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Abstract

We use the recent comprehensive research [17, 19] on the manifolds of
square roots of −1 in real Clifford’s geometric algebras Cl(p,q) in order to
construct the Clifford Fourier transform. Basically in the kernel of the com-
plex Fourier transform the imaginary unit j ∈ C is replaced by a square root
of−1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained gener-
alizes previously known and applied CFTs [9, 13, 14], which replaced j ∈ C
only by blades (usually pseudoscalars) squaring to −1. A major advantage
of real Clifford algebra CFTs is their completely real geometric interpreta-
tion. We study (left and right) linearity of the CFT for constant multivector
coefficients ∈Cl(p,q), translation (x-shift) and modulation (ω-shift) proper-
ties, and signal dilations. We show an inversion theorem. We establish the
CFT of vector differentials, partial derivatives, vector derivatives and spatial
moments of the signal. We also derive Plancherel and Parseval identities as
well as a general convolution theorem.

Keywords: Clifford Fourier transform, Clifford algebra, signal processing,
square roots of −1.

1 Introduction
Quaternion, Clifford and geometric algebra Fourier transforms (QFT, CFT,
GAFT) [14, 15, 18, 21] have proven very useful tools for applications in non-
marginal color image processing, image diffusion, electromagnetism, multi-
channel processing, vector field processing, shape representation, linear scale
invariant filtering, fast vector pattern matching, phase correlation, analysis of
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non-stationary improper complex signals, flow analysis, partial differential
systems, disparity estimation, texture segmentation, as spectral representa-
tions for Clifford wavelet analysis, etc.

All these Fourier transforms essentially analyze scalar, vector and multi-
vector signals in terms of sine and cosine waves with multivector coefficients.
For this purpose the imaginary unit j ∈ C in e jφ = cosφ + j sinφ can be re-
placed by any square root of −1 in a real Clifford algebra Cl(p,q). The
replacement by pure quaternions and blades with negative square [8, 15] has
already yielded a wide variety of results with a clear geometric interpreta-
tion. It is well-known that there are elements other than blades, squaring to
−1. Motivated by their special relevance for new types of CFTs, they have
recently been studied thoroughly [17, 19, 25].

We therefore tap into these new results on square roots of −1 in Clif-
ford algebras and fully general construct CFTs, with one general square root
of −1 in Cl(p,q). Our new CFTs form therefore a more general class of
CFTs, subsuming and generalizing previous results1. A further benefit is,
that these new CFTs become fully steerable within the continuous Clifford
algebra submanifolds of square roots of −1. We thus obtain a comprehen-
sive new mathematical framework for the investigation and application of
Clifford Fourier transforms together with new properties (full steerability).
Regarding the question of the most suitable CFT for a certain application,
we are only just beginning to leave the terra cognita of familiar transforms to
map out the vast array of possible CFTs in Cl(p,q).

This paper is organized as follows. We first review in Section 2 key no-
tions of Clifford algebra, multivector signal functions, and the recent results
on square roots of −1 in Clifford algebras. Next, in Section 3 we define the
central notion of Clifford Fourier transforms with respect to any square root
of −1 in Clifford algebra. Then we study in Section 4 (left and right) lin-
earity of the CFT for constant multivector coefficients ∈Cl(p,q), translation
(x-shift) and modulation (ω-shift) properties, and signal dilations, followed
by an inversion theorem. We establish the CFT of vector differentials, par-
tial derivatives, vector derivatives and spatial moments of the signal. We
also show Plancherel and Parseval identities as well as a general convolution
theorem.

2 Clifford’s geometric algebra
Definition 2.1 (Clifford’s geometric algebra [12, 23]) Let {e1,e2, . . . ,ep,
ep+1, . . ., en}, with n = p+q, e2

k = εk, εk =+1 for k = 1, . . . , p, εk =−1 for
k = p+ 1, . . . ,n, be an orthonormal base of the inner product vector space

1This is only the first step towards generalization. The non-commutativity of the geometric
product of multivectors makes it meaningful to investigate CFTs with several kernel factors to both
sides of the signal function. Each kernel factor may use a different square root of −1. Work in this
direction has been reported at ICCA9 and will be published in [8].
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Rp,q with a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l , k, l = 1, . . .n, (1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l, and δk,l = 0
for k 6= l. This bilinear non-commutative product and the additional ax-
iom of associativity generate the 2n-dimensional Clifford geometric alge-
bra Cl(p,q) = Cl(Rp,q) = Clp,q = Gp,q = Rp,q over R. The set {eA : A ⊆
{1, . . . ,n}} with eA = eh1eh2 . . .ehk , 1 ≤ h1 < .. . < hk ≤ n, e /0 = 1 (neutral
element of the Clifford geometric product), forms a graded (blade) basis of
Cl(p,q). The grades k range from 0 for scalars, 1 for vectors, 2 for bivectors,
s for s-vectors, up to n for pseudoscalars. The vector space Rp,q is included
in Cl(p,q) as the subset of 1-vectors. The general elements of Cl(p,q) are
real linear combinations of basis blades eA, called Clifford numbers, multi-
vectors or hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p,q). The parts of
grade 0 and k+ s, respectively, of the geometric product of a k-vector Ak ∈
Cl(p,q) with an s-vector Bs ∈Cl(p,q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2)

are called scalar product and outer product, respectively.
For Euclidean vector spaces (n = p) we use Rn = Rn,0 and Cl(n) =

Cl(n,0). Every k-vector B that can be written as the outer product B =
b1∧b2∧ . . .∧bk of k vectors b1,b2, . . . ,bk ∈ Rp,q is called a simple k-vector
or blade.

Multivectors M ∈ Cl(p,q) have k-vector parts (0 ≤ k ≤ n): scalar part
Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vector part 〈M〉1 ∈ Rp,q, bi-vector part
〈M〉2, . . . , and pseudoscalar part 〈M〉n ∈

∧nRp,q

M = ∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (3)

Taking the reverse is equivalent to reversing the order of products of basis
vectors in the basis blades, e.g. e1e2 → e2e1 = −e1e2, etc. The principal
reverse2 of M ∈Cl(p,q) defined as

M̃ =
n

∑
k=0

(−1)
k(k−1)

2 〈M〉k, (4)

often replaces complex conjugation and quaternion conjugation. The oper-
ation M means to change in the basis decomposition of M the sign of every

2Note that in the current work we use the principal reverse throughout. But depending on the
context another involution or anti-involution of Clifford algebra may be more appropriate for specific
Clifford algebras, or for the purpose of a specific geometric interpretation.
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vector of negative square eA = εh1eh1εh2eh2 . . .εhk ehk , 1≤ h1 < .. . < hk ≤ n.
Reversion, M, and principal reversion are all involutions.

The principal reverse of every basis element eA ∈ Cl(p,q), 1 ≤ A ≤ 2n,
has the property

ẽA ∗ eB = δAB, 1≤ A,B≤ 2n, (5)

where the Kronecker delta δAB = 1 if A = B, and δAB = 0 if A 6= B. For the
vector space Rp,q this leads to a reciprocal basis el , 1≤ l,k ≤ n

el := ẽl = εlel , el ∗ ek = el · ek =

{
1, for l = k
0, for l 6= k . (6)

For M,N ∈Cl(p,q) we get M ∗ Ñ = ∑A MANA. Two multivectors M,N ∈
Cl(p,q) are orthogonal if and only if M ∗ Ñ = 0. The modulus |M| of a
multivector M ∈Cl(p,q) is defined as

|M|2 = M ∗ M̃ = ∑
A

M2
A. (7)

2.1 Multivector signal functions
A multivector valued function f : Rp,q→Cl(p,q), has 2n blade components
( fA : Rp,q→ R)

f (x) = ∑
A

fA(x)eA, x =
n

∑
l=1

xlel =
n

∑
l=1

xlel . (8)

We define the inner product of two functions f ,g : Rp,q→Cl(p,q) by

( f ,g) =
∫
Rp,q

f (x)g̃(x) dnx = ∑
A,B

eAẽB

∫
Rp,q

fA(x)gB(x) dnx, (9)

with the symmetric scalar part

〈 f ,g〉=
∫
Rp,q

f (x)∗ g̃(x) dnx = ∑
A

∫
Rp,q

fA(x)gA(x) dnx, (10)

and the L2(Rp,q;Cl(p,q))-norm3

‖ f‖2 = 〈( f , f )〉=
∫
Rp,q
| f (x)|2dnx = ∑

A

∫
Rp,q

f 2
A(x) dnx, (11)

L2(Rp,q;Cl(p,q)) = { f : Rp,q→Cl(p,q) | ‖ f‖< ∞}. (12)

3Note, that we do prefer in (11) the notation 〈( f , f )〉 over 〈 f , f 〉, because the round brackets
are useful to clearly indicate the application of the inner product integral of (9). This helps to avoid
confusion, because the angular brackets alone are often used for indicating the scalar part of a mul-
tivector.

4



The vector derivative ∇ of a function f :Rp,q→Cl(p,q) can be expanded
in a basis of Rp,q as [27]

∇ =
n

∑
l=1

el
∂l with ∂l = ∂xl =

∂

∂xl
, 1≤ l ≤ n. (13)

2.2 Square roots of −1 in Clifford algebras
We briefly summarize the new results on square roots of −1 in Clifford alge-
bras. For details and explicit proofs, please see [17, 19]. The material in the
following Section 2.3 for the conformal geometric algebra Cl(4,1) is newly
added.

Every Clifford algebra Cl(p,q), s8 = (p−q) mod 8, is isomorphic to one
of the following (square) matrix algebras4 M (2d,R), M (d,H), M (2d,R2),
M (d,H2) or M (2d,C). The first argument of M is the dimension, the
second the associated ring5 R for s8 = 0,2, R2 for s8 = 1, C for s8 = 3,7,
H for s8 = 4,6, and H2 for s8 = 5. For even n: d = 2(n−2)/2, for odd n:
d = 2(n−3)/2.

It has been shown [17,19] that6 Sc( f ) = 0 for every square root of −1 in
every matrix algebra A isomorphic to Cl(p,q). One can distinguish ordinary
square roots of −1, and exceptional ones. All square roots of −1 in Cl(p,q)
can be computed using the package CLIFFORD for Maple [1, 3, 20, 24].

Exceptional square roots of −1 only exist if A ∼= M (2d,C), and have a
non-zero pseudoscalar part. In all other cases the ordinary square roots f of
−1 constitute a unique conjugacy class of dimension dim(A )/2, which has
as many connected components as the group G(A ) of invertible elements
in A . Furthermore, we have Spec( f ) = 0 (zero pseudoscalar part) if the
associated ring is R2, H2, or C. The manifolds of square roots of −1 in
Cl(p,q), n = p+q = 2, compare Table 1 of [17], are visualized7 in Fig. 1.

For A = M (2d,R), the centralizer (set of all elements in Cl(p,q) com-
muting with f ) and the conjugacy class of a square root f of −1 both have
R-dimension 2d2 with two connected components. For the simplest case
d = 1 we have the algebra Cl(2,0) isomorphic to M (2,R), pictured in Fig.
1 (left) and alternatively in Fig. 2.

4Compare chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on p.
217 of [23].

5Associated ring means, that the matrix elements are from the respective ring R, R2, C, H or
H2.

6In Sections 2.2 and 2.3 we use the symbol f for square roots of −1 in Clifford algebras. In this
way we follow the notation of [19]. But in order to avoid confusion with multivector functions, we
use the symbol i in the rest of the paper.

7The identity (modulo a 90 degree rotation) of the manifolds of square roots of −1 of Cl(2,0)
(left) and Cl(1,1) (center) in Fig. 1 is a manifestation of the isomorphism between the two Clifford
algebras .
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Figure 1: Manifolds [19] of square roots f of−1 in Cl(2,0) (left), Cl(1,1) (center),
and Cl(0,2) ∼= H (right). The square roots are f = α + b1e1 + b2e2 +βe12, with
α,b1,b2,β ∈ R, α = 0, and β 2 = b2

1e2
2 +b2

2e2
1 + e2

1e2
2.

Figure 2: Two components of square roots of −1 in M (2,R) ∼=Cl(2,0), see [19]
for details.
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For A =M (2d,R2) =M (2d,R)×M (2d,R), the square roots of (−1,
−1) are pairs of two square roots of −1 in M (2d,R). They constitute a
unique conjugacy class with four connected components, each of dimension
4d2. Regarding the four connected components, the group of inner auto-
morphisms Inn(A ) induces the permutations of the Klein group, whereas
the quotient group Aut(A )/Inn(A ) is isomorphic to the group of isometries
of a Euclidean square in 2D. The simplest example with d = 1 is Cl(2,1)
isomorphic to M(2,R2) = M (2,R)×M (2,R).

For A = M (d,H), the submanifold of the square roots f of −1 is a sin-
gle connected conjugacy class of R-dimension 2d2 equal to the R-dimension
of the centralizer of every f . The easiest example is H ∼= Cl(0,2) itself for
d = 1, pictured in Fig. 1 (right).

For A =M (d,H2)=M (d,H)×M (d,H), the square roots of (−1,−1)
are pairs of two square roots ( f , f ′) of −1 in M (d,H) and constitute a
unique connected conjugacy class of R-dimension 4d2. The group Aut(A )
has two connected components: the neutral component Inn(A ) connected
to the identity and the second component containing the swap automorphism
( f , f ′) 7→ ( f ′, f ). The simplest case for d = 1 is H2 isomorphic to Cl(0,3).

For A = M (2d,C), the square roots of −1 are in bijection to the idem-
potents [2]. First, the ordinary square roots of−1 (with k = 0, i.e. zero pseu-
doscalar part) constitute a conjugacy class of R-dimension 4d2 of a single
connected component which is invariant under Aut(A ). Second, there are 2d
conjugacy classes of exceptional square roots of−1, each composed of a sin-
gle connected component, characterized by the equality Spec( f ) = k/d (the
pseudoscalar coefficient) with±k ∈ {1,2, . . . ,d}, and their R-dimensions are
4(d2 − k2). The group Aut(A ) includes conjugation of the pseudoscalar
ω 7→ −ω which maps the conjugacy class associated with k to the class as-
sociated with −k. The simplest case for d = 1 is the Pauli matrix algebra
isomorphic to the geometric algebra Cl(3,0) of 3D Euclidean space R3, and
to complex biquaternions [25]. The square roots of−1 in conformal geomet-
ric algebra Cl(4,1) ∼= M (4,C), d = 2 are considered separately in Section
2.3.

With respect to any square root i ∈Cl(p,q) of −1, i2 =−1, every multi-
vector A∈Cl(p,q) can be split into commuting and anticommuting parts [19].

Lemma 2.2 Every multivector A ∈ Cl(p,q) has, with respect to a square
root i ∈Cl(p,q) of −1, i.e., i−1 =−i, the unique decomposition

A+i =
1
2
(A+ i−1Ai), A−i =

1
2
(A− i−1Ai)

A = A+i +A−i, A+i i = iA+i, A−i i =−iA−i. (14)
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2.3 Square roots of−1 in conformal geometric algebra Cl(4,1)

We pay special attention to the square roots of−1 in conformal geometric al-
gebra Cl(4,1), because of the enormous practical importance of this algebra
in applications to robotics, computer graphics, robot and computer vision,
virtual reality, visualization, and the like [22]. See Table 1 for representa-
tive exceptional (k 6= 0) square roots of −1 in conformal geometric algebra
Cl(4,1) of three-dimensional Euclidean space [19].

k fk ∆k(t)

2 ω = e12345 (t− i)4

1 1
2(e23 + e123− e2345 + e12345) (t− i)3(t + i)

0 e123 (t− i)2(t + i)2

−1 1
2(e23 + e123 + e2345− e12345) (t− i)(t + i)3

−2 −ω =−e12345 (t + i)4

Table 1: Square roots of −1 in conformal geometric algebra Cl(4,1) ∼= M (4,C),
d = 2, with characteristic polynomials ∆k(t). See [19] for details.

2.3.1 Ordinary square roots of −1 in Cl(4,1) with k = 0

In the algebra basis of Cl(4,1) there are nine blades which represent ordinary
square roots of −1:

e5,

e234,e134,e124,e123,

e2345,e1345,e1245,e1235. (15)

But remembering the work in [17], we know that even if we only look at
the subalgebras Cl(4,0) or Cl(3,1), which do not contain the pseudoscalar
e12345, and contain therefore only ordinary square roots of −1 for Cl(4,1),
we have long parametrized expressions for ordinary square roots of −1. But
because of the high dimensionality it may not be easy to compute a complete
expression for the whole 16D submanifold of ordinary square roots of −1 in
Cl(4,1) by hand.

2.3.2 Exceptional square roots of −1 in Cl(4,1) with k = 1

In this case we can generalize Table 1 to patches of the twelve dimensional
submanifold of exceptional square roots of −1 in Cl(4,1). In the future a
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complete parametrized expression obtained, e.g., with Clifford for Maple
would be very desirable.

We begin with the general expression

f1 = (
1+u

2
E +

1−u
2

)ω, ω = e12345, (16)

where we assume that E,u ∈ Cl(4,1), E2 = u2 = +1. This makes the ex-
pressions 1±u

2 become idempotents
( 1±u

2

)2
= 1±u

2 . In the following we put
forward certain values for E and u which will yield linearly independent
patches of the twelve-dimensional submanifold of

√
−1.

• E = ve5, v ∈ R4, v2 = 1, u ∈ R3
⊥v, u2 = 1 gives a 3D × 2D = 6D

submanifold. As a concrete example in this submanifold we can e.g.
set v = e4, u = e1 and get

f1 =
1
2
[(1+ e1)e45 +1− e1]ω =

1
2
[e45 + e145 +1− e1]ω. (17)

• E = e1234, u ∈R4, u2 = 1 gives a 3D submanifold of
√
−1. A concrete

example is e.g. u = e1, then

f1 =
1
2
[(1+ e1)e1234 +1− e1]ω =

1
2
[e1234 + e234 +1− e1]ω. (18)

• E = v, v ∈ R4, v2 = 1, u = e1234 gives another 3D submanifold. A
concrete example is e.g. v = e1 and gives

f1 =
1
2
[(1+e1234)e1 +1−e1234]ω =

1
2
[e1−e234 +1−e1234]ω. (19)

2.3.3 Exceptional square roots of −1 in Cl(4,1) with k =−1

This is completely analogous to k =+1 by starting with

f−1 = (
1+u

2
E− 1−u

2
)ω, ω = e12345. (20)

2.3.4 Exceptional square roots of −1 in Cl(4,1) with k =±2

The exceptional square roots of −1 are zero-dimensional in this case and
therefore uniquely given by

f±2 =±e12345. (21)
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3 The Clifford Fourier transform
The general Clifford Fourier transform (CFT), to be introduced now, can be
understood as a generalization of known CFTs [14] to a general real Clifford
algebra setting. Most previously known CFTs use in their kernels specific
square roots of −1, like bivectors, pseudoscalars, unit pure quaternions, or
blades [8]. For an introduction to known CFTs see [4], and for their various
applications see [21]. We will remove all these restrictions on the square root
of −1 used in a CFT8.

Definition 3.1 (CFT with respect to one square root of −1) Let i ∈
Cl(p,q), i2 = −1, be any square root of −1. The general Clifford Fourier
transform (CFT) of f ∈ L1(Rp,q;Cl(p,q)), with respect to i is

F i{ f}(ω) =
∫
Rp,q

f (x)e−iu(x,ω)dnx, (22)

where dnx = dx1 . . .dxn, x,ω ∈ Rp,q, and u : Rp,q×Rp,q→ R.

Since square roots of −1 in Cl(p,q) populate continuous submanifolds
in Cl(p,q), the CFT of Definition 3.1 is generically steerable within these
manifolds, see (38). In Definition 3.1, the square roots i∈Cl(p,q) of−1 may
be from any component of any conjugacy class. The choice of the geometric
product in the integrand of (22) is very important. Because only this choice
allowed, e.g. in [9], to define and apply a holistic vector field convolution,
without loss of information.

4 Properties of the CFT
We now study important properties of the general CFT of Definition 3.1.
The proofs in this section may seem deceptively similar to standard proofs of
properties of the classical complex Fourier transform. But the inherent non-
commutativity of the geometric product of multivectors, makes it necessary
to carefully respect the order of factors. Already for the first property of left
and right linearity in (23) and (24), respectively, the order of factors leads to
crucial differences. We therefore give detailed proofs of all properties.

4.1 Linearity, shift, modulation, dilation, and powers of
f ,g, steerability
Regarding left and right linearity of the general CFT of Definition 3.1 we
can establish with the help of Lemma 2.2 that for h1,h2 ∈ L1(Rp,q;Cl(p,q)),

8For example, the use of the square root i = f1 of Table 1 would lead to a new type of CFT,
which has so far not been studies anywhere in the literature.
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and constants α,β ∈Cl(p,q)

F i{αh1 +βh2}(ω) = αF i{h1}(ω)+βF i{h2}(ω), (23)

F i{h1α +h2β}(ω) = F i{h1}(ω)α+i +F−i{h1}(ω)α−i

+F i{h2}(ω)β+i +F−i{h2}(ω)β−i . (24)

Proof. Based on Lemma 2.2 we have

α = α+i +α−i, α+ii = iα+i, α−ii =−iα−i

⇒ αe−iu = (α+i +α−i)e−iu = α+ie−iu +α−ie−iu

= e−iu
α+i + e−(−i)u

α−i, (25)

and similarly

β = β+i +β−i, βe−iu = e−iu
β+i + e−(−i)u

β−i. (26)

We apply Definition 3.1 and get

F i{αh1 +βh2}(ω) =
∫
Rp,q
{αh1 +βh2}e−iudnx

= αF i{h1}(ω)+βF i{h2}(ω). (27)

By inserting (25) and (26) into Definition 3.1 we can further derive

F i{h1α +h2β}(ω) = F i{h1}(ω)α+i +F−i{h1}(ω)α−i

+F i{h2}(ω)β+i +F−i{h2}(ω)β−i . (28)

�
For i power factors in ha,b(x) = iah(x)ib, a,b ∈ Z, we obtain as an appli-

cation of linearity

F i{ha,b}(ω) = iaF i{h}(ω)ib. (29)

Regarding the x-shifted function h0(x) = h(x− x0) we obtain with con-
stant x0 ∈ Rp,q, assuming linearity of u(x,ω) in its vector space argument
x,

F i{h0}(ω) = F i{h}(ω)e−iu(x0,ω). (30)
Proof. We assume linearity of u(x,ω) in its vector space argument x. Insert-
ing h0(x) = h(x−x0) in Definition 3.1 we obtain

F i{h0}(ω) =
∫
Rp,q

h(x−x0)e−iu(x,ω)dnx

=
∫
Rp,q

h(y)e−iu(y+x0,ω)dny

=
∫
Rp,q

h(y)e−iu(y,ω)e−iu(x0,ω)dny

=
∫
Rp,q

h(y)e−iu(y,ω)dnye−iu(x0,ω)

= F i{h}(ω)e−iu(x0,ω), (31)
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where we have substituted y = x− x0 for the second equality, we used the
linearity of u(x,ω) in its vector space argument x for the third equality, and
that e−iu(x0,ω) is independent of y for the fourth equality.
�

For the purpose of modulation we make the special assumption, that the
function u(x,ω) is linear in its frequency argument ω . Then we obtain for
hm(x) = h(x)e−iu(x,ω0), and constant ω0 ∈ Rp,q the modulation formula

F i{hm}(ω) = F i{h}(ω +ω0). (32)

Proof. We assume, that the function u(x,ω) is linear in its frequency argu-
ment ω . Inserting hm(x) = h(x)e−iu(x,ω0) in Definition 3.1 we obtain

F i{hm}(ω) =
∫
Rp,q

hm(x)e−iu(x,ω)dnx

=
∫
Rp,q

h(x)e−iu(x,ω0) e−iu(x,ω)dnx

=
∫
Rp,q

h(x)e−iu(x,ω+ω0)dnx

= F i{h}(ω +ω0), (33)

where we used the linearity of u(x,ω) in its frequency argument ω for the
third equality.
�

Regarding dilations, we make the special assumption, that for constants
a1, . . . ,an ∈R\{0}, and x′ = ∑

n
k=1 akxkek, we have u(x′,ω) = u(x,ω ′), with

ω ′ = ∑
n
k=1 akωkek. We then obtain for hd(x) = h(x′) that

F i{hd}(ω) =
1

|a1 . . .an|
F i{h}(ωd), ωd =

n

∑
k=1

1
ak

ω
kek. (34)

For a1 = . . . = an = a ∈ R \ {0} this simplifies under the same special as-
sumption to

F i{hd}(ω) =
1
|a|n

F i{h}(1
a

ω). (35)

Note, that the above assumption would, e.g., be fulfilled for u(x,ω)= x∗ω̃ =

∑
n
k=1 xkωk = ∑

n
k=1 xkωk.

Proof. We assume for constants a1, . . . ,an ∈ R \ {0}, and x′ = ∑
n
k=1 akxkek,

that we have u(x′,ω) = u(x,ω ′), with ω ′ = ∑
n
k=1 akωkek. Inserting hd(x) =

12



h(x′) in Definition 3.1 we obtain

F i{hd}(ω) =
∫
Rp,q

hd(x)e−iu(x,ω)dnx

=
∫
Rp,q

h(x′)e−iu(x,ω)dnx

=
1

|a1 . . .an|

∫
Rp,q

h(y)e−iu(y′,ω)dny

=
1

|a1 . . .an|

∫
Rp,q

h(y)e−iu(y,ωd)dny

=
1

|a1 . . .an|
F i{h}(ωd), (36)

where we substituted y = x′ = ∑
n
k=1 akxkek and x = ∑

n
k=1

1
ak

ykek = y′ for the
third equality. Note that in this step each negative ak < 0,1 ≤ k ≤ n, leads
to a factor 1

|ak|
, because the negative sign is absorbed by interchanging the

resulting integration boundaries {+∞,−∞} to {−∞,+∞}. For the fourth
equality we applied the assumption u(y′,ω) = u(y,ω ′), and defined ωd =
ω ′ = ∑

n
k=1 akωkek.

�
Within the same conjugacy class of square roots of −1 the CFTs of Def-

inition 3.1 are related by the following equation, and therefore steerable. Let
i, i′ ∈ Cl(p,q) be any two square roots of −1 in the same conjugacy class,
i.e. i′ = a−1ia, a ∈ Cl(p,q), a being invertible. As a consequence of this
relationship we also have

e−i′u = a−1e−iua, ∀u ∈ R. (37)

This in turn leads to the following steerability relationship of all CFTs with
square roots of −1 from the same conjugacy class:

F i′{h}(ω) = F i{ha−1}(ω)a, (38)

where ha−1 means to multiply the signal function h by the constant multi-
vector a−1 ∈Cl(p,q).

4.2 CFT inversion, moments, derivatives, Plancherel, Par-
seval
For establishing an inversion formula, moment and derivative properties,
Plancherel and Parseval identities, certain assumptions about the phase func-
tion u(x,ω) need to be made. In principle these assumptions could be made
based on the desired properties of the resulting CFT. One possibility is, e.g.,
to assume

u(x,ω) = x∗ ω̃ =
n

∑
l=1

xl
ω

l =
n

∑
l=1

xlωl , (39)

13



which will be assumed for the current subsection.
We then get the following inversion formula9

h(x) = F i
−1{F i{h}}(x) = 1

(2π)n

∫
Rp,q

F i{h}(ω)eiu(x,ω)dn
ω, (40)

where dnω = dω1 . . .dωn, x,ω ∈ Rp,q. For the existence of (40) we need
F i{h} ∈ L1 (Rp,q; Cl(p,q)).
Proof. By direct computation we find

1
(2π)n

∫
Rp,q

F i{h}(ω)eiu(x,ω)dn
ω

=
1

(2π)n

∫
Rp,q

∫
Rp,q

h(y)e−iu(y,ω)eiu(x,ω)dnydn
ω

=
1

(2π)n

∫
Rp,q

∫
Rp,q

h(y)eiu(x−y,ω)dn
ωdny

=
1

(2π)n

∫
Rp,q

∫
Rp,q

h(y)ei∑
n
m=1(xm−ym)ωmdn

ωdny

=
1

(2π)n

∫
Rp,q

∫
Rp,q

h(y)
n

∏
m=1

ei(xm−ym)ωmdn
ωdny

=
∫
Rp,q

h(y)
n

∏
m=1

δ (xm− ym)dny

= h(x), (41)

where we have inserted Definition 3.1 for the first equality, used the linearity
of u according to (39) for the second equality, as well as inserted (39) for the
third equality, and that 1

2π

∫
R ei(xm−ym)ωm dωm = δ (xm− ym), 1 ≤ m ≤ n, for

the fifth equality.
�

Additionally, we get the transformation law for partial derivatives h′l(x)=
∂xl h(x), 1≤ l≤ n, for h piecewise smooth and integrable, and h,h′l ∈ L1 (Rp,q;
Cl(p,q)) as

F i{h′l}(ω) = ωl F
i{h}(ω)i, for 1≤ l ≤ n. (42)

9Note, that we show the inversion symbol−1 as lower index in F i
−1, in order to avoid a possible

confusion by using two upper indice. The inversion could also be written with the help of the CFT
itself as F i

−1 =
1

(2π)n F−i.
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Proof. We have

F i{h′l}(ω) =
∫
Rp,q

h′l(x)e−iu(y,ω)dnx

=
∫
Rp,q

∂xl h(x)e−iu(y,ω)dnx

=
∫
Rp,q

∂xl h(x)e−i∑
n
l=1 xlωl dnx

=−
∫
Rp,q

h(x)∂xl

(
e−i∑

n
l=1 xlωl

)
dnx

=−
∫
Rp,q

h(x)e−i∑
n
l=1 xlωl dnx(−iωl)

= ωlF
i{h}(ω)i, (43)

where we inserted u of (39) for the third equality and performed integration
by parts for the fourth equality.
�

The vector derivative of h ∈ L1 (Rp,q; Cl(p,q)) with h′l ∈ L1 (Rp,q;
Cl(p,q)) gives therefore due to the linearity (23) of the CFT integral

F i{∇h}(ω) = F i{
n

∑
l=1

elh′l}(ω) = ωF i{h}(ω)i. (44)

For the transformation of the spatial moments with hl(x) = xlh(x), 1 ≤
l ≤ n, h,hl ∈ L1 (Rp,q; Cl(p,q)), we obtain

F i{hl}(ω) = ∂ωl F
i{h}(ω)i. (45)

Proof. We compute

−hl(x)i = h(x)(−ixl) = F i
−1{F i{h}}(x)(−ixl)

=
1

(2π)n

∫
Rp,q

F i{h}(ω)eiu(x,ω)dn
ω(−ixl)

=
1

(2π)n

∫
Rp,q

F i{h}(ω)ei∑
n
l=1 xlωl (−ixl)dn

ω

=− 1
(2π)n

∫
Rp,q

F i{h}(ω)∂ωl

(
ei∑

n
l=1 xlωl

)
dn

ω

=
1

(2π)n

∫
Rp,q

[
∂ωl F

i{h}(ω)
]

ei∑
n
l=1 xlωl dn

ω

= F i
−1
[
∂ωl F

i{h}
]
(x), (46)

where we used the inversion formula (40) for the second equality, integra-
tion by parts for the sixth equality, and (40) again for the seventh equality.
Moreover, by applying the CFT F i to both sides of (46) we finally obtain

F i{hl(−i)}(ω) = ∂ωl F
i{h}(ω) ⇔ F i{hl}(ω) = ∂ωl F

i{h}(ω)i, (47)
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because F i{hl(−i)} = F i{hl}(−i). Note that in (47) the notation (−i) in-
dicates a constant right side multivector factor and not an argument of the
function hl .
�

For the spatial vector moment we obtain due to the linearity (23) of the
CFT integral

F i{xh}(ω) = F i{
n

∑
l=1

elxlh}(ω) = ∇ω F i{h}(ω)i, (48)

Note that for Cl(p,q) ∼= M (2d,C) or M (d,H) or M (d,H2), or for i
being a blade in Cl(p,q) ∼= M (2d,R) or M (2d,R2), we have ĩ = −i. We
assume this for the CFT F i in the following Plancherel and Parseval identi-
ties.

For the functions h1,h2,h∈ L2 (Rp,q; Cl(p,q)) we obtain the Plancherel
identity

〈h1,h2〉=
1

(2π)n 〈F
i{h1},F i{h2}〉, (49)

as well as the Parseval identity

‖h‖= 1
(2π)n/2

∥∥F i{h}
∥∥ . (50)

Proof. We only need to proof the Plancherel identity, because the Parseval
identity follows from it by setting h1 = h2 = h and by taking the square root
on both sides. Assume that ĩ =−i. We abbreviate

∫
=
∫
Rp,q , and compute

〈F i{h1},F i{h2}〉

=
∫
〈F i{h1}(ω)[F i{h2}(ω)]∼〉dn

ω

=
∫ ∫ ∫

〈h1(x)e−iu(x,ω)dnx[h2(y)e−iu(y,ω)dny]∼〉dn
ω

=
∫ ∫ ∫

〈h1(x)e−iu(x,ω)e−ĩu(y,ω)h̃2(y)dny〉dnxdn
ω

=
∫ ∫ ∫

〈h1(x)e−iu(x,ω)eiu(y,ω)h̃2(y)dn
ω dny〉dnx

=
∫ ∫ ∫

〈h1(x)e−iu(x−y,ω)h̃2(y)dn
ω dny〉dnx

= (2π)n
∫ ∫ ∫

〈h1(x)
e−i∑

n
m=1(xm−ym)ωm

(2π)n h̃2(y)dn
ω dny〉dnx

= (2π)n
∫ ∫
〈h1(x)

n

∏
m=1

δ (xm− ym) h̃2(y)dny〉dnx

= (2π)n
∫
〈h1(x)h̃2(x)〉dnx

= (2π)n〈h1,h2〉, (51)
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where we inserted (10) for the first equality, the Definition 3.1 of the CFT
F i for the second equality, applied the principal reverse for the third equality,
and the symmetry of the scalar product and that ĩ=−i for the fourth equality,
the linearity of u according to (39) for the fifth equality, inserted the explicit
forms of u of (39) for the sixth equality, and that 1

2π

∫
R ei(xm−ym)ωmdωm =

δ (xm− ym), 1 ≤ m ≤ n, for the seventh equality, and again (10) for the last
equality. Division of both sides with (2π)n finally gives the Plancherel iden-
tity (49).
�

4.3 Convolution
We define the convolution of two multivector signals a,b∈ L1(Rp,q;Cl(p,q))
as

(a?b)(x) =
∫
Rp,q

a(y)b(x− y)dny. (52)

We assume that the function u is linear with respect to its first argument. The
CFT of the convolution (52) can then be expressed as

F i{a?b}(ω) = F−i{a}(ω)F i{b−i}(ω)+F i{a}(ω)F i{b+i}(ω). (53)

Proof. We now proof (53).

F i{a?b}(ω)

=
∫
Rp,q

(a?b)(x)e−iu(x,ω)dnx

=
∫
Rp,q

∫
Rp,q

a(y)b(x− y)dnye−iu(x,ω)dnx

=
∫
Rp,q

∫
Rp,q

a(y)b(z)dnye−iu(y+z,ω)dnz

=
∫
Rp,q

∫
Rp,q

a(y)b(z)dnye−iu(y,ω)e−iu(z,ω)dnz

=
∫
Rp,q

∫
Rp,q

a(y)[b+i(z)+b−i(z)]dnye−iu(y,ω)e−iu(z,ω)dnz, (54)

where we used the substitution z = x− y, x = y+ z. To simplify (54) we
expand the inner expression of the integrand to obtain

a(y)[b+i(z)+b−i(z)]e−iu(y,ω)

= a(y)[e−iu(y,ω)b+i(z)+ e+iu(y,ω)b−i(z)]

= a(y)e−iu(y,ω)b+i(z)+a(y)e+iu(y,ω)b−i(z). (55)
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Reinserting (55) into (54) we get

F i{a?b}(ω)

=
∫
Rp,q

a(y)e−iu(y,ω)dny
∫
Rp,q

b+i(z)e−iu(z,ω)dnz

+
∫
Rp,q

a(y)e+iu(y,ω)dny
∫
Rp,q

b−i(z)e−iu(z,ω)dnz

= F i{a}(ω)F i{b+i}(ω)+F−i{a}(ω)F i{b−i}(ω). (56)

�
We point out that the above convolution theorem of equation (53) is a

special case of a more general convolution theorem recently derived in [7].

5 Conclusions
We have established a comprehensive new mathematical framework for the
investigation and application of Clifford Fourier transforms (CFTs) together
with new properties. Our new CFTs form a more general class of CFTs,
subsuming and generalizing previous results. We have applied new results on
square roots of −1 in Clifford algebras to fully general construct CFTs, with
a general square root of −1 in real Clifford algebras Cl(p,q). The new CFTs
are fully steerable within the continuous Clifford algebra submanifolds of
square roots of −1. We have thus left the terra cognita of familiar transforms
to outline the vast array of possible CFTs in Cl(p,q).

We first reviewed the recent results on square roots of −1 in Clifford al-
gebras. Next, we defined the central notion of the Clifford Fourier transform
with respect to any square root of −1 in real Clifford algebras. Finally, we
investigated important properties of these new CFTs: linearity, shift, modula-
tion, dilation, moments, inversion, partial and vector derivatives, Plancherel
and Parseval formulas, as well as a convolution theorem.

Regarding numerical implementations, usually 2n complex Fourier trans-
formations (FTs) are sufficient. In some cases this can be reduced to 2(n−1)

complex FTs, e.g., when the square root of −1 is a pseudoscalar. Further al-
gebraic studies may widen the class of CFTs, where 2(n−1) complex FTs are
sufficient. Numerical implementation is then possible with 2n (or 2(n−1)) dis-
crete complex FTs, which can also be fast Fourier transforms (FFTs), leading
to fast CFT implementations.

A well-known example of a CFT is the quaternion FT (QFT) [5, 6, 10,
11,15,18,26], which is particularly used in applications to partial differential
systems, color image processing, filtering, disparity estimation (two images
differ by local translations), and texture segmentation. Another example is
the spacetime FT, which leads to a multivector wave packet analysis of space-
time signals (e.g. electro-magnetic signals), applicable even to relativistic
signals [15, 16].
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Depending on the choice of the phase functions u(x,ω) the multivector
basis coefficient functions of the CFT result carry information on the sym-
metry of the signal, similar to the special case of the QFT [5].

The convolution theorem allows to design and apply multivector valued
filters to multivector valued signals.

Research on the application of CFTs with general square roots of −1 is
ongoing. Further results, including special choices of square roots of −1 for
certain applications will be published elsewhere.
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