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1. Basic facts about Quaternions
Gauss, Rodrigues and Hamilton’s 4D quaternion algebra H over R:

ij = -ji = k, jk = -kj = i, ki = -ik = j, i2 = j2 = k2 = ijk = -1,                                    (1)

with isomorphisms H≈Cl(0,2)≈Cl+(3,0).  Cl+(3,0) is  the  even subalgebra of Clifford geometric algebra 

Cl(3,0),  with basis  {1,  e32 = e3e2,  e13 = e1e3,  e21 = e2e1}  for an orthonormal basis  {e1,  e2,  e3}  of  R3. The 
quaternion

q = qr + qii + qjj + qkk є H,   qr, qi, qj , qk є R                                                   (2)
has the quaternion conjugate (reversion in Cl+(3,0))

q˜ = qr - qii - qjj - qkk ,                                                                   (3)
This leads to the norm of q є H

||q|| = √(q˜q) = √(qr
2 + qi

2 + qj
2 + qk

2 ) .                                                     (4)
Quaternions (and quaternion valued functions) can be split in two ways:

q = qr + iqi + qjj + iqkj  or  q = q+ + q- = (q+iqj)/2 + (q-iqj)/2 .                                (5)
The second split allows to write

q±= {qr ± qk + i(qi ∓ qj)}(1±k)/2 = (1±k){ qr ± qk + j(qj ∓ qi)}/2 .                            (6)

Applying (5) and (6) to the quaternionic kernel K = exp(-ixu) exp(-jyv) gives

K±= exp(-i(xu∓yv)) (1±k)/2 = (1±k) exp(-j(yv∓xu)) /2 .                                       (7)

For 2D quaternion valued functions f,g we can define the inner product (x= xe1+ye2)

(f,g) = ∫f(x)g˜(x) dxdy ,                                                              (8)

with real scalar part

<f,g>  = ∫<f(x)g˜(x)> dxdy ,                                                           (9)

and norm

|| f || = √(f,f ) = √<f,f 
> .                                                         (10)



2. Quaternion Fourier Transform (QFT)
Ell  [1]  defined  the  QFT for  application  to  2D linear  time-invariant  systems  of  PDEs.  Later  it  was 
extensively applied to 2D image processing  [2], including color. This spurred research into optimized 
numerical applications. The invertible QFT of a 2D quaternion valued signal f is defined as 

F{f}= ∫exp(-ixu) f(x) exp(-jyv) dxdy.                                                     (11)

The scalar product (9) gives the Plancherel theorem

<f,g>  = < F{f}, F{g}>/(2π)2 .                                                           (12)

As corollary we get the Parseval (Rayleigh’s) theorem for signal energy preservation
|| f || = || F{f} || / 2π .                                                                   (13)

Useful for solving PDEs with polynomial coefficients are the following moment formulas (u= ue1+ve2)
F{xmynf}(u) = im dm+n F{f}(u) /(dumdvn) jn ,                                             (14)

and 
F{im f jn}(u) = im F{f}(u) jn .                                                       (15)

Equations (5) and (15) reduce the computation of F{f} to the four QFTs of real functions fr , fi , fj , fk . And 
(15) shows that every theorem for the QFT of real 2D functions results in a theorem for quaternion-valued 
functions. For example a general linear non-singular transformation A of the QFT of 2D real signals can 
in this way be generalized to 2D quaternion-valued functions (for B compare [2])

F{f(Ax)}(u) = |detB|/2 [F{f}(B+u) + F{f}(B-u) +i ( F{f}(B+u) + F{f}(B-u) ) j] .                   (16)
Instead of (11) we can define the invertible right sided QFT (Clifford FT) as

Fr{f}(u)= ∫f(x) exp(-ixu) exp(-jyv) dxdy ,                                              (17)

and obtain the Plancherel theorem

(f,g)  = (Fr{f}, Fr{g})/(2π)2 .                                                          (18)

As corollary we again get a Parseval identity
|| f || = || F{f} || / 2π  = || Fr{f} || / 2π .                                                  (19)

For  Fr linearity  and  dilation  properties  hold,  some  other  properties  need  commutation  dependent 
modifications.

3. GL(R2) Transformation Properties

We observe that the split (7) results in two complex kernels  K± with complex units i (or j) apart from 

(1±k)/2. We therefore analyze the transformation properties of F{f  } in terms of  F{f±}. We can prove 

that

F{f±}(u) = ∫f± exp(-j(yv∓xu)) dxdy = ∫exp(-i(xu∓yv)) f± dxdy .                         (20)

Every A є GL(R2) can be decomposed to A=TR=RS, with R a rotation, T and S symmetric with positive 
and negative eigenvalues (ev.). Positive (negative) ev. correspond to stretches (reflections and stretches 
perpendicular to line of reflection). Rotations can be composed by two reflections Rab=UaUb. Elementary 
transformations are hence reflections (Cartan) and stretches. In Clifford geometric algebra Un is given by 

the vector n normal to the line of reflection Unx = -n-1xn. Using xu+yv = x∙u, -xu+yv = x∙(Ue1u) we get 

F{f-}(u) = ∫f- exp(-j x∙u) dxdy ,        F{f+}(u) = ∫f+ exp(-j x∙(Ue1u)) dxdy .                 (21)

We therefore get for automorphisms A є GL(R2), A†-1the adjoint inverse transformation of A



F{f-(Ax)}(u) = |detA-1| F{f-}(A†-1u) ,  F{f+(Ax)}(u) = |detA-1| F{f+}(Ue1A†-1Ue1u) .             (22)

The combination of (22) gives therefore 

F{f(Ax)}(u) = |detA-1| [ F{f-}(A†-1u) + F{f+}(Ue1A†-1Ue1u) ] .                            (23)

For axial stretches we get (ab≠0, a,b є R)

F{f(Asx)}(u) =F{f}(ue1/a+ve2/b)/|ab| .                                                  (24)
For reflections we get (a’ = Ue1a)

F{f(Uax)}(u) =F{f-}(Uau) + F{f+}(Ua’u) .                                               (25)
For rotations we get 

F{f(Rx)}(u) =F{f-}(R-1u) + F{f+}(Ru) .                                                 (26)

4. Generalization to spatio-temporal signals
Quaternion isomorphisms and  GL(Rn,m) transformation laws allow generalization to higher dimensions. 
As an example we take an isomorphism to a subalgebra of the spacetime [3] algebra Cl(3,1) with time 
vector e0, 3D volume I3 = e1e2e3 and spacetime volume I4 = e0e1e2e3 , all three with negative square. {e0, I3, 
I4} generate an algebra isomorphic to quaternions. 
This leads to an invertible spacetime FT for 4D multivector valued Cl(3,1) functions f

Fst{f}(u) = ∫exp(-e0ts) f(x) exp(-I3x’∙u’) d4x,                                            (27)

With d4x = dtdxdydz, x = te0+x’, x’=xe1+ye2+ze3, u= se0+u’, u’=ue1+ve2+we3 . The space time split 

f± = ( f ± eo f I3)/2                                                                   (28)

yields therefore the transformation formulas (comp. [4,5])

Fst{ f±}(u) = ∫f±(x) exp(-I3(x’∙u’ ∓ ts)) d4x = ∫exp(-e0(ts ∓ x’∙u’)) f±(x) d4x .             (29)

Our new results will serve for the further development of discrete and continuous multivector wavelets. 
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