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ABSTRACT

This  tutorial  focuses  on  describing  the  implementation  and  use  of  reflections  in  the  geometric 
algebras of three-dimensional (3D) Euclidean space and in the five-dimensional (5D) conformal model 
of Euclidean space. In the latter reflections at parallel planes serve to implement translations as well. 
Combinations of reflections allow to implement all isometric transformations. As a concrete example 
we treat the  symmetries  of  (2D and 3D)  space  lattice  crystal  cells.  All  32  point  groups  of  three 
dimensional crystal cells (10 point groups in 2D) are exclusively described by vectors (two for each 
cell in 2D, three for one particular cell in 3D) taken from the physical cell. Geometric multiplication of 
these vectors completely generates all symmetries, including reflections, rotations, inversions, rotary-
reflections  and rotary-inversions.  The inclusion of translations with the help of  the 5D conformal 
model of 3D Euclidean space allows the full formulation of the 230 crystallographic space groups in 
geometric algebra. The sets of vectors necessary are illustrated in drawings and all symmetry group 
elements are listed explicitly as geometric vector products. Finally a new free interactive software tool 
is  introduced,  that  visualizes  all  symmetry  transformations  in  the  way  described  in  the  main 
geometrical part of this tutorial. 
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1. INTRODUCTION

We first  describe  in  section two how to multiply vectors  in  geometric  algebra.  This  leads  to  the 
description of transformations as  versors (products of vectors). In section three we briefly describe 
what is a symmetry group. In section four we show how to combine reflections as versors to give the 
point symmetry groups of 2D cells. These point symmetries form the basis of the socalled wallpaper 
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groups, i.e. space groups for symmetrically repeating infinite patterns in 2D. Space groups arise by 
adding translations to point groups. 

Section five describes likewise how combinations of reflections into versors describe symmetry in 3D. 
As a particular example we again look at the 3D cells of crystalls. There are seven types. Each type 
needs its own choice of 3 vectors, each type has a maximum order point group, where reflections are 
used without restrictions. Imposing restrictions on the combination of reflections, e.g. that they are 
only allowed to be used in fixed pairs or fixed triples leads to subgroups. Counting all the point groups 
in 3D, we have 7 maximal point groups and 25 subgroups. 

Section 6 finally describes how in the 5D conformal (and homogeneous) model of 3D Euclidean space 
translations  are  implemented  also  as  versors  (products  of  vectors).  This  allows  to  proceed  from 
symmetries  tied to an invariant  point  at  the origin to symmetries  in space.  This is  very useful  in 
computer vision, robot kinematics, wherever rigid motions are involved. Our particular example are 
again  the  symmetries  of  crystals,  now (mathematically:  infinitely)  extended  in  space.  All  regular 
crystals fall into this category, metals, minarals, semiconductor crystals, (bio-)molecular crystals, etc. 

The structure of crystal cells in two and three dimensions is fundamental for many material properties. 
Many  elements,  including  Aluminium,  Copper  and  Iron  have  e.g.  cubic  unit  cells.  The  nearest 
neighbors of diamond structures form tetrahedrons. About 30 elements show hexagonal close-packed 
structure.[1] Important organic molecules like benzene have hexagonal symmetry. Today some 80% of 
crystal  structure  analysis  is  carried  out  on  crystallized  biomolecules  with  huge  investments  from 
pharmaceutical companies. 

In  two dimensions atoms (or  molecules)  often  group together  in  triangles,  squares  and  hexagons 
(regular  polygons).  Crystal  cells  in  three  dimensions  have  triclinic,  monoclinic,  orthorhombic, 
hexagonal, rhombohedral, tetragonal and cubic shapes. 

The geometric symmetry of a crystal manifests itself in its physical properties, reducing the number of 
independent components of a physical property tensor, or forcing some components to zero values. 
There is therefore an important need to efficiently analyze the crystal cell symmetries. Mathematics 
based  on  geometry  itself  offers  the  best  descriptions.  Especially  if  elementary  concepts  like  the 
relative directions of vectors are fully encoded in the geometric multiplication of vectors. 

2. MULTIPLYING VECTORS

The associative geometric product[2,3] of vectors a,b includes sine and cosine of the enclosed angle α

ab = |a||b|(cos α + i sin α),                                                         (1)
(ab)c  =   a(bc)  =  abc ,                                                            (2)

where i is the unit oriented area element of the plane of the vectors a,b. The geometric product (always 
indicated simply by juxtaposition) has symmetric (inner) and antisymmetric (outer) parts:

    a · b = b · a = (ab+ba)/2 = |a||b| cos α,                                                     (3)
 a∧b = − b∧a = (ab−ba)/2 = |a||b| i sin α.                                                   (4)

The inner product (3) yields a scalar. The outer product (4) yields a bivector, which can be pictured as the 
oriented area spanned by moving  b along  a,  with magnitude  |a||b|  sin  α.  In general every unit  i is a 
combination of the three oriented bivector sides of a unit cube:

                               i = u1 e2e3 +  u2 e3e1  +  u3 e1e2    ,    u1
2  + u2

2 + u3
2

  = 1.                                    (5)

The commutation properties of (3) and (4) can already be used to implement reflections across a line 
(in 2D) or at a mirror plane (in 3D). In both cases the mirror (line or plane) can be given by a normal 
vector c, with inverse 
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c-1 = c/c2,      c-1c = 1 .                                                             (6)

A vector  x to be reflected, can be written in components parallel and perpendicular to  c:  x  = x||+x⊥. 
Now x||∧c=0, because parallel vectors span no area, and x⊥· c =0, because of perpendicularity. So we 
must have 

x||c = x|| · c + 0 = c · x|| + 0 = cx|| ,                                                           (7)
x⊥c = 0 + x⊥∧c = – 0 – c∧x⊥= – cx⊥.                                                       (8)

Reflection only changes the sign of x||, compare Fig. 1.

Fig. 1. Reflection of vector x at plane normal to vector c. 

Therefore we get for the reflected vector x’

x’= –x||+x  ⊥= –c−1c(x||–x⊥) = – c−1(cx||–cx⊥) = – c−1(x||c+x⊥c) = – c−1(x||+x⊥)c = – c−1xc  ,         (9) 

where (7) and (8) have been applied in the fourth step. 

Fig. 2. Sequence of two reflections at lines (planes) with normal vectors c,d .

To do a sequence of two reflections with normal vectors c,d as in Fig. 2 simply results in 

x’= d−1c−1 x cd = (cd) −1x cd = R−1 x R ,  R ≡ cd.                                         (10)

The two minus signs have canceled. 

(cd) −1  = d−1c−1 ,                                                                   (11)

because with the associativity of the geometric product and with repeated application of (6) we have

d−1c−1 (cd) =  d−1(c−1c)d = d−1d  = 1.                                                    (12)

Equation (12) can indeed be generalized for versors (products of finite numbers of vectors) to

(cdef ...) −1  = ... f−1e−1d−1c−1  .                                                       (13)

The two reflections at planes with normal vectors  c,d enclosing the angle  θ/2 result in a rotation by 
angle  θ. To understand this please look at Fig. 2.  The angles between the normal vectors  c,d and 
between the lines (planes) of reflection are both equal to θ/2 . Let us call the angle between x and x': 
2α. We further call the angle between x' and x'': 2β.  Observing the figure we see that θ/2 =α+β. Hence 
the total angle between x and x'': 2α+2β = θ. A general (spinorial) rotation operator (rotor) is therefore 
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the product of two vectors  R=cd enclosing half  the angle of the final rotation. This description of 
rotations exactly corresponds to the description by quaternions, because for unit vectors  c,d we have

  c · d = cos θ/2       and      c  ∧ d = i sin θ/2                                           (14)

where i is the unit area of the c,d plane, the plane of rotation. c · d  corresponds to the scalar part of the 
quaternion and the bivector  c  ∧ d corresponds to the pure quaternion part, where the quaternion units 
i, j, k correspond to  e2e3 , e3e1  , e1e2  as in (5). 

A sequence of three reflections at planes with normal vectors c,d,e gives a rotary-reflection:

x’=(−1)(cde) −1x cde,                                                              (15)

because the first two reflections result in a rotation followed by a final reflection. If the three vectors 
c,d,e happen to be mutually orthogonal (cde=i = e1e2e3), then (15) describes an inversion:

x’= (−1)3 i-1 x i =(−1)i-1i x = − x.                                                    (16)

The general transformation law for all orthogonal transformations is therefore

x’= (−1)p S −1 x S,           S= S ,∀∈R ∖0                                      (17)

with p = parity (even or odd) of the vector products (versors) in S. Because both S −1 and S are factors 
in (17), the sign of S and (non-zero) scalar factors of S always cancel. We therefore equate operators S 
if they only differ by real scalar factors (including positive and negative signs)!

3. Symmetry groups

A reflection about the diagonal of a square leaves the square as a whole invariant. It is therefore a 
symmetry  (operation)  of  the  square.  A reflection  about  the  other  diagonal  is  also  a  symmetry 
operation. Combining the two reflections gives a resulting rotation by 180 degrees around the center of 
the square, as can easily be checked. In general the combination of symmetry operations of an object 
yields another symmetry operation. We say the set  G of all symmetry operations {R,S,T, ...} of an 
object is closed:

  (18)

The combination of symmetry operations obeys the following rules: 

  (19)

For example rotations in two dimensions clearly obey (19). Leaving an object unchanged (e.g. by 
rotating it with the full angle 360○) we get the identity operation 1, which can always be performed 
before or after any other symmetry operation

∀ S∈G ⇒ ∃ 1∈G : 1S=S 1=S .                                               (20)

Finally when we reflect an object along a line (plane) of symmetry, we can always reflect it back, 
when we rotate it, we can always rotate it back, ... Every symmetry has an inverse

  (21)

The properties (18) to (21) are needed to define a group mathematically. The set G of all symmetry 
operations of an object is therefore said to to form the symmetry group of that object. The set of all 
translations of a lattice by lattice vectors (connecting lattice points) is such a symmetry group. In the 
case of a triclinic lattice (angles and lattice cell edges completely free, unsymmetric molecules) this is 
already the full symmetry group of the lattice, the first socalled 3D space group. 
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Symmetry groups of e.g. crystals are usually represented by matrices, necessitating the introduction of 
coordinates. Yet an object and its symmetries exist with and without coordinates. Geometric algebra 
offers an invariant way (independent of coordinates) to describe symmetry. In the following we will 
demonstrate this for crystal cells and crystal lattices.

4. Combinations of reflections in two dimensions (2D)

Fig. 3. Top: Regular polygons (n=2,3,4,6) with vectors a,b. Bottom: a,b shifted to centers.

Fundamental  are  the  two-dimensional  (2D)  symmetries  of  regular  polygons  with  n  =  2,3,4,6 
corners.[4] In order to later construct a 2D repetitive pattern (like a wallpaper), of regular polygons we 
need to exclude other values of n.  (With n=5, no lattice can be built without gaps. For n>6 no lattice 
can be  built without overlaps.) For an interactive online visualization see [8].
In general the point symmetry group of a regular polygon with n corners is generated by a side vector 
a and a vector b pointing to a next neighbor corner as illustrated in Fig. 3. a,b will enclose +180○/n. 
(The condition Rn = −1 is equivalent to this.) Using R=ba, instead of R=ab would generate rotations 
of opposite sense.
All reflections and rotations of the two-dimensional symmetry groups of regular polygons with  n  = 
2,3,4,6 can thus be fully and compactly represented by:

● general oblique figure (cell): identity ±1.
For general oblique figure (cell) with asymmetric unit there is no symmetry apart from the identity. 

● n = 2: reflection a ; identity ±1.
For n=2 we have two points at x1=+a, and x2=− a. The two symmetry operations are the identity and 
the reflection at the plane perpendicular to a:

x’= −a−1 x a.                                                                      (22)

Instead of the reflection, we can also use a 180˚ rotation with the help of any vector b perpendicular 
(+90˚=180˚/2) to a: 

x’  = b-1a-1 x ab = (ab)-1 x (ab) = R-1 x R .                                             (23)
Compare Fig. 3. 

● n = 3: reflections a, b, bR ;  rotations R = ab, R2, R3 = −1.
For n = 3 we have a regular triangle centered at the origin as in Fig. 3.  The two vectors a,b now 
enclose +60˚ = 180˚/3. The three symmetry rotations (120˚, 240˚, 360˚) in positive sense are:

R=ab,  R2=(ab)2,  R3  = (ab)3  = −1.                                                   (24)

The three symmetry reflections (6) are at the three lines through the center and the corners:

x’= − a-1 x a,    x’= − a-1R-1 x Ra,    x’= − a-1R-2 x R2a.                                  (25)
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● n = 4: ref. a, b, aR2, bR2 ; rotations R = ab, R2, R3, R4 = −1.

For n = 4 we have a square centered at the origin (Fig. 1.) Vectors a, b enclose +45˚=180˚/4. The four 
symmetry rotations (90˚,180˚,270˚,360˚) in positive sense are:

R = ab,  R2 = (ab)2,  R3 = (ab)3,  R4 = (ab)4 = −1.                                       (26)

The four symmetry reflections (6) are at lines perpendicular to vectors a, b, R-1aR, R-1bR. 
● n = 6: ref. a, b, aR2, bR2, aR4, bR4 ; rotations R = ab, R2, R3, R4, R5, R6= −1.

For  n=6  we  have  a  regular  hexagon  centered  at  the  origin  as  in  Fig.  1.  Vectors  a,  b enclose 
+30˚=180˚/6. The six symmetry rotations (60˚,120˚,180˚,240˚,300˚,360˚) in positive sense are:

R=ab, R2, R3, R4 ,R5, and R6= −1.                                             (27)

The six symmetry reflections are at lines perpendicular to vectors a,b,aR2,bR2,aR4,bR4. 

Table 1 gives an overview of the geometric notation (based on versors) for point groups.  Based on 
table 1 we can now denote the 10 point groups of the five two-dimensional crystal cells as in the 
following table 2.

5. Reflections in three dimensions (3D)

All known three-dimensional crystal lattices can be characterized by seven unit crystal cells shown in 
Figs.  4,  5  and  6.  The  symmetry transformations  of  these  cells,  which  leave  the  center  points  O 
invariant, form groups of symmetry operations, called  point groups  (discrete subgroups of  SO(3) ). 
Each of the seven unit cells has a highest (cardinality) symmetry group, called holohedry. The other 25 
groups are  nothing but  subgroups of  these 7 holohedries.  So altogether  there are 32 point  groups 
associated with seven crystal classes.[4,5,6] 

Table 2. Geometric and international notation for point groups. The international symbol is given in 
brackets. We observe that in two dimensions (2D) the overbar indicates a group of rotations. The 

group 1  only contains the identity element.
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Fig. 4. Triclinic, monoclinic and orthorhombic crystal cells with invariant point centers O. The three 
vectors are actually attached to O in order to generate the respective point group symmetries.

As in two dimensions we can find three vectors a,b,c in each cell that describe reflection symmetries. 
The lengths of these vectors will  only matter  later,  when we include translations to fill  space and 
produce 3D lattices. What now matters are their relative directions. The angles are characterized by the 
index  q for the angle(a,b), and by  q for the angle(b,c). Geometric considerations (positivity of the 
spherical excess of a sperical triangle) lead to the conclusion that the third angle will always be 90○ 

(index 2 for 90○=180○ /2). The geometric symbols of 3D point groups follow table 1: pq2, but because 
the  third  index 2 is  always  present,  it  is  mostly omitted:  pq.  These  two numbers combined with 
overbars as in table 1 characterize all 32 point groups. Naturally the holohedries have less overbars, 
because overbars introduce restrictions to the independent use of reflections. Again the groups will be 
versor groups, all generators consisting only of products of the vectors  a,b,c. The geometric meaning 
and  the  geometric  algebra  calculations  with  these  symmetry  elements  become  therefore 
straightforward and manifestly coordinate independent. A free interactive script for full 3D point group 
visualization is available for download from www.spacegroup.info . 

5.1 Triclinic cell symmetry

The triclinic cell of Fig. 4 has three sides of unequal lengths and 3 unequal non-orthogonal angles. The 
only two symmetry operations are inversion i and identity 1, giving the groups:

22 = Ci = { i=a∧b∧c = e1e2e3 ,  1},                                             (28*)
1 = C1 = {1}.                                                               (29)

With the asterisk in (28*) we indicate that this group is a holohedry ( = *). The group symbol 22 of 
(28*) was introduced in [4], it is equivalent to chosing 3 orthogonal vectors  a, b’, c’ (with angles 
180˚/2)  multiplied to give  i.  For using the non-orthogonal  edge vectors  a,b,c, we need to replace 
i=a∧b∧c in (16). The second symbol is always the socalled Schoenflies symbol, frequently used in 
crystallography and solid state physics.

5.2 Monoclinic cell symmetry

The monoclinic cell of Fig. 2 has edge vectors a,b,c of unequal length. Only the angle between a and b 
is not 90˚. We have the following three groups:

2 = C2  = { R=a∧b, 1},                                                          (30)
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1 = CS  = { c, 1 },                                                                (31)
22 = C2h  = { c, R, cR = i, 1 },                                                       (32*)

where cR is again the inversion i. 

5.3 Orthorhombic cell symmetry

The  orthorhombic cell of Fig. 4 has orthogonal edge vectors  a,b,c  of generally unequal length. We 
now get the three symmetry groups:

22 = V  = { ab, bc, ac, 1 },                                                     (33)
2 = C2v  = { a, b, ab, 1 },                                                        (34)

22 = Vh   = { a, b, c, ab, bc, ac, abc, 1}.                                             (35*)

Fig. 5. Tetragonal cell, trigonal lattice cell (rhombohedral in hexagonal R) containing O. 
(Hexagonal cell: http://www.uwgb.edu/dutchs/symmetry/rhombo-lattice.htm)

5.4 Tetragonal cell symmetry

In the tetragonal cell of Fig. 5 two of the orthogonal edge vectors a,b’,c have equal length (|a|=|b’|), 
forming the  base  square.  We gain  a 4-fold  rotation  symmetry around the  c-axis.  To generate  the 
symmetry groups we choose a vector b=(a+b’)/2 pointing to a corner of the a,b’-square (compare the 
square in Fig. 3 in 2D). The angle of a and b will therefore be 45˚=180˚/4. Defining the  90˚ rotation 
generator

R = ab,                                                                         (36)
the symmetry groups obtained are now:

4   = C4   = { R, R2, R3, R4  = 1 } ,                                                                                                  (37)
42  = S4   = { abc = Rc, (Rc)2 = R2,  (Rc)3 = R3c , (Rc)4 = 1 } ,                                                      (38)
4 2 = C4h  = { R, R2, R3, 1,  c, Rc, R2c, (Rc)3 = R3c } ,                                                                    (39)
4 2 = D4   = { R, R2, R3, 1,  bc, Rbc, R2bc, R3bc } ,                                                                        (40)
4      = C4v = { a, b, aR2, bR2, R, R2, R3, 1} ,                                                                                    (41)
4 2  = Vd   = { a, bc, abc = Rc, (Rc)2=R2, R3c,  aR2 = bab, a(Rc)3 = bR2c, 1 },                              (42)
42   = D4h = { a, b, aR2, bR2, c,    R, R2, R3, 1,     bc, ac, aR2c, bR2c,     Rc, R2c = i, R3c }.           (43*)

The holohedry 42 of (43*) again contains all other groups (37)-(42) as subgroups. (43*) lists from left 
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to  right:  five reflections,  four rotations  (90˚,180˚,170˚,360˚),  four 180˚  rotations  and  three rotary-
reflections, with R2c equal the inversion, altogether the point group 42 has 12 elements. In (37)-(43*) 
some algebraic identities are inserted, in order to ease the recognition of the subgroup relationships.

5.5 Trigonal cell symmetry

The  trigonal (rhombohedral)  cell of Fig. 5, can be visualized as a cube stretched along one space 
diagonal c, this direction is conventionally called rhombohedral axis. The vectors a, b have the same 
lengths and subtend the able 60○= 180○/3, giving rise to 2×60○= 120○ rotations. The holohedry 62  
is actually formed with diagonal vector b*  of the rhombic base of the hexagonal cell indicated in Fig. 5 
as dashed vector. Defining the 60○ rotary-reflection Rr , and the 120○ rotation R as

Rr =  ab*c ,        R = Rr
2 = (ab*)2  =  ab ,                                              (44)

the holohedry of the trigonal cell is:

6 2 =D3d ={a, aRr
2, aRr

4, b*c, Rr
2b*c, Rr

4b*c, Rr, Rr
3=i, Rr

5=(ab*)5c, Rr
2=(ab*)2, Rr

4=(ab*)4,1}. (45*)

(45*) lists from left to right: three reflections, three 180˚ rotations, three rotary-reflections (the second 
equals the inversion), and three rotations (120˚,240˚,360˚), altogether 12 elements. 62 =D3d has the 
following four subgroups:

62 = C3i = {Rr , Rr
2, Rr

3 = i,  Rr
4, Rr

5, 1 },                                                                                       (46)
32 = D3  = { R= ab, R2, R3= −1,   bc, Rbc =ac, R2bc=abac } ,                                                    (47)
3      =  C3v  = { a, b, bab,   R = ab, R2, R3 } ,                                                                                   (48)

3   =  C6   = { R= ab,  R2,  R3 } .                                                                                                     (49)

Fig. 6. Hexagonal and cubic cells.

5.6 Hexagonal cell symmetry

For the  hexagonal cell we define like in Fig. 6 two vectors  a  and  b  (at 30˚=180˚/6 angle) and for 
convenience an extra vector b*=bab (at 60˚ angle to a). The vertical vector is c. With

R= ab , Rc = cR ,  R2=ab*                                                        (50)
The hexagonal holohedry is now

62 = D6h = {a, b,  aR2,  bR2,  aR4,  bR4,
  R,  R2,  R3,  R4,  R5, 1 ,
  c,  cR,  cR2,  cR3 = i,  cR4,  cR5,

ac , bc , acR2,  bcR2,  acR4,  bcR4  }.                                                                                (51*)
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The holohedry 62 of (51) contains line by line: six reflections, six rotations (60˚,120˚,180˚,240˚,300˚, 
360˚), six rotary-reflections, and six 180˚ rotations, altogether there are 24 elements. The hexagonal 
holohedry 62 has the following six subgroups:

62 = C6h = { R, R2, R3, R4, R5, 1,    c, cR, cR2, cR3, cR4, cR5 } ,                                                        (52)
62 = D6   = {R, R2, R3, R4, R5, 1,   bc, Rbc, R2bc, R3bc, R4bc, R5bc },                                              (53)

6    = C6v  = { R, R2, R3, R4, R5, 1,   a, b, aR2, bR2, aR4, bR4} ,                                                          (54)
6  =  C3  = { R, R2, R3, R4 ,R5, 1 } ,                                                                                                  (55)
32   = D3h  = {a , b*= bR= aR2, aR4 = b*R2 = b*ab*, R2, R4, 1,  c, R2c, R4c, ac, b*c = acR2 , acR4 },  (56)
3 2 = C3h  = { R2 = ab* , R4, 1,   c, R2c, R4c } .                                                                                  (57)

For the group 62  it is interesting to note that:

Rbc = ac,  R2bc = bcR4,  R3bc = R2ac = acR4,  R4bc = bcR2,  R5bc = R4ac = acR2.             (58)

5.7 Cubic (isometric) cell symmetry

For the cubic crystal cell of Fig. 6 we define the three vectors a,b,c, such that a points to the middle of 
a side square face, b and c point to the middle of two edges, and the angles are 45˚ between a and b,  
60˚ between b and c, and 90˚ between between c and a. We further define another edge middle vector 
a* = abcba. a*,b,c all have mutual angles of 60˚. The cubic holohedry has 48 elements:

43 = Oh  = { a,b,c, bab, cbabc,  (ab)2c(ba)2,  bcb, a*= abcba, aba ,
i = (ab)2cbabc ,  1,
ab, (ab)2, (ab)3, babc, (babc)2, (babc)3, a*a=abcb,  (a*a)2,  (a*a)3,
ic,  ib,  ibcb=a*bab,  ac,  ia*=babcbc,  iaba=bcbabc ,
cbcaba=abci,  abacbc=(abc)2,  (a*b)2,  a*b,  acba,  abca,  bc,  (bc)2 ,
abi,  (ab)3i,  babci,  (babc)3i,  a*ai,  (a*a)3i ,

  cbcabai=abc,   abacbci=(abc)2i,   (a*b)2i,  a*bi ,   acbai,  abcai,   bci,  (bc)2i  } .               (59*)

The 1st line of (59*) are nine reflections, the 2nd line the inversion and identity, the 3rd line three triples of 
rotations by (90˚,180˚,270˚), the 4th line six 180˚ rotations, the 5th line four pairs of rotations by (120˚,240˚) 
around the four space diagonals, the 6th line three pairs of rotary-inversions, and the 7th line four pairs of 
rotary-inversions around the four space diagonals. 

Transformation

reflections a  =  e1 ,
e2 , e3

b=e1+e2, c=e2+e3,  

e1+e3 
e3–e2 , e3–e1, e1–e2

inversion, identity i = e1e2 e3 1

rotations 
(90˚, 180˚, 270˚) 1 ± e2e3 , e2e3 1 ± e3e1 , e3e1 1 ± e1e2 , e1e2

180˚ rotations e1e2 ±e3e1 e2e3 ±e3e1 e1e2±e2e3

120˚, 240˚ space 
diagonal rots. 1± (e12+e23+e31) 1±(e12−e23+e31) 1±(−e12 +e23 +e31) 1±(e12+e23−e31)

90˚, 270˚ rot.-invs.  i ± e1    i ± e2    i ± e3

120˚,240˚ rot.-invs.  i ± (e1+e2 +e3)  i ± (−e1+e2+e3)  i ± (e1+e2−e3)  i ± (e1−e2 +e3)
Table 3. Point group 43 in terms of orthonormal basis {e1,  e2 , e3}. Bivectors specify rotation planes.
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It is very revealing to introduce rewrite (59*) in terms of the orthonormal basis {e1,  e2 , e3}, as in table 3, 
where bivectors specify rotation planes and vectors specify rotation axis. 

Table 4 gives the same symmetry operators, emphasizing the use of axis vectors. A rotation plane 
bivector U and its axis vector u are related by

U = iu  ,    u = − iU  ,                                                              (60)
                                                  

but because of (17) the minus sign in (60) is not really substantial. 

The cubic holohedry 43 of (59*) has the following subgroups:

43 = Th = {a, bab, cbabc, i, 1, (ab)2, (babc)2,(a*a)2,
            abci, (abc)2, (a*b)2, a*b, acba, abca,bc,(bc)2,
            abc ,(abc)2i, (a*b)2i, a*bi, acbai, abcai, bci, (bc)2i}
           = {e1,  e2 , e3 , i, 1,  e2e3, e3e1, e1e2, 
                1± i(e1+e2+e3), 1± i(−e1+e2+e3), 1± i(e1+e2−e3), 1± i(e1−e2+e3),
                i ± (e1+e2 +e3),  i ± (−e1+e2+e3), i ± (e1+e2−e3), i ± (e1−e2 +e3)} ,                                          (61)

43 = O ={ab, (ab)2, (ab)3, babc, (babc)2, (babc)3, a*a, (a*a)2, (a*a)3, 1,
           ic,  ib,  ibcb,  ac,  ia*,  iaba ,

     abci, (abc)2, (a*b)2, a*b, acba, abca, bc, (bc)2}                                                                     
         =      {  (1 + iek)m,   k,m = 1,2,3  }
           U { (e3 ± e2)i, (e1 ± e2)i, (e3 ± e1)i,
                             1± i(e1+e2+e3), 1± i(−e1+e2+e3), 1± i(e1+e2−e3), 1± i(e1−e2+e3)  } ,                          (62)

Transformation

reflections a  = e1,  e2 , e3
b=e1+e2, c=e2+e3,  

e1+e3 
e3–e2 , e3–e1, e1–e2

inversion, identity i = e1e2 e3 1

90˚,180˚,270˚ 
rotations (m =1,2,3) (1 + ie1)m (1 + ie2)m

 (1 + ie3)m

180˚ rotations (e3 ± e2)i (e1 ± e2)i (e3 ± e1)i

120˚, 240˚ space 
diagonal rots. 1± i(e1+e2+e3) 1± i(−e1+e2+e3) 1± i(e1+e2−e3) 1± i(e1−e2+e3)

90˚, 270˚ rot.-invs.  i ± e1    i ± e2    i ± e3

120˚,240˚ rot.-invs.  i ± (e1+e2 +e3)  i ± (−e1+e2+e3)  i ± (e1+e2−e3)  i ± (e1−e2 +e3)
Table 4. Point group 43 in terms of orthonormal basis {e1,  e2 , e3}. Emphasize on axis vectors.

  33 = Td  = {b, c, (ab)2c(ba)2, cbc, a*, aba, 
           1, (ab)2, (babc)2, (a*a)2,
           abci, (abc)2, (a*b)2, a*b, acba, abca, bc, (bc)2,
           abi, (ab)3i, babci, (babc)3i, a*ai, (a*a)3i}
         = { e1±e2, e2±e3, e1±e3 ,  
                      1,  e2e3, e3e1, e1e2, 
                      1± i(e1+e2+e3), 1± i(−e1+e2+e3), 1± i(e1+e2−e3), 1± i(e1−e2+e3) }
           U { i ± ek , k = 1,2,3} ,                                                                                                    (63)
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33 = T  = { 1, (ab)2, (babc)2, (a*a)2,   abci, (abc)2, (a*b)2, a*b, acba, abca, bc, (bc)2}
         = {1,  e2e3, e3e1, e1e2, 1± i(e1+e2+e3), 1± i(−e1+e2+e3), 1± i(e1+e2−e3), 1± i(e1−e2+e3)}.      (64)

Multivector (versor) Symmetry transformation

u   reflection at hyperplane normal to U
i  inversion

i±u ∓90 ˚  rotary inversion with axis u (plane of rotation: U)
i±d ∓120 ˚ rotary inversion with axis u (equiv. to d, plane of rotation: U)

U = iu, id  180˚ rotation around axis u 
1±iu  ±90˚ rotation around axis u (plane of rotation: U)
1±id  ±120˚ rotation around axis u (equivalent to d, plane of rotation: U)

Table 5. Symmetry transformations expressed by unit vector u, d=3u , bivector U=iu.

In general we observe for unit vectors u, u2 = 1, bivectors U=iu (60), and vectors d=3u  the 
relationships of table 4. Table 5 summarizes all 48 cubic point group symmetry transformations if the 
vectors u, d are chosen from the three edge vectors, the six face diagonal vectors, or the four space 
diagonal (d) vectors respectively. 

6. Reflections and translations unified in the conformal 5D model of Euclidean 3D space

Fig 7. Overview of conformal model of Euclidean space. 

6.1 The conformal 5D model of Euclidean 3D space reviewed

The 5D conformal model of Euclidean space adds two dimensions (two linearly independent vectors) to 3D 
Euclidean space, one for the origin n0  and one for infinity n∞ (compare Fig. 7)

  (65) 
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X=x1
2

x2 n∞n0 ,



 
These vectors seem at first sight somewhat special, because they square to zero 

  (66)
  

The coefficients in the linear combination (65) ensure that as a consequence every X is also a null-
vector

X2 = 0 .                                                                                (67)

The second condition for X which is guaranteed by (65) is 

  (68)

(67) says that all X are on a null-cone type of surface (a 4D surface in 5D) and (68) cuts out of this 
surface a 3D subspace that is equivalent (isomorphic) to Euclidean three space ℝ3 :

  (69)

The way from a conformal point X∈ℝ4,1 back to x∈ℝ3 is to simply drop (project out) the 
origin and infinity parts. But what do we gain by introducing the conformal model? We get 

● a new formula for calculating Euclidean distances
● a new description of located planes
● a new operator for expressing translations. 

In the geometric algebra of ℝ4,1 the scalar product of two conformal points X and A represents their 
Euclidean distance according to

  (70)

where x and a are nothing but the Euclidean position vectors of  X and A. (67) is fully in line with (70), 
because (x−x)2 = 0, i.e. the Euclidean distance of x and x is zero. 

Now all the points equidistant from two points A and B form the mid plane between  A and B. Such a 
mid plane is in general position, i.e. it is not bound to contain the origin. An equation for the mid plane 
is given by

  (71)

  (72)

where in the last line of (72) we use the abbreviations p=a−b/∣a−b∣ for the unit normal vector 
p of the mid plane represented by m , and d=p⋅ab/2 for the scalar oriented distance d to the 
origin of the plane m , as depicted in Fig. 8. Because the conformal points are homogeneous m can 
also simply be written as unit vector (discarding the non-zero factor ∣a−b∣ )

  (73)

For the unit plane representing vector m we also have

  (74)
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n∞
2=n0

2=0.

x∈ℝ3⇒ X= x1
2

x2 n∞n0.

X⋅A=X⋅B ⇔ X⋅A−B=0 ⇔ X⋅m=0, m=A−B.

m = A−B = a−b1
2
a2−b2n∞ = a−b1

2
a−b⋅abn∞

= ∣a−b∣{ a−b
∣a−b∣

 a−b
∣a−b∣

⋅ab
2

n∞ } = ∣a−b∣{pd n∞} ,

X⋅A=−1
2
x−a 2 ,

m= pd n∞ , m2= p2n∞
22p⋅n∞= p2=1.

X⋅n∞=−1 ⇒n0⋅n∞=−1.

m−1=m .



Exactly as before in Euclidean space, we can now use the positioned plane m in order to reflect a vector X 
(its perpendicular component x⊥ ) to the other side. 

  (75)

The second equality holds for the unit m of (73) and (74). To proof (75) algebraically we use (7) and (8) 
and the following relationships (parallel and perpendicular always to unit vector p of Fig. 8!)

  (78)

This leads with (7), (8) to 

Fig. 8. Mid plane between points A, B, described by m=A−B∝ pdn∞ . 

  (79)

We further get with (68) that

  (80)

Because of (7), (8) and (80) we have

  
(81)

Taking (79) and (81) together 

  (82)

which according to Fig. 9 is exactly X reflected at m. 
No doubt this was not the most elegant way to conduct the proof. But the intention was to only use step by 
step simple algebraic properties like (7) and (8). 
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B

m

b a

p

d

A

origin

(a+b)/2

X '=−m−1 X m=−m X m

X '=−m X m=− pd n∞ X m=−2x∥ p−2 d mX  pd n∞m
=−2x∥ p−d  pd n∞X m2

=−2 x∥ p22dp2 d 2 n∞−2dx∥ pn∞ x∥ x⊥
1
2
x∥

2x⊥
2 n∞n0

=2dp−2x∥ x∥x⊥
1
2 4d 2−4 dx∥ px∥

2 x⊥
2 n∞n0

=2dp−x∥x⊥
1
2
2dp−x∥x⊥

2 n∞n0 .

pX= p X ∥ p X ⊥=X ∥ p−X ⊥ p= x∥ p−−x∥X  p=2 x∥ p−X p .

n∞n0=n∞⋅n0n∞∧n0=−1−n0∧n∞=−2−n0⋅n∞−n0∧n∞=−2−n0 n∞ .

d n∞X=d n∞ x
1
2

x2 n∞d n∞n0=−x
1
2

x2 n∞d n∞−2d−n0 d n∞=−2d−X d n∞ .

n0⊥ p ,n∞⊥ p ⇒ X ∥=x∥ , X ⊥=−x∥X



Please note that equation (22) for the reflection at a plane through the origin with normal a and equation 
(75) for the reflection at a plane m in general position are formally identical. We only need to replace x by 
X and a by m. The composition of reflections works therefore in the very same way. For non-parallel m and 
m' 

  (83)

describes therefore a rotation by twice the helical angle between m and m' (i.e. twice the angle between the 
plane normals p and p') around the line of intersection (the rotation axis perpendicular to both p and p').

Fig. 9. Reflection of the conformal point X at plane m. 

 A general rotation operator (rotor) has therefore the form 

R = m m' .                                                                         (84)

But what if the two planes m and m' happen to be parallel? Then the result is a translation perpendicular to 
the planes by twice the Euclidean distance vector t/2 of the planes (compare Fig. 10). In the conformal 
model we therefore get a translation operator (short: translator)

T = m m' ,                                                                         (85)

which is in its algebraic form identical to the rotation operator. What the transformation is (rotation or 
translation) now only depends on the relative normal directions of the planes m and m' . In general the 
versor m m' gives
  

  (86)

Fig. 10. Reflection at two parallel planes yields a translation by twice the distance. 

We can now distinguish three cases:

● Case 1. Parallel planes with p = p' . Then we have a pure translation by t = 2(d'-d)p. The translator 
T(t) = mm' then has the form 
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X

m

x x'

p d

X'

origin

x┴

x║

−x║

X '=m' m X m m'

t/2

t

m m'

X  X'

m m ' =  pd n∞ p'd ' n∞ = p p 'd ' p−d p ' n∞ .



  
(87)

The reverse product gives

  (88)

● Case 2. d = d' = 0 , p≠ p ' Pure rotation around the origin. The rotor mm' then has the form

  (89)

Fig. 11. Two reflections at planes m and m' .
 

● Case 3. p≠ p ' , and d, d' not both zero. We call s a location on the intersection line (axis) of m 
and m' . The the following versor identity holds

  (90)

i.e. a translation of the axis to the origin followed by the pp'  rotation about the origin and the back 
translation with T(s), compare Fig. 11.

We now proof (90). s is on m and on m' , therefore

  (91)

We calculate (remember )

  (92)
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m m ' =p p ' .

X1

X2

X3

m m'

θ/2

θ

s

p

p'
dp

d'p'

m m ' = T −s  pp ' T s  ,

s⋅p=d , s⋅p '=d ' .

n∞⊥ p , n∞⊥ p ' , n∞
2=0

T −s pp ' T  s = 1−1
2

s n∞ p p ' 11
2

s n∞

= pp '−1
2

s pp ' n∞
1
2

pp ' s n∞0 = pp '1
2
 pp ' s−s pp ' n∞

= pp '1
2  p⋅p ' s p∧p ' ⋅sp∧ p '∧s−s p⋅p '−s⋅ p∧p ' −s∧p∧ p ' n∞
= pp '−s⋅ p∧p ' n∞ = pp '−s⋅p p 's⋅p ' pn∞

= pp '−d p 'd ' pn∞ = mm' ,

m ' m = 1d−d '  p n∞ = 1−1
2

t n∞ = exp−1
2

t n∞ = T −t.

T t  = m m' = 1d '−d  pn∞ = 11
2

t n∞ = exp  1
2

t n∞ , t /2 = d '−d  p .



where we used (87), (88) and p∧ p'∧s=−p∧s∧ p '=s∧p∧p ' .

The s (point of intersection of axis with p, p' plane) in the p, p' plane can be calculated as

  (93)

6.2 Combinations of point group transformations with lattice translations

In order to combine translations (along the selected lattice edges or in general from one general position in 
the lattice to another one) we need to know how to combine translators T(a), where a is the Euclidean 3D 
translation vector, with reflections b in the simplest way possible, i.e. without always calculating full 5D 
conformal model GA expressions. Combinations fundamentally obey the following formula

  (94)

Proof. 

In table 6  formula (94) is applied repeatedly. 

Table 6. Computing with reflections and translations. Index 2 ... rectangular cell, 3 ... equilateral triangle, 
4 ... square cell, 6 ... a is the blue side vector in the base plane of the right cell of Fig. 5 and b is the red 

dashed line diagonal vector in the same base plane.

6.3 Example of a rectangular 2D lattice spacegroup: c2

Fig. 12 shows a rectangular centered cell with space group symmetry c2. All symmetry elements are 
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T ab=bTa '  , a '=−b−1a b

T(b)a = aT(b-3a)

T(a)b = bT(a-b)30º6

T(b)a = aT(b-2a)

T(a)b = bT(a-b)45º4

T(b)a = aT(b-a)

T(a)b = bT(a-b)60º3

T(b)a = aT(b)

T(a)b = bT(a)90º2

T(b)a = aT(-b)

T(a)b = bT(-a)180º1

in particular∠(a,b)index 
p

s = [d pd ' p '− p⋅p ' d ' pd p ' ] / [1− p⋅p ' 2].

T ab = 11
2

a n∞b = b1
2

a n∞b = b−1
2

a b n∞

= b−1
2

b b−1 ab n∞ = b11
2

a ' n∞ = b T a ' .

ab

a

b

b

a

a-b

b-a

a

b

b

a
a-b



depicted. The generators of spacegroup c2 (ITC-No. 9, see [6]) are: 

a, b, T([a+b]/2),  T(ka), T(kb)   with   k = −1,+1.                                             (95)

The centers of 180 degree rotations are given by 

ab T([a+b]/2)   located at   (a+b)/4+(ka+lb)/2, k ,l∈ℤ .                       (96)

Fig. 12. Planar space group (wallpaper) 
with ITC-Nr. 9, geometric symbol: c2. 

● Red lines: reflection lines
● Green lines: lines of glide reflection
● Yellow dots: Centers of 180 deg. rotation
● Violet and pink vectors: a,b
● Blue L: Asymmetric general element 

             representing a molecule. 

The glide reflections of c2 have the following generators: 

bT([a+b]/2) = T(-b/4)    bT(a/2)   T(b/4) ,     located at     b/4+lb/2 , l∈ℤ.          (97)

The symmetry operators of the other 16 2D spacegroups can be composed of versor operators analogous to 
the versors given in (95) – (97). The only depend on two vectors a,b characteristic for the associated lattice 
(oblique, rectangular, square, trigonal and hexagonal). The geometric names of 2D spacegroups are derived 
from the associated geometric point group symbols of Table 2 by adding a prefix for the type of Bravais 
lattice (p ... primitive, c ... centered, h ... hexagonally centered) and an index g where a simple reflection in 
the group basis has been replaced by a glide reflection. 

6.4 Example of a 3D monoclinic space group

Fig. 13. The mineral Kinoite (Image: http://webmineral.com/data/Kinoite.shtml)

Spacegroup P 221 symmetries from generator products: multiplying icT(c/2), cT(c/2) and T(a), T(b), 
T(c):

● Glide reflections are actually square roots of translations:

  (98)
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T c≃[icT c /2]2

http://webmineral.com/data/Kinoite.shtml


● Reflections perpendicular to vector c, located at c/4+kc/2

  (99)

● Family of inversions located at (ka+lb+mc)/2

  (100)

● Family of screws located at (ka+lb)/2

  (101)

Fig. 14 shows a depiction of one monoclinic crystal with spacegroup symmetry P 221 with depictions 
of all its symmetry elements.

Fig. 14. Schematic (monoclinic) crystal cell (e.g. of Kinoite) with all centers of inversion, reflection planes 
and screw axis shown. The symbol P represents a general asymmetric unit (e.g. a molecule). 

7. VISUALIZATION OF CRYSTAL CELL SYMMETRIES

A visualization of the various space group symmetries can further their understanding considerably. For this 
purpose we employed the freely available software CLUCalc [7]. CLUCalc is a 3D-visualization tool with 
an  extensive  scripting  language,  which  fully  supports  Geometric  Algebra.  A fully  free  point  group 
visualization  script  and  a  demonstration  version  of  the  Space Group Visualizer  (SGV) script  that  was 
developed is also available from www.spacegroup.info . In the following a short introduction to the usage 
of the scripts is given.

When  CLUCalc  starts  up,  it  opens  three  windows:  a  script  window,  a  text  output  window  and  a 
visualization window (Fig. 15). Through the menu of the script window the script can be loaded. After the 
point symmetry group script has been loaded, the visualization window is split into three areas: at the left a 
descriptive text containing interactive links is given, at the bottom control elements are shown and in the 
remaining space the crystal cell and related elements are visualized. The visualization is best viewed when 
the visualization window is maximized.

Initially the two crystal cells with a triclinic symmetry are shown. By clicking on the blue text links in the 
left area with the mouse pointer, one can switch to crystal cells with different symmetries. The left crystal 
cell is always the initial cell, while the right cell shows the transformed crystal cell. The transformations 
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cT c /2T k c = T−1 1
4

c1
2

kc cT  1
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c1
2

kc , k∈ℤ

icT c /2T kalb  = T
−1

2 kalb icT c /2T
1
2 kalb  , k , l∈ℤ

icT c /2cT c /2 = ic 2T − c
2
 c

2
 ≃ i ,

iT kalbmc = T−1 /2kalbmci T 1 /2kalbmc , k , l , m∈ℤ

http://www.spacegroup.info/


performed are shown above the crystal cells. Initially only a ‘1’ is shown, i.e. the identity transformation. In 
order to perform group transformations on a cell, one first has to select a group by clicking on one of the 
blue group identifiers. Then the group generators become active, i.e. they become blue links. Clicking on 
one of the group generators applies the corresponding transformation to the left crystal cell, and the result is 
shown by the right cell. If a sequence of group generators are selected, one after another, the right cell 
represents the total transformation. The history of transformations is shown above the cells ... [13].

Fig. 15. Example view of point symmetry group visualization script.

The latest demo version of another CLUCalc script, the space group visualizer (SGV) can be obtained from 
www.spacegroup.info . Clicking the download link downloads the executable installation file. Executing 
the installation file installs the space group visualizer in a dedicated program folder and deposits a shortcut 
to the space group visualizer software on the desktop of the computer. Clicking this desktop icon opens the 
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visualization window (Fig. 16). On the left this window has a vertical browser panel for selecting a specific 
space group. To the right we find the actual graphical visualization with a grey pull up tool sector at its 
bottom. Dragging up the upper border of the tool sector gives access to all available tools ... [17].

8. CONCLUSIONS

We have shown how reflections can be implemented in the GA of Euclidean space and in the 5D conformal 
model of 3D Euclidean space. Combining reflections allows to generate all isometric transformations. In 
the conformal model rotations and translations get a unified treatment as double reflection versors. The 
underlying geometric ideas are contained in [4], but in our example we even treated all elements of all 32 
point groups of three dimensional crystal cells explicitly. 
The explicit representation of all point symmetry group elements as a geometric product of physical vectors 
taken from the crystal cell may also serve as both example and reference for future research.
The interactive visualization software tools for point groups (free) and space groups (free demo) constitute 
a  valuable  teaching  resource  for  both  instruction  and  self-study.  It  should  be  obvious  that  the  versor 
representation of geometric transformations is universal, it is in no way limited to our domain of examples 
from crystallography, it especially can be applied to both higher and lower dimensions and to spaces with 
non-Euclidean signature. 
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