,e3 ∈ R3. (37)

All details of converting between the geometric algebra choice of crystal cell with its
symmetry vectors a,b,c, as used e.g. in the Space Group Visualizer [10], and the
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crystallographic cell vectors e1 = a,e2 = b,e3 = c of [5] are given in [8] complete with
origin shift vectors2. In the current work all results have to be finally represented in
coordinates with respect to the conventional crystallographic cell [5] for the sake of
obtaining the conventional crystallographic notation of symmetry operations.

The three corresponding reciprocal vectors are obtained by [2]

e∗1 =
e2∧ e3

e1∧ e2∧ e3
, e∗2 =

e3∧ e1

e1∧ e2∧ e3
, e∗3 =

e1∧ e2

e1∧ e2∧ e3
. (38)

The two systems of vectors are related by

ek · e∗l = δk,l , k, l ∈ {1,2,3} (39)

with the Kronecker symbol defined as

δk,l = 0, if k 6= l, δk,l = 1, if k = l. (40)

With the help of the reciprocal vectors {e∗1,e∗2,e∗3} we can compute the coordinates
xk,k = 1,2,3 of any vector x ∈ R3:

x =
3

∑
k=1

xkek, xk = x · e∗k (41)

In some steps of the algorithm we obtain indexes k /∈ {1,2,3}. These indexes are
equivalent to k±3 : x0 = x3,x4 = x1,x5 = x2.

Each conformal coordinate axis line (Axis) is given by

Axisk = e0∧Ck ∧ e∞ = ekE, Ck = ek +
1
2

e2
ke∞ + e0, k = 1,2,3. (42)

In order to check paralellness of a general plane µ to an axis Axisk we can either use
(33) or simply check if

µ · ek = 0. (43)

Basal planes (BPlane) of a coordinate system are given by the following conformal
4-blades

BPlane1 =−e2∧ e3E, BPlane2 =−e3∧ e1E, BPlane3 =−e1∧ e2E, (44)

or (up to scale) alternatively in dual form (29) by the normal vectors

µ1 = e∗1, µ2 = e∗2, µ3 = e∗3, (45)

which are exactly the reciprocal vectors of (38).

5 Direct determination of location points of lines and
planes

A location point (called variable origin in [1]) of a line or plane is a point vLocat on
the line or plane conventionally chosen for parametrizing all other points on the line or
plane as in (61) and (62).

In the following the combined choice and direct computation of location points for
lines and planes using geometric algebra techniques is explained. In particular the meet
product ∨ for computing intersections of geometric objects like lines and planes proves
very useful.

2Please note that for monoclinic space groups with socalled (declared) unique axis b ITA2005 [5] uses
e1 = c,e2 = a,e3 = b, which corresponds to the current SGV implementation at the time of writing this paper
(i.e. June 2009).
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5.1 Location points of lines
For lines (20) the conformal location point is given in affine point form [4]

1. VLocat∧ e∞ = Line∨BPlane3 if the result is an affine point,

2. else VLocat∧ e∞ = Line∨BPlane1 if the result is an affine point,

3. else VLocat∧ e∞ = Line∨BPlane2

where ∨ is the conformal meet product of geometric algebra.

Remark 5.1 It is evident from the description of the meet product of lines and planes
in Section 3, that in the third row Line∨BPlane2 is always an affine point for both
Line∨BPlane3 and Line∨BPlane1 not being affine points, because then the line Line
will be parallel to both basal planes BPlane3,BPlane1 and therefore parallel to their
line of intersection Axis2. Using the dual form of the basal planes (45), makes the
computation of the meet ∨ in terms of the outer product ∧ straight forward (M? =
M I−1

5 ,M ∈Cl4,1)

1. VLocat∧ e∞ = (Line?∧ e∗3)
? if the result is an affine point,

2. else VLocat∧ e∞ = (Line?∧ e∗1)
? if the result is an affine point,

3. else VLocat∧ e∞ = (Line?∧ e∗2)
?.

The Euclidean part vLocat ∈R3 can be directly extracted from the affine point VLocat∧e∞

by (36)
vLocat = (VLocat∧ e∞∧ e0)E. (46)

5.2 Location points of planes
The affine location point of a plane (23) is determined similarly by the intersection of
the plane with the conformal coordinate axis lines

1. VLocat∧ e∞ = Plane∨Axis1 if the result is an affine point,

2. else VLocat∧ e∞ = Plane∨Axis2 if the result is an affine point,

3. else VLocat∧ e∞ = Plane∨Axis3.

The Euclidean part of the affine location point of a plane (23) is again determined
according to (36).

Remark 5.2 In the third line of the location point determination of a plane (23), the
plane is parallel to both Axis1 and Axis2, so that the intersection Plane∨Axis3 neces-
sarily leads to a well-defined affine point.

5.3 Algorithm for the determination of location points
5.3.1 Algorithm for location points of lines

1. If AP3 = Line∨BPlane3 affine point: abort and return vLocat = (AP3∧ e0)E.

2. Else if AP1 = Line∨BPlane1 affine point: abort and return vLocat = (AP1∧e0)E.

3. Else abort and return vLocat = [(Line∨BPlane2)∧ e0]E.
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5.3.2 Algorithm for location points of planes

1. If AP1 = Plane∨Axis1 affine point: abort and return vLocat = (AP1∧ e0)E.

2. Else if AP2 = Plane∨Axis1 affine point: abort and return vLocat = (AP2∧ e0)E.

3. Else abort and return vLocat = [(Plane∨Axis1)∧ e0]E.

6 Direct determination of two trace vectors for each
plane

6.1 Crystallographic trace vectors of planes in geometric algebra
The crystallographic conventions that apply are contained in rule C6 and Table 1 of [1].

For a plane µ parallel to one of the three basal planes µk, k ∈ {1,2,3}, compare
(32), the trace vectors are simply the coordinate axis vectors spanning the basal plane
(see (44))

(µ ∧µ1)e∞ = 0 : vTrace1 = e2,vTrace2 = e3,

(µ ∧µ2)e∞ = 0 : vTrace1 = e3,vTrace2 = e1, (47)
(µ ∧µ3)e∞ = 0 : vTrace1 = e1,vTrace2 = e2.

Remark 6.1 We observe that the indexes 1,2,3 of µ1,e2,e3, appear in cyclic order in
(47). Therefore together with cyclic permutation we can restrict ourselves to the first
line of (47)

(µ ∧µ1)e∞ = 0 : vTrace1 = e2,vTrace2 = e3. (48)

Planes µ parallel to only one coordinate axis Axisk, k ∈ {1,2,3}, i.e. according to
(43)

µ · ek = 0, for some fixed k ∈ {1,2,3},
µ · el 6= 0, l ∈ {1,2,3}, l 6= k, (49)

have this parallel coordinate axis vector ek as their first trace vector

vTrace1 = ek. (50)

The direction vector of the line of intersection with the basal plane µk = e∗k formed by
the two other coordinate axis vectors gives the second trace vector

LineTrace2 = µ ∨ e∗k . (51)

The trace vector (up to scale) can be extracted from (51) using (27) as

vTrace2 = LineTrace2 ·E = (µ ∨ e∗k) ·E. (52)

Only in case that the plane µ in question is not parallel to any of the three coordi-
nate axis vectors, a special convention is made by rule C6 of [1]

vTrace1 = (µ ∨ e∗3) ·E, vTrace2 = (µ ∨ e∗2) ·E. (53)

In this case the following parameters are chosen

t1 = x , t2 = z . (54)
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6.2 Algorithm for the determination of trace vectors
In abbreviated algorithmic form the two trace vectors of a plane can be calculated by
(assuming e4 = e1, e5 = e2)

1. For k = 1,2,3
If (µ ∧µk)e∞ = 0:
abort and return vTrace1 = ek+1, vTrace2 = ek+2.

2. Else for k = 1,2,3
If µ · ek = 0:
abort and return vTrace1 = ek, vTrace2 = (µ ∨ e∗k) ·E.

3. Else abort and return vTrace1 = (µ ∨ e∗3) ·E, vTrace2 = (µ ∨ e∗2) ·E, t1 = x, t2 = z.

7 Crystallographic positive sense of a vector

7.1 Definition of crystallographic positive sense of a vector
The crystallographic positive sense of a vector x 6= 0 with respect to a coordinate system
(37) is defined by the condition (compare C2 of [1])

s(x) =
3

∏
k=1

xk, s(x) > 0. (55)

Remark 7.1 The value of s(x) is coordinate system specific.

Remark 7.2 A vector x with s(x) < 0 can always be reoriented to positive sense by

x 7→ sgn(s(x))x. (56)

In case that s(x) = 0 the vector x must lie in one of the basal planes (44). The sense of
x is then chosen such that

x1 > 0 for x3 = 0,

x2 > 0 for x1 = 0, (57)
x3 > 0 for x2 = 0.

Remark 7.3 The three conditions (57) express open half basal planes, where “open”
means that the delimiting axis line is excluded. They are cyclically related by

xk > 0 for xk−1 = 0, k = 1,2,3. (58)

Remark 7.4 A consequence of (57) is that pure multiples xkek, xk 6= 0, k = 1,2,3 (no
summation over k) of the three basis vectors are reoriented to |xk|ek.

7.2 Algorithm for reorientation of vectors to crystallographic pos-
itive sense

1. Precompute coordinates xk according to (41).

2. Compute s(x) according to (55).
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3. If s(x) 6= 0 abort and return sgn(s(x))x.

4. Else if s(x) = 0 compute

t(x) =
3

∑
k=1

xk+1x2
k−1. (59)

5. If t(x) 6= 0, abort and return sgn(t(x))x.

6. Else compute

u(x) =
3

∑
k=1

xk, (60)

abort and return sgn(u(x))x.

8 Choice of variable symbols for parametrizing lines
and planes

In crystallography [1, 5] standard orientation-location parts of geometric elements of
symmetry operations are given in the form

tvAxis +vLocat (61)

for lines and
t1vTrace1 + t2vTrace2 +vLocat (62)

for planes. The question of this section is the conventional determination of the param-
eter variables t, t1, t2 for given coordinate form vectors vAxis, vTrace1, vTrace2. The axis
vector of a line vAxis is the coordinate form of the direction vector d of a line as given
in (20). The trace vectors vTrace1 and vTrace2 of a plane (23) are the coordinate forms of
direction vectors of two lines of intersection of the plane with basal planes (BPlane),
compare (44) and (45). The conventional choice of the two lines of intersection from
the (two or) three possible ones will also be explained in Section 6.

The vectors vAxis, vTrace1 and vTrace2 can all be expressed with respect to the coor-
dinate system (37) in the form of (41)

v =
3

∑
k=1

vkek, vk = v · e∗k , k = 1,2,3. (63)

The conventional crystallographic parameter variables are (compare (C3) of [1])

t = x for v1 6= 0,

t = y for v1 = 0,v2 6= 0, (64)
t = z for v1 = v2 = 0,v3 6= 0,

where t→ t1 for vTrace1 and t→ t2 for vTrace2.
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9 Full algorithm for conversion of geometric algebra
versor notation to crystallographic symmetry-operation
notation

9.1 Algorithm for rotations, screw rotations and rotoinversions
1. Given the multivector versor expressions of rotations, screw rotations and rotoin-

versions, the axis line Line (20) can be easily computed.

2. According to Section 5.3.1 the location point of the line vLocat is determined.

3. The direction vector vAxis is determined according to (26).

4. The direction vector needs to be scaled, such that its three coordinates vk = vAxis ·
e∗k ,k = 1,2,3 form relatively prime integers.

5. The direction vector needs to be oriented according to Section 7.2.

6. The variable symbol t is chosen according to Section 8. Thus we arrive at the
final (coordinate) form of the orientation-location part

t vAxis +vLocat. (65)

7. For screw rotations the decomposition of translations of (34) leads to the intrinsic
translation component (parallel to the axis).

8. The sense of the rotation axis is also important for the determination the correct
crystallographic (left-handed = positive, or right-handed = negative) rotation an-
gle α , and its symbol n± = 360/α . The sign of α determines the upper ± index
of n±.

9.2 Algorithm for reflections and glide reflections
1. Given the multivector versor expressions of reflections and glide reflections, the

reflection plane in vector form µ (29) can easily be determined.

2. According to Section 5.3.2 the location point of the line vLocat is determined.

3. The two trace vectors vTrace1 and vTrace2 are determined according to Section 6.

4. Each trace vector needs to be scaled, such that its three coordinates vk = vTrace ·
e∗k ,k = 1,2,3 form relatively prime integers.

5. Each trace vector needs to be oriented according to Section 7.2.

6. The variable symbols t1, t2 need to be chosen according to Section 8. Thus we
arrive at the final (coordinate) form of the orientation-location part

t1 vTrace1 + t2 vTrace2 +vLocat. (66)

7. For glide reflections the decomposition of translations of (34) leads to the in-
trinsic translation component wg (parallel to the plane). This intrinsic transla-
tion component determines the choice of glide reflection symbol r ∈ {a,b,c} for
wg ∈ {a/2,b/2,c/2}, or s = n for face diagonal vectors wg, or s = d for pairs
of diamond glide vectors wg (half of centering vectors). In all other cases the
symbol is s = g. Compare Section 2.2.
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[1] K. Stróż, A systematic approach to the derivation of standard orientation-location

parts of symmetry-operation symbols, Acta Crystallographica Section A, A63, pp.
447–454, 2007.

[2] Doran, C. & Lasenby, A. (2003). Geometric Algebra for Physicists, CUP, Cam-
bridge UK.

[3] Dorst, L. & Fontijne, D. & Mann, S. (2007). Geometric Algebra for Computer
Science: An Object-oriented Approach to Geometry, Morgan Kaufmann Series in
Computer Graphics, San Francisco.

[4] Li, H. (2008). Invariant Algebras and Geometric Reasoning, World Scientific,
Singapore.

[5] Hahn, T. (2005). Int. Tables for Crystallography, 5th ed., Vol. A, Springer, Dor-
drecht.

[6] Hestenes, D. (2002). Point groups and space groups in geometric algebra, edited
by L. Dorst et al., Applications of Geometric Algebra in Computer Science and
Engineering, Birkhäuser, Basel, 3–34.
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