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1. Basic facts about Quaternions

Gauss, Rodrigues and Hamilton’s 4D quaternion algebra H over R:
j=-i=k,jk=-kj=i,ki=-k=j, ==k =ik=-1,

(1

with isomorphisms H~Cl1(0,2)~C1"(3,0). CI'(3,0) is the even subalgebra of Clifford geometric algebra

Cl1(3,0), with basis {1, es; = esez, €13 = €i€3, €1 = €,¢;} for an orthonormal basis {ei, e,, 3} of R®. The

quaternion

q=q-+qi+tqj+qkeH, q,q,q,qeR

has the quaternion conjugate (reversion in CI°(3,0))
q =9q--qi-qj-qk,
This leads to the norm of q e H
lall=v (@@ =v (@’ +a’ +a’ +a’).
Quaternions (and quaternion valued functions) can be split in two ways:
q=q:Tiq+qj+iqg or q=q.+q.=(q+iq)/2 + (q-iq))/2 .

The second split allows to write

Q=19 £ et i@ F @)1 £k)2=0+k){ g = g+ jq T 9)}/2.

Applying (5) and (6) to the quaternionic kernel K = exp(-ixu) exp(-jyv) gives
K. = exp(-i(xuryv)) (1 k)2 = (1 £k) exp(-j(yvFxu)) /2 .
For 2D quaternion valued functions f,g we can define the inner product (x= xe;+ye,)
(fge) = [ fx)g (x) dxdy,

with real scalar part

S = [ <A (x)> dxdy,

and norm

Ifl=v (ED =V <Sf>
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2. Quaternion Fourier Transform (QFT)

Ell [1] defined the QFT for application to 2D linear time-invariant systems of PDEs. Later it was
extensively applied to 2D image processing [2], including color. This spurred research into optimized
numerical applications. The invertible QFT of a 2D quaternion valued signal f'is defined as

F{f}= [ exp(-ixu) f(x) exp(-jyv) dxdy. (11)
The scalar product (9) gives the Plancherel theorem
<fg> = <F{fl, Figh/em’. (12)
As corollary we get the Parseval (Rayleigh’s) theorem for signal energy preservation
A =1FF3 1/ 2m. (13)
Useful for solving PDEs with polynomial coefficients are the following moment formulas (u= ue;+ve,)
F{x"y"f}(u) =i" d""F{f}(u) /(du™dv") ", (14)
and
F{nfjm(w) =1"F{f}(w) j°. (15)

Equations (5) and (15) reduce the computation of F{f} to the four QFTs of real functions f;, f;, fi, f . And
(15) shows that every theorem for the QFT of real 2D functions results in a theorem for quaternion-valued
functions. For example a general linear non-singular transformation A4 of the QFT of 2D real signals can
in this way be generalized to 2D quaternion-valued functions (for B compare [2])

F{f(4x)}(u) = |detB|/2 [F{f}(B:u) + F{f}(B.u) +i (F{f}(Biu) + F{f}(B.u) )j] . (16)
Instead of (11) we can define the invertible right sided QFT (Clifford FT) as
F{f}(w)=  f(x) exp(-ixu) exp(-jyv) dxdy , (17

and obtain the Plancherel theorem

(fg) = (F:df}, Felgh)/2m’. (18)
As corollary we again get a Parseval identity
A =1EF 72 = Edf ||/ 2m. (19)

For F, linearity and dilation properties hold, some other properties need commutation dependent
modifications.

3. GL(R?) Transformation Properties
We observe that the split (7) results in two complex kernels K. with complex units i (or j) apart from

(1+k)/2. We therefore analyze the transformation properties of F{f } in terms of F{f.}. We can prove
that
F{fi}(w)= [ 1. exp(-j(yvexu)) dxdy = [ exp(-i(xusyv)) [+ dxdy . (20)

Every 4 € GL(R?) can be decomposed to A=TR=RS, with R a rotation, T and S symmetric with positive
and negative eigenvalues (ev.). Positive (negative) ev. correspond to stretches (reflections and stretches
perpendicular to line of reflection). Rotations can be composed by two reflections R.,,=U,U,. Elementary
transformations are hence reflections (Cartan) and stretches. In Clifford geometric algebra U, is given by

the vector n normal to the line of reflection U,x = -n"'xn. Using xu+yv = x-u, -xu+yv = x- (U, u) we get

Ffiw = [f exp(-jx-w)dxdy,  F{f}(uw)= [/ exp(-j x-(Uaw)) dxdy . 21

We therefore get for automorphisms A4 € GL(R?), 4 " 'the adjoint inverse transformation of 4



F{f(4x)}(u) = |detd"| F{f}(A""u), F{fi(4x)}(u) = |detd"| F{f:}(Uad ' U.u) . (22)
The combination of (22) gives therefore

F{fdx)} (w) = detd ™| [ F{/}(47"w) + F{f}(Uad "' Ueru) ] . (23)

For axial stretches we get (ab=0, a,b € R)

F{f(4,x)}(u) =F{f} (uei/atve,/b)/|ab| . (24)
For reflections we get (a’ = U.,a)
F{UX)} (w) =F (£} (V) + F{f.} (Upu) . (25)
For rotations we get
F{f(RX)} () =F {£}(R"w) + F{f.} (Ru) . (26)

4. Generalization to spatio-temporal signals

Quaternion isomorphisms and GL(R™™) transformation laws allow generalization to higher dimensions.
As an example we take an isomorphism to a subalgebra of the spacetime [3] algebra CI(3,1) with time
vector ey, 3D volume I; = e e.e; and spacetime volume 1, = eeie,e; , all three with negative square. {eo, s,
I,} generate an algebra isomorphic to quaternions.

This leads to an invertible spacetime FT for 4D multivector valued CI(3,1) functions f°

Fa{f}(u) = [ exp(-eots) fx) exp(-I:x’-u’) d*x, 27
With d*x = dtdxdydz, x = te;+x’, X’=xe,Tye,+z€s, U= septu’, w’=ue,+vey+we; . The space time split
fo=(=£ efH)2 (28)
yields therefore the transformation formulas (comp. [4,5])
Ful £} W) = [ £.(%) exp(-L(x*- 0" % ts)) d*x = [ exp(-ealts # X’ w)) £2(x) d*x . (29)

Our new results will serve for the further development of discrete and continuous multivector wavelets.
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