
SYMMETRY OF ORTHORHOMBIC MATERIALS  
AND INTERACTIVE 3D VISUALIZATION  

IN GEOMETRIC ALGEBRA 
 
 

Daisuke Ichikawa and Eckhard Hitzer 
 

Department of Applied Physics, Faculty of Engineering 
University of Fukui, 910-8507, Japan 

 
 

                                 ABSTRACT  
 

The Space Group Visualizer is the main software that we use in this work to show the symmetry of 
orthorhombic space groups as interactive computer graphics in three dimensions. For that it is 
necessary to know the features and the classification of orthorhombic point groups and space groups. 
For representing the symmetry transformations of point groups and space groups, we employ 
(Clifford) geometric algebra. This algebra results from applying the associative geometric product to 
the vectors of a vector space. Some major features of the software implementation are discussed. 
Finally a brief overview of interactive functions of the Space Group Visualizer is given.  
 

 
1. INTRODUCTION 
 
1.1 Orthorhombic Materials 
 
Elements with orthorhombic lattice cell 
structures are gallium, black phosphorus, 
chlorine, bromine, iodine and rhombic sulfur 
[18]. More than 900 minerals are known to have 
orthorhombic structure. Important technical 
examples are high temperature super conductors 
DyBa2Cu3O7-y and HoBa2Cu3O7-y, super 
conducting up to 86 K and 88 K, respectively 
[19]. 
Many orthorhombic materials display 
piezoelectricity, important for high voltage and 
power sources, sensors, actuators, frequency 
standards, piezoelectric motors and the reduction 
of vibrations [8].  
Orthorhombic materials are technically highly 
relevant and their properties deserve a detailed 
structural investigation. The orthorhombic 
crystal class is fully characterized by its point 
symmetry group (leaving a selected vertex 
invariant) and each structure within an 
orthorhombic crystal class is sub-classified by 
its particular 3D space symmetry group.  
We will use geometric algebra (GA) [10] to 
represent point groups [3,11,12] and space 
groups [4,5,13,14,15,16] in three dimensions 
(3D). Based on this new representation we 
develop the 3D interactive computer 
visualization of all 59 orthorhombic space 

groups.  
 
1.2 Introduction to Geometric Algebra 
 
Geometric algebras (GA) [10] are defined by 
applying the associative geometric product to 
vectors of a vector space.  
In mathematics, a (Clifford) geometric algebra 

nG (Vn) is an algebra constructed over an inner 
product vector space Vn on which a geometric 
product is defined. For all multivectors 
(elements of the algebra, including real numbers 
and vectors of Vn) A, B, C ∈ nG (Vn) the 
geometric product has the following properties: 
 

1. Closure of the geometric product of   
multivectors: 

 
, : .n nA B G AB G           (1) 

 
2. Right and left distributivity over the 

addition of multivectors: 
 

,)( ACABCBA          (2) 
,)( BCACCBA          (3) 

 
3. Associativity of both geometric 

multiplication and addition 
 

.)()( ABCBCACAB         (4) 
.)()( CBACBACBA   (5) 
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4. Real unit (scalar) element: 
 

     .1 AA                (6) 
 
5. Tensor contraction (quadratic form, square 

of length) of vectors 
 

22, .na V a a   
  

R          (7) 
 

6.  Commutativity of the product by a scalar 
∈ R 

 
. AA                 (8) 

 
Note that the first two properties of closure and 
distributivity are needed to form an algebra. The 
next two make it an associative, unital algebra. 
The distinctive point of our geometric algebra 
formulation is the natural correspondence 
between geometric entities and elements of the 
associative algebra. This comes from the fact 
that the geometric product of vectors is defined 
in terms of the dot product and the wedge 
product of vectors as  
 

, :na b V 


 

(cos sin ),ab a b a b a b I      
      

 (9) 
 
where α is the angle between the vectors a


 and 

b


, and I is the oriented unit bivector area of the 
plane spanned by a


 and b


.    

The dot product (or inner product) is symmetric. 
The outer product (or wedge product) is anti-
symmetric.  It was invented by H. Grassmann 
(1844). 
 

 .a b b a  
  

              (10) 
.a b b a   

  
             (11) 

 
Dot and wedge products are therefore related to 
the geometric product by 
 1

( ) cos ,
2

a b ab ba a b    
      

    (12) 
 1

( ) sin .
2

a b ab ba a b I    
      

   (13) 
 

The wedge product (13) is illustrated in Fig. 1. 
An important consequence is that under the 
geometric product parallel vectors commute 
 

,|| abbaba


              (14) 
 

Because 0a b 


 for ba


|| , and 

perpendicular vectors anti-commute 
 

,a b ab ba   
    

           (15) 
 

because 0a b 


 for a b


. 
 

Fig. 1 Two vectors a


 and b


 define the 
bivector a b


. 

 
 
This in turn leads to the reflection formula (see 
Fig. 2) at a hyperplane with normal vector a


: 

 
1x a xa  

  
, 1

2

a
a

a
 




 , nx V 


   (16) 
 
where 1a is the multiplicative inverse of vector 
a


 w.r.t. the geometric product (9). 
 
We can show Equ. (16) by a direct geometric 
computation: 
 




  xaaxaaxxx
 1

||
1

||  
 

axxaaxaaxa


)( ||
11

||
1





   (17) 

 
1 ,a xa 

 
                     

 
where ax


||||

 and x a 
 

 can be computed 
from 
 

,)( 1
||

 aaxx


  1)( 
  aaxx


.   (18) 

 
As a consequence of (16) the rotation (see Fig. 
3) around the line of intersection of two 
hyperplanes with normal vectors a


, b


 by 
twice the angle between a


 and b


 is given by 

reflecting at planes perpendicular to a


 and b


: 
 

nx V 


: 1( )x ab xab 
   

,  
(19) 

1 1 1( )ab b a  
  

, 
 
because 
 



1 1 1 1 1( )( ) ( ) 1.b a ab b a a b b b      
        

  (20) 
 

Fig. 2 Reflection of vector x


 through the plane 
with normal vector a


. 

 
 

Fig. 3 Rotation of vector x


 through the angle 
  around an axis perpendicular to vectors a


 

and b


. Note that the rotation is through twice 
the angle / 2  between vectors a


 and b


. 

 
 
2. POINT GROUPS 
                      
In mathematics, a point group is a group of 
geometric symmetries (isometries) leaving one 
selected point fixed and all lengths and angles     
invariant. Point groups have characteristic 
figures, e.g. polygons in two dimensions (2D) or 
polyhedrons in 3D, which they leave invariant as 
a whole. Point groups can exist in a Euclidean 
space of any dimension. In 2D a discrete point 
group is sometimes called a rosette group, and is 
used to describe the symmetries of an ornament.   
 
2.1 Two-Dimensional Point Groups  
 
Now we explain the two kinds of symmetry that 
can occur in a 2D point group.  
 
Reflection symmetries: 
 
The simplest kind of geometric vector operator 

(versor) is a single vector, and the linear 
transformation that it generates according to (16) 
is called a reflection. The reflection (comp. Fig. 
2) at a hyperplane (line in 2D) generated by the 
normal vector a


 has the form (17) 

 
  ,||

1 xxxaax


 
         (21) 

 
where 

||x


is the component of x


 along a


 
(perpendicular to the hyperplane) and x


 is the 

component of x


 orthogonal to a


 (parallel to 
the hyperplane) as in (18). 
 
Rotation symmetries: 
 
The product ab


 of two vectors generates 

according to (19) a rotation (see Fig. 3) 
 

1 1( ) ( ) ,x ab x ab R xR   
     

      (22) 
 
through twice the angle between a


 and b


, 

with R ab


. For a b


 we get a 180  
rotation, i.e. an inversion in 2D. 
Two-dimensional symmetries of regular 
polygons with 2,3,4n   and 6 corners 
characterize crystallographic point groups. 

1 2I e e
 

 is the unit 2D area bivector, 1 2,e e
 

 are 
two unit vectors with angle 90 , ,a b


 are 

vectors connecting vertexes, and the angle 
between ,a b


 is defined to be 180 / n . The 

vectors are finally attached to the invariant 
geometric center of each figure (Fig. 4). We 
obtain the following point groups, denoted by 
integers (1,2,3,4,6) without overbars (reflection 
groups) and with overbars (rotation groups). 
 
1. For 1n  (only one of the two vectors in an 

oblique or rectangular 2D cell), 
 

oblique:    21 { 1},a 


         (23) 
 

rectangular:  21 { , 1}.a a 
 

       (24) 
 

Point group 1  is the rotation subgroup of 
point group 1. ( 1 contains only the identity 
transformation.) Note that the generators 1 
and 1  both correspond to identity, 
because ( 1) ( 1)x x x    

  
. 

 
2. For 2n  (point pair connected by a line 

segment, corresponds to an oblique or 
rectangular 2D lattice cell), the angle 

( , ) 180 / 2 90a b   


. 



 
oblique:  22 { , ( ) 1},ab ab  

  
     (25) 

 
rectangular: 22 { , , , ( ) 1}.a b ab ab  

    
 (26) 

 
2  is the rotation subgroup of the reflection 
group 2. a


, b


are the reflections across 
lines parallel to the sides, through the center 
of the rectangle. 

 
3. For 4n   (square shaped 2D cell), 
 

2 34 { , , ( ) , ( ) ,a b a ab a ab
      

 
2 3 4, ( ) , ( ) , ( ) 1},ab ab ab ab  

      
 (27) 

 
2 3 44 { , ( ) , ( ) , ( ) 1}.ab ab ab ab  

      
 (28) 

 
4  is the rotation subgroup of 4. R ab


 

generates a 90  rotation around the 
geometric center of the square. b


 is a 

diagonal vector to the point next to the end 
point of a


, as shown in Fig. 4, a


 itself is 

a side vector. 
  

Fig. 4 An oblique cell and regular polygons for 
n =2,3,4,6 with vector generators a


, b


. 
 
 

2.2 Three-Dimensional Point Groups 
 
The three-dimensional (3D) discrete point 
groups are heavily used in chemistry and 
material science, especially to describe the 
symmetries of a molecule, of a cluster and of 
orbitals forming covalent bonds, and in this 
context they are also called molecular point 
groups. There are infinitely many discrete point 
groups in dimensions 2n  . However, only a 
finite number is compatible with the 
translational symmetry of a regular periodic 
lattice. This is stated in the crystallographic 
restriction theorem. In one dimension (1D) there 

are 2, in 2D 10, and in 3D 32 point groups, 
respectively. They are called crystallographic 
point groups. 
In crystallography, a crystallographic point 
group is a set of symmetry operations, like 
rotations or reflections, that leave a central point 
fixed while moving each atom of the crystal to 
the position of an atom of the same kind. That is, 
a crystal cell would look exactly the same before 
and after any of the operations in its point group. 
In the classification of crystals, each point group 
corresponds to a crystal class. We list the first 
eight crystallographic 3D point groups in Table 
1, according to their crystal system with point 
group symbol (international name [2], geometric 
name [1], Schoenflies symbol), and the 
geometric versor generators (products of the 
lattice vectors a


, b


, c


) [1]. 
 

Table 1 The first eight 3D point groups listed 
by crystal system, number (1-8) (from [2]), 

international (from [2]), geometric (from [1]) 
and Schonflies names, complete with a list of 

versor generators. 

 
 
3. SPACE GROUPS IN TWO AND THREE 

DIMENSIONS 

 

Space groups are basically combinations of 
point group symmetries together with suitably 
chosen fractions of lattice (vertex to vertex) 
translations. 
 
3.1 Two-Dimensional Space Groups 
 
A 2D space group is a mathematical concept to 
classify repetitive designs on two-dimensional 
surfaces, such as wallpaper patterns or crystal 
planes, based on the symmetries in the pattern. 
Such patterns occur frequently in nature, 
architecture and decorative art. The 
mathematical study of such patterns reveals that 
no more than exactly 17 different types of  
patterns can occur. [9] 
The unit cell of a primitive "p" lattice contains a 
single lattice point. The unit cell of a centered 
"c" lattice contains two points, one of them at 
the center of the 2D lattice cell. We explain the 



various combinations of symmetries and the 17 
2D space groups and their generators in Tables 2 
and 3. Restricting x


 and t


 to the a


, b


-
plane, Table 2 lists symmetries of 2D space 
groups, hyperplanes are then simply lines. The 
expressions of Table 2 are also true for 3D space 
groups, with tx


, R3. In 3D the center of 

rotation simply becomes the axis of rotation 
perpendicular to the a


, b


-plane, and the 
hyperplanes become ordinary 2D planes. 
 

Table 2 Examples of various symmetries and 
combinations in Euclidean GA, and in the  

conformal GA model of Euclidean space with 
3D vectors tba


,, R3, and integers k,lZ. 

 
Best suited for the inclusion of translations is the 
so-called conformal model of Euclidean space 
(in the GA of R4,1), which adds two null-vector 
dimensions for the origin 0n


 and infinity n


 

 
2

0

1
,

2
X x x n n  

   
       (29) 

 
2 2 2
0 0,n n X  
 

         (30) 
 

1.X n  


            (31) 
 
The inner product of two conformal points gives 
their Euclidean distance and therefore the mid 
plane of two points A, B as 
 

2 21 1
( ) , ( )

2 2
X A x a X B x b       

  
 

 ( ) 0,X A B             (32) 
m A B p dn   

 
, 2 1m  ,    (33) 

 

where p


 is a unit normal to the mid plane 
and d its signed scalar distance from the origin. 
Reflecting at two parallel planes m, m' with 
Euclidean distance / 2t


 we get the translation 

(by t


) operator T 
 

1 ,t tX m mXmm T XT          (34) 
 

with 1
1 .

2tT tn 


         (34a) 
 
Reflection at two non-parallel planes m, m' 
yields the rotation around the m, m' line of 
intersection (axis) by twice the angle between m 
and m'.  

 
Table 3 The 17 2D space groups and their 
generators listed by crystal system, with 
numbers (1-17) [2], international [2] and 

geometric [1] names. The always present pure 
lattice translations aT  and bT  are not listed. 

 
Now both general translations and rotations are 
represented by geometric products of vectors 
(so-called versors). To study combinations of 
versors it is useful to know that 
 

t tT a aT  
 

, 1t a ta  
  

.         (35) 
 
3.2 Three-Dimensional Space Groups 
 
The 3D space groups are used to describe 
symmetry in 3D crystal structures. The 
symmetry operations that generate the groups 
are translations, reflections, glide reflections, 
inversions, rotations, screws and rotary 
inversions. There are 230 kinds of 3D space 
groups in all, and all 3D periodic translation 
symmetric crystals belong to exactly one of 
them. This applies to both natural and artificial 
crystals. 
 



3.2.1 From Point Groups to Space Groups 
 
Some of the symmetry operations involved in 
the space groups are not contained in the 
corresponding point group or Bravais lattice. 
Frequently occurring examples are compound 
symmetry operations called glide reflection and 
screw. 
 
Glide reflection symmetries: 
 
A glide reflection is a reflection in a plane (21), 
followed by a translation (34) parallel to that 
plane. This is denoted with the help of an index 
a, b, c, n or d in the space group symbol, 
depending on the direction of the glide 
translation. 
 
 Screw symmetries: 
 
A screw is a rotation (22) about an axis, 
followed by a translation parallel to the axis. 
Screws are denoted by an indexed number kt to 
describe the angle of rotation 360º/k, the index t 
indicates how often the axial translation needs to 
be repeated to finally obtain an integer multiple 
of a full lattice translation. 
 

Fig.5 Orthorhombic Bravais lattices, with 
a b c a  

  
, and with a b c a  

  
. 

A, B or C indicate a base-centered Bravais 
lattice, with the extra general element located in 

the A side ( a


), B side ( b


), or C side 
( c


). 

 
 
3.2.2 Orthorhombic Space Groups 
 
In crystallography, the orthorhombic crystal 
system is one of the seven major lattice systems. 
Orthorhombic lattices result from stretching a 
cubic lattice along two of its mutually 
orthogonal lattice vectors by two different 
factors, resulting in a rectangular prism with a 
rectangular base a


 by b


, ( b


 different in 

length from a


), and height c


 ( c


 is different 
in length from a


 and b


). All three basis 

vectors intersect at 90  angles. The three 
lattice vectors remain mutually orthogonal. 
 
Table 4 Orthorhombic 3D space groups related 

to point groups No. 6 ( 22 ), and No. 7 (2) listed 
with IT numbers [2], international [2] and 

geometric [1] symbols, and all versor generators, 
except the always present lattice translations 

aT , bT , cT . 

 

Fig. 6 Unit crystal cells (related to orthorhombic 
point group No. 6 ( 22 )) of the space groups No. 

21 (C 222 ) and No. 23 (I 222 ), as displayed 
with the Space Group Visualizer [7]. 

 
 
There are four orthorhombic Bravais lattices 
(Fig. 5): primitive orthorhombic (P), base-
centered orthorhombic (C), body-centered 



orthorhombic (I), and face-centered 
orthorhombic (F). 
 
3.2.3 Space Groups Associated with 

Orthorhombic Point Group No. 6 
(Geometric: 22 ) 

 
Figure 6 shows crystal cells for the space groups 
No. 21 (C 222 ) and No. 23 (I 222 ) of the 
orthorhombic crystal system. The space groups 
associated with point group No. 6 have apart 
from translations only two types of symmetry 
generators: rotations and screws. Rotations for 
all three axis directions a


, b


 and c


 exist . 
 
3.2.4 Space Groups Associated with 

Orthorhombic Point Group No. 7 
(Geometric: 2 ) 

 
Figure 7 shows crystal cells for the space groups 
No. 38 (A2) and No. 44 (I2) of the orthorhombic 
crystal system. Space groups associated with 
point group No. 7 have, apart from pure 
translations, four types of symmetry generators: 
rotations, screws, reflections, and glide 
reflections. The axial direction of the rotation 
can always be chosen as c


. 

 

Fig. 7 Unit crystal cells related to orthorhombic 
point group No. 7 (2) of the space groups No. 38 

(A2) and No. 44 (I2), as displayed with the 
Space Group Visualizer [7]. 

 
 
3.2.5 Space Groups Associated with 

Orthorhombic Point Group No. 8 
(Geometric: 22 ) 

 
Figure 8 shows crystal cells for the space groups 
No. 47 (P22) and No. 69 (F22) of the 
orthorhombic crystal system. There are three 
reflection generators in point group No. 8, and 
as a result inversion becomes also a symmetry. 
Rotation axis exist in all three directions a


, b


, 
and c


. 

 

4. INTERACTIVE VISUALIZATION 
 
The interactive Space Group Visualizer [5,7] is a 
script for the program CLUCalc. Each space 
group has its own XML input file. 
 

Fig. 8 Unit crystal cells related to orthorhombic 
point group No. 8 (22), of the space groups No. 

47 (P22) and No. 69 (F22), as displayed with the 
Space Group Visualizer [7]. 

 
 

4.1 CLUCalc 
 
The Open Source Software program CLUCalc 
[6] is an interactive visualisation tool, which is 
freely available. CLUCalc was initially 
developed to visualize Geometric Algebra. 
However, it has by now become a general 
visualisation tool, which is well suited to quickly 
develop algorithms, interactive visualisations 
and tutorials. Some of the most important 
features of CLUCalc are: 
 
1. direct user interaction through mouse input, 

dialog elements and text links, 
2. easy plotting of parametric surfaces, 
3. automatic analysis and visualisation of 

Geometric Algebra entities, 
4. simple texture mapping of basic geometric 

entities and arbitrary surface plots, 
5. rendering and plotting or texture mapping of 

LaTex code, 
6. reading, writing and manipulation of images 

in various formats, 
7. preparation of presentations with interactive 

3D-graphics. 
 
All features of CLUCalc are described in an 
online manual that can be found on the 
homepage of CLUCalc [6]. 
 
4.2 What is XML? 
 
The Extensible Markup Language (XML) is a 
W3C-recommended general-purpose markup 
language that supports a wide variety of 



applications. XML languages or 'dialects' are 
easy to design and to process. XML is also 
designed to be reasonably human-legible, and to 
this end, terseness was not considered essential 
in its structure. XML is a simplified subset of the 
Standard Generalized Markup Language 
(SGML). Its primary purpose is to facilitate the 
sharing of data across different information 
systems, particularly systems connected via the 
Internet. Formally defined languages based on 
XML (such as RSS, MathML, XHTML, 
Scalable Vector Graphics, MusicXML and 
thousands of other examples) allow diverse 
software reliably to understand information 
formatted and passed in these languages. [8] 
An XML file example is partly displayed below 
(for orthorhombic space group number 25, 
comp. Fig. 12). It serves as input for the purpose 
made CLUCalc script, called the Space Group 
Visualizer. 
 
 orthorhombic geometric algebra vector 

basis 
 

<basis> 
        <vector id="a"> 
            <len value="0.7" fixed="0"/> 
            <angle value="90" fixed="1"/> 
        </vector> 
        <vector id="b"> 
            <len value="1" fixed="0"/> 
            <angle value="90" fixed="1"/> 
        </vector> 
        <vector id="c"> 
            <len value="1.2" fixed="0"/> 
            <angle value="90" fixed="1"/> 
        </vector> 
    </basis> 
 
The mutual angles are defined and fixed ("1"), 
but the three lengths are not fixed ("0"), compare 
Fig. 9. 
 
 
 
 
 
 
 
 

 
Fig. 9 Orthorhombic geometric algebra vector 

basis. 
 
 

 geometric space group versor generator 
basis of Space group No. 25  

 
<generator_basis> 
   <generator id="a"> 
      <op type="ref" vec="a" /> 
   </generator> 
   <generator id="b"> 
      <op type="ref" vec="b" /> 
   </generator>     
   <generator id="Ta"> 
      <op type="trans" vec="a" factor="1"/> 
   </generator> 
   <generator id="Tb"> 
      <op type="trans" vec="b" factor="1"/> 
   </generator> 
   <generator id="Tc"> 
      <op type="trans" vec="c" factor="1"/> 
   </generator> 
</generator_basis> 
 
For space group No. 25 (Fig. 12), the generator 
(versor) basis defined above has two reflections 
“ref” ( a


 and b


) and the three translators 

“trans” ( aT , bT , and cT ). This generator basis 
corresponds to column four of Table 4. 
 
Code for space group symmetry 

transformation versors of one unit cell 
generated by geometric products of the 
generator basis versors, for orthorhombic 
space group No. 25 (Fig. 12). 

 
    <symmetries> 
        <generator> 
            <op gen="a"/> 
            <op gen="Ta" pow="0,1"/> 
        </generator> 
        <generator> 
            <op gen="b"/> 
            <op gen="Tb" pow="0,1"/> 
        </generator> 
        <generator> 
            <op gen="a"/> 
            <op gen="b"/> 
            <op gen="Ta" pow="0,1"/> 
            <op gen="Tb" pow="0,1"/> 
        </generator> 
    </symmetries> 
 
4.3 The Space Group Visualizer Script 
 
Figure 10 shows a Space Group Visualizer [5] 
screen window. An explanation of its use is 
added below. Figure 11 is how the various 



symmetries of a space group appear in the Space 
Group Visualizer. A free demo version of the 
space group visualizer with a representative 
selection of space groups can be downloaded 
from the Space group project homepage [7]. 
 
4.3.1  Selection of a Space Group 
 
A space group is selected from a crystal system, 
by the associated point group number (1…32), 
and its space group number (1…230). 
 
4.3.2  Display Functions 
 
The development version of the Space Group 
Visualizer has the following major display 
functions located in the left browser panel below 
the space group selection section. 
 

Fig.10 Space Group Visualizer main screen 
window for space group No. 16 (development 

version). 
 
 
Basis: 
 
If this is selected the generator basis vectors are 
drawn and labelled a


, b


 and c


. These 
vectors need in general (e.g. in the hexagonal 
crystal system) not to be identical with the 
lattice basis. They only form the vectors from 
which the symmetry generators are constructed 
by geometric products. The basis vectors can be 
toggled on and off. 
 
Loci (asymmetric units in general 

positions): 
 
If this is selected, asymmetric elements are 
drawn at the loci (locations) generated by the 

space group symmetries. In real crystals there 
are molecules or ions at these positions. An 
asymmetric element is necessary to show the 
symmetry relation to one general initial element, 
which is located near the origin of the cell 
vectors a


, b


 and c


. The loci can also be 
toggled on and off. 
 
Cell contours: 
 
If selected a wire frame lattice is drawn.  
The current SGV Demo version 2.0 implements 
these functions through an interactive top icon 
bar. 
 

Fig.11 How symmetries appear in the Space 
Group Visualizer, and the general asymmetric 

objects (loci). One gray cube with three colored 
cones represents e.g. a molecule. 

 
 
4.3.3  Tool Window Functions 
 
Cell Count: 
 
The three cell count tools allow to select how 
many crystal cells or layers are drawn in the 
three lattice directions. This even allows to draw 
the point group symmetries or the 2D space   
group symmetries by choosing e.g. cell counts 
(0,1,1), (1,0,1), or (1,1,0). 
 
Len: 
 
The number of these sliders depends again on 
the space group currently selected. They control 



the length of the lattice basis vectors. For 
example, in the orthorhombic crystal system the 
lengths of all three basis vectors can be chosen 
arbitrarily, while in other systems certain lengths 
may be fixed. 
 
Plane Size in %: 
 
The size of the planes of reflection and glide 
reflection can be changed in percent values. The 
default is 100 %, i.e. all plane parts are shown 
without gaps. 
 

Fig. 12 All symmetries of one cell of space 
group No. 25 in the Space Group Visualizer [7]. 

 
 
Cell Type: 
 
Whether different lattice types are available 
depends on the space group currently displayed. 
Select here the lattice that you wish to display.   
If e.g. the geometric algebra cell definition [1] 
and the international cell [2] differ, one can 
choose between the two. 
 
Color Scheme: 
 
Here a color scheme can be selected. For 
example, the White Background color scheme is 
useful to store visualisations for printing on 
paper. Default is the Black Background color 
scheme. 
 
5. CONCLUSION 
 
We succeeded in the visualization of all 
symmetries of the 59 orthorhombic space groups 
using the Space Group Visualizer. This 
visualization in three dimensions will definitely 
be of great advantage for the study and research 
of orthorhombic materials, because seeing the 
structure of orthorhombic crystals becomes now 

easily possible with the Space Group Visualizer. 
Indeed the precise space group sub-classification 
of many orthorhombic minerals is still unknown 
or uncertain [20]. 
Our future aim is to make the visualization of all 
space groups complete. It is further possible to 
create a molecule maker toolbox in the future to 
facilitate the comparison with the crystal of an 
actual material. Further possibilities include 
extensions for sub-periodic and magnetic crystal 
lattices. 
A color version of this paper will be available 
online at [17]. 
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