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Vector Differential Calculus
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This paper treats the fundamentals of the vector differential calculus part of universal
geometric calculus. Geometric calculus simplifies and unifies the structure and notation of
mathematics for all of science and engineering, and for technological applications. In order to
make the treatment self-contained, | first compile all important geometric algebra relationships,
which are necessary for vector differential calculus. Then differentiation by vectors is introduced
and a host of major vector differential and vector derivative relationships is proven explicitly in a
very elementary step by step approach. The paper is thus intended to serve as reference material,
giving details, which are usually skipped in more advanced discussions of the subject matter.
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1. Introduction

“Now faith is being sure of what we hope for and certain of
what we do not see. This is what the ancients were commended
for. By faith we understand that the universe was formed at
God’s command, so that what is seen was not made out of
what was visible.” [7]

The German 19" century mathematician H. Grassmann had
the clear vision, that his “extension theory (now developed to
geometric calculus) ... forms the keystone of the entire
structure of mathematics.”[6] The algebraic “grammar” of this
universal form of calculus is geometric algebra (or Clifford
algebra). That geometric calculus is a truly unifying approach
to all of calculus will be demonstrated here by developing the
vector differential calculus part of geometric calculus.

The basic geometric algebra necessary for this is compiled in
section 2. Then section 3 develops vector differential calculus
with the help of few simple definitions. This approach is
generically coordinate free, and fully shows both the concrete
and abstract geometric and algebraic beauty of the “keystone”
of mathematics.

The underlying strategy of this paper is to demonstrate the
proofs for all common formulas of vector differential calculus
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in an elementary step by step fashion. Thus enabling the
interested reader to ultimately use this article as reference
material, where other texts (e.g. [1],[2]) tend both to skip
“elementary steps”, and to presume, that the reader would be
smart enough to fill in the gaps himself. | put the emphasis
therefore on thorough proofs and not on comments,
interpretations or application.

2. Basic Geometric Algebra

This section is a basic summary of important relationships in
geometric algebra. For brevity they are stated without proof.
This summary mainly serves as a reference section for the
vector differential calculus to be developed in the following
section. Most of the relationships listed here are to be found in
the synopsis of geometric algebra and in chapters 1 and 2 of [1],
as well as in chapter 1 of [2], together with relevant proofs.
Beyond that [1] and [2] follow a much more didactic approach
for newcomers to geometric algebra.

G(I) is the full geometric algebra over all vectors in the
n-dimensional unit pseudoscalar | =€ A€, A... A€, .
A, =G'(1) is the n-dimensional vector sub-space of

grade-1 elements in G(I) spanned by €,€,,...,€,. For



vectors 4, #,éeAn =G'(l) and scalars o, B,A,7;

G(I) has the fundamental properties of

®  associativity

a(bc)=(ab)c, a+(b+c)=(a+b)+c, (@
® commutativity

cd=da, d+b=b+3, %)
®  distributivity

d(b+c)=ab+4ac, (b+c)a=ba+ca, (3
® linearity

a(@+b)=cd+db =(a+b)a, (4)
®  scalar square (vector length |§|)

a’=aa=a-a=".

®)
The geometric product ab is related to the (scalar) inner
product d-b andtothe (bivector or 2-vector) outer product

inb by

-~ 1 - - . - .13,
é/\b:—(éb—bé):—b/\é:éb—é-b:<éb>2(8)

The inner and the outer product are both linear and distributive

d-(ab+&)=cd-b+pa-¢c, )
an(ab+K)=adAb+paAnE. (10

Aunitvector & inthe direction of a is

a;%, with 42=8a=1, a=4g. ()
The inverse of a vector is
;i l_d_a a
a a [ la 12

A multivector A can be uniquely decomposed into its

homogeneous grade k parts (< >k grade k selector):

A=(A), +(A), +(A), +..+ (A) +..+(A) 13)

—— —
scalar pseudo

scalar

If A'is homogeneous of grade k one often simply writes

vector bivector k —vector

A=(A) =A. (14)
Grade selection is invariant under scalar multiplication
A(A), = (2A), (15)

The consistent definition of inner and outer products of

vectors @ and r-vectors A, is

(16)

a-A =(aA),, =2 (@A ~ (1" AS)
AnA = (EA),, = (@A + (- AZ)

By linearity the full geometric product of a vector and a
multivector A is then

(7

dA=d-A+anA. (18)

This extends to the distributive multiplication with arbitrary
multivectors A, B

d(A+B)=aA+aB. (19)
The inner and outer products of homogeneous multivectors

A and B, aredefined ([2], p. 6, (1.21), (1.22)) as
A - B, s{A,BS>‘H‘ for r,s>0, (20
A -B,=0 for r=0 or s=0, (21)

A AB,=(AB,) 22)
AANA=AAA =AA forscalar 4. (23)
The inner (and outer) product is again linear and distributive
(AA)-B, = A -(1B,) = A(A -B,) = A -B, (24
A-(B,+C,)=A B, +A-C, (25)
A(B, +C,) =4B, + AC,. (26)
The reverse of a multivector is

A= Zn:(—l)k(k‘1>’2<A>k. @7)
k=1

[2] uses a dagger instead of the tilde.
Special examples are

A=1,da=4a, (AAb )=bad=-dAD,..(28)



The scalar magnitude |A| of amultivector A is

-

Rep =(A)+Y(R) (A),. @

scalar product

where the separate term <A>02 is in particular due to the

definition of the inner product in [2], p. 6, (1.21). The
magnitude allows to define the inverse for simple k-blade
vectors

Al= iz  with A7A=AA"T=1. (30)

A
Alternative ways to express d € A =G'(1) are

Inda=0or la=1-4a. (31)

The projectionof & into A =G'(l) is

R(3)=P@@)= Zn:akak -a =Zn:akak -4, (3
k=1 k=1

where d° isthe reciprocal frame defined by

e - . lif j=k
a" -d; =0} =Kroneckerdelta=4 " . (33
0if j#Kk

A general convention is that inner products a-b and
outer products a A b have priority over geometric products
ab ,eg.

a-bcAdé=(a-b)(c~d)E. (34)

The projection of a multivector B on a subspace described by a
simple m-vector (m-blade)

A =a Ad,An..And,,m<n is

<m

P,(B)=(B-A)-A* = A*.(A-B,), ()
V %—/

general degree dependent

P(B))) = (B),. Pu(B))=(B), A", @9

the exceptions for scalars <B> 0 and pseudoscalars

<B>n being again due to the definition of the inner product in

[2], p. 6, (1.21). A projection of one factor of an inner product
has the effect

a-P(b)=P(d) P(b)=P(@@)-b. @7
Foramultivector B € G(A,),with A= A wehave

(@AB)-A=(@AB)A=3a-(BA) if aAA=0. (39)

Reordering rules for products of homogeneous multivector
are

A B = (DB A for r<s, (@)

A AB, =(-1)"B, A A. (40)

Elementary combinations that occur often are

. Lo (42)
(@-d)b-c)-(@-c)p-d),
(@Ab)2=(aAb)-(AAb)=(a-b)*-a%’=
—(BAa)-(aA6)=—\aA62, (43)

and the Jacobi identity
a-(bAC)+b-(CAd)+C-(AAD)=0. (44

The commutator product of multivectors A,B is
1
AXBEE(AB—BA). (45)

One useful identity using it is
(AAb)xA=3b-A—A-3b =ab A A— A ab.(46)

The commutator product is to be distinguished from the cross
product, which is strictly limited to the three-dimensional

Euclidean case  with  unit  pseudoscalar |,

dxb=(bAd)l,=—(@Ab)l, @7

For more on basic geometric algebra | refer to [1], [2] and to
section 3 of [3].

3. Vector Differential Calculus

This section shows how to differentiate functions on linear
subspaces of the universal geometric algebra G by vectors. It

has wide applications particularly to mechanics and physics in
general [1]. Separate concepts of gradient, divergence and curl
merge into a single concept of vector derivative, united by the
geometric product.

The relationship of differential and derivative is clarified.
The Taylor expansion (P. 12) is applied to important examples,



yielding e.g. the Legendre polynomials (P. 36). The adjoint
(Def. 57) and the integrability (P. 42, etc.) of multivector
functions are defined and discussed. Throughout this section a
number of basic differentials and derivations are performed
explicitly illustrating ease and power of the calculus.

Since my emphasis here is on explicit step by step proofs, |
refer the reader, who is interested in the philosophy, comments
and interpretation to the literature ([1]-[5]).

As for the notation: P. 7 refers to proposition 7 of this section.

Def. 13 refers to definition 13 of this section. (6) refers to
equation number (6) in the previous section on basic geometric
algebra.

Standard definitions of continuity and scalar differentiability
apply to multivector-valued functions, because the scalar

product determines a unique “distance” |A— B| between

twoelements A, B e G(l).
Definition 1 (directional derivative)

F = F(X) multivector-valued function of a vector variable
X defined on an n-dimensional vector space A, = G'(1),
I unit pseudoscalar. & € A, .

dF (x+d7) _ . dF(X+a7) - dF (X)

d T 70 T

a-oF =

Nomenclature: derivative of F in the direction d ,

a -derivative of F. ([1Juses V = 0, [2] uses O = 0 )
Proposition 2 (distributivity w.r.t. vector argument)
(@+b)-0F=d-0F +b-0F , a,beA
Proof 2

(gf).épdilnm F(X+ +78) - F(X) _

7—0 T
lim F(X+ +@)—F(X+ 1)
7—0 T
L F(x+b)- F()?)}
T

defl . _ o . . —~ -
= lima - oF (X + ) +b-0F =a-dF +b-oF
Proposition 3

Forscalar A

—

(18)-0F = A(d-0

Proof 3
_ def1 g 5\ (Y
(1) - 3F = lim F(X+ar)-F(X)
70 T
casel: A#0
_, defl ¥.Aa _ v
(48) - 6F = lim 2~ X+ a(0) = F(X)
70 AT
220 G5 _ E(y)defl ~
:MmF(XJrar') F(X) = @ oF)
p ' T

(rp: reparametrization: 7 — 7' = A7)

case2: A =0

(8)-oF = lim

L defl M:O:O(Q‘EF)-
70 T

Proposition 4 (distributivity w.rt. multivector-valued

function)
d-0(F+G)=a-0F +d-0G
F =F(X),G =G(X) multivector-valued functions of a

vector variable X . In the notation of Def. 13:

F+G=F+G.

Proof 4

. defl
a-o(F+G) =
"mF(X+§r)+G(X+ér)—F(X)—G()?)_
70 T B
IimF(X+aT)—F(X)+
70 T

LA (7)) deft _

IirrgG(XJrar) )5 .5F +a.56.
T—> ’Z'

Proposition 5 (product rule)
4-0(FG)=(d-0F)G +F(a-6G)
In the notation of Def. 13:
FG=FG+FG.

Proof 5
defl

a-0(FG) =

lim F (X +37)G(X+d7) - F(X)G(X)

7—0 T

{F()?+ ar)G(X+dr)—F(X)G(X+4ar)+

T

=lim

7—0



+ F(X)G(X +ar) - F()“()G()“()}

G(X+4dr)

:“m{F(mar)—F(X)

70 T

+F(X)

G(Y(+ér)—G(7()}
T

defl . -

= (a-0F)limG(% +ar) + F (3-0G)
=(a-0F)G +F(a-oG)
Proposition 6 (grade invariance)

a-8(F), =<a-éF>k

-0 istherefore said to be a scalar differential operator.

Proof 6
“1 (F(X+dr)), —(F(X),

a-o(F), = lim
T—> T
r=scalar Y =1 _ Y
e Iim<F(x+ar) F(x)>
7—0 T K

dil<a : 5F>k.

Proposition 7 (scalar chain rule)
a-oF =(a-é,1)d—F
di

F =F(A(X)), 4=A(X) scalarvalued function.

Proof 7
Using the Taylor expansions:

dF (M) dF

F(A+AL) =F(A) +AA—+
(Arad)=FA)+ b ot =07

AR+ ) = A(R)+ 7 - BA(X) +%(a-é)2,1(7<) ..

we have

e W F (AR + ) - F(AX)) P
a-oF (A(X)) = “LT(]) . =

fim F () + @ GA(R) ~ F (4(%)) ™™

7—0 T

FAR) + - 51(7()}3'; _E(A(R)
lim =
7—0 T

Proof 8

Proposition 9 (constant function)

Aindependent of X :

a-oA=0.
Proof 9

_, defl _
F(X)=A, a.0n = lim A=A

70 T

=0.

Proposition 10 (vector length)
a-x

X_a.-x.
X

unit vector in the direction of X (11).

=d-x=[x@ Jx)=4a a|z|—%=a-f<
Proposition 11 (direction function)
. oz, a—-a-xXX Xxaa
a-ox = — =
x| X]
Proof 11
a-ox=a éi:sa;a’#‘w(a-éépza
XX X
1
a . ozon X I |
S+ X(@-OX) 5 =+ X(@X) 5 =
X D g = g X P
a ., 1 d-3a-XX XXa-xx-a
XK@ X) = = = =
X XK X



x>
x>
Q|
x>
x>
>

Q|

_R(R-d+RAE)-
X

xi

Proposition 12 (Taylor expansion)

F(X+4d)=exp(@-o0)F(X) = (X).
k=0
Proof 12
This proof is done without referring to P7 to P11!
G(r)=F(X+ar)
Y3 def1 .
:dG(O):dF(x+ar)| plog
dr dr 0
d’G(0) _ d dF(Xx+ar)|
dz’ dr dr 0
. Y13 def1 . .
5.3dF(x+d7) g.a(g.ap(y()):
dr o
(@-0)*F(X).
k
General: d GEO) =(3-0)“F(X).
dr
The Taylor series for G is:
2
G@1)=G(0+1)=G(0)+ dG(0) +£d GEO) +
dr 2 dr
i 1d“G(0)
~kodrk

G() = F(X +4) =

Zki 4-9)F (%) = exp(d - 8)F (X).
k=0
Definition 13 (continuously differentiable, differential)

F is continuously differentiable at X if for each fixed &
a-0F () exists and is a continuous function of § for
each Y inaneighborhood of X.

If F is defined and continuously differentiable at X , then, for

fixed X, &-0F (X) is a linear function of &, the (first)
differential of F.
F(a,X)=F,(X)=a-0F(X).

([1,p.107uses F'=F )

Suppressing X , or for fixed X :

F=F(@)=F, =&-0F.
Proposition 14 (linearity)
F(a+b)=F(a)+F(b)

Ascalar: F(4a) = AF (@)

Proof 14
Propositions 2 and 3.
Proposition 15 (linear approximation)

For |f| = |7( - )?O| sufficiently small:

F(X)-F (%)~ E(X=%) =E(X) - E(X).

Proof 15
P12

F(X)=F(X+T7) =

F(%,)+T-0F (%) +%(F-5)2F(>?0)+... =
F(%,) +[F|F - 6F (%) +@(f-é)2F(>zo) +...

(F-0) F(%,)+...,

- def13
F(X,)+(X—X,)-0F(X,) =
def13 P14

F(X,)+E(X—-X%,,%) = F(X,))+E(X-X,) =
F (%) + E(X) - E(X,)
= F(X) - F(X) = E(X=X;) = E(X) - E(X)).

Proposition 16 (chain rule)

T a0)-( 520200,

Proof 16
Using the Taylor expansion

2 d2
X(t+7)= x(t)+rd—x(t)+ o —X(t) +...
( )= HOF(x(t+r))—F(x(t))Tay:'°f

F(X(t) + Ta X(t)) = F(X(1)) aers

lim =
7—0 T




d =
=| —X(t) |-oF (X .
o)),
Definition 17 (vector derivative)

Differentiation of F by its argument X
d,F(X)=0F ,

with the differential operator éi , assumed to
0] have the algebraic propertiess of a wvector in

A =G"'(1), 1 unit pseudoscalar; and

(i)  that -0, withde A is a-0,F asin Def

1

Proposition 18 (algebraic properties of 0,)

(31)

A0, =0
R ) I,
|8i = | -8)-(
- L @) -
8)? = PI (8)-() = ékék '8?(’
k=1

where the 8¢ express the algebraic vector properties and the

—

a, - Oy the scalar differential properties.

Definition 19 (gradient)
The vector field f = f (X) = égb()?) = 0D forascalar

function @ = ®(X) is called the gradient of .
Propostion 20 (3-dimensional cross product)
For b independentof X e A, = G*(l,)
a-0(Xxb)=axb.
Only here x means the 3-dimensional cross product (47), not

the commutator product in P. 81.
Proof 20

P8,9 (47)

. (8) . .
= —(ab) I,=—(aAb)l, = axb.
Proposition 21
a-dlx () )=a-

<A>r !
A independent of X .
Proof 21

P6

)=a-8(x(A),) =
(a-3(x(
(a(A)),

Proposition 22

a-(A).

r

M), 1P=5<(*-é>*<)<A>r +xa-o(A))

a-0[X-(XAb)]=a-(XAb)+X%X-(aAD)

Proof 22
- I (C) . - _. P45
a-8[x-(xAb))=a.8[x% +x-bx| =
(a-3x2p +x%a-3 +a - 8(x-b)x +%-b
Proof 10 ~ _ . . (4]
= a-Xb—-a-bX+X-dab+Xx-ba =
P9,21,8
a-(XAb)+X-(aAb).
Proposition 23
For X'independentof X and rs|F|:|>?—>?’|
S R
a-or=a-—=a-r,
r
. T
where I =—.
r
Proof 23

Compare [1], p.68L. I* = (X — X')(X — X'), then

Proposition 24

P8,9



a-of = ,
r
Proof 24
Compare [1], p. 681.
L =aA N rP51_> = . _.1p7
a-or=d-—==-a-or+ra-o-—=
r r r
1. - 1 - P81 f P8
~a-0(X-X)-r=a-or = —a-—a-f=
r r ror
fra—r(r-a)®frAd
r r
Proposition 25
=oAL |fAé|2
a-o(r-a)s= ,
r
Proof 25
IS - L
o(r a)za-a(—j:
r
1. = _ 1 P7.23
—a-o(r-a)+r-d@-o0)- =
r r
1.~ _. . _ . Fr-a. .pa
—d-o(X-a-X-a)——5-a-r=
r r
1. . (f-3)2W¢2532 _(f.3)°
1, (A @il -8y«
r r r
~ - — ~ ~ 12
(r/\a)-(a/\r)(“_f”|r/\a|
r ro
Proposition 26
=, .. [-3d3aAT
a-0(f Ad)= A
r
Proof 26
- (8) - . P4
a-o(fand)=a-o(ra—-r-a)=
= A - P5,25
a-o(ra)—a-o(r-a) =
A |2
- R AN A P r Aal P92
a-a(r)a+ra-6a—| | =
r (43)
ifAad_ (@AF)(FAd)®
r r (40)
Anffa—(@AF)Frd)Pani(fa—(Frd
r r
Manff-d r-aanft
r r
Proposition 27
. Za o r-afraa
a-ofna=- Frd
r

Proof 27

A 2P5 . R
a-of na =2f nafa-olf ~al,
- (43 (43)
a-ofnd =a-o(frd)-(anf)]=

A o2
P9,25 . _Ifnra
= —2(r~a)| |
r
N (2T [ -
= 2frdd-off nd=-2
r
oA - r-a)faa
:a~8|r/\a|=—¢,
r
Proposition 28
=1 1.1
a-8j=—jaj.
r r r
Proof 28
qal(lz)#af"PSl_’aé _»_»41p7
d-0-=a-0—5==a-or+ra-o—==
r r r r
1. [ 2 qéP231# ZF*A(HMM)
—a+f—-—@o=—da-2zar =
r2 r3 r2 r3
11 1.1M11_ 1.1 11._
rr r r rr r r rr
1.1
——a—.
r r
Proposition 29
=1 -7
a'aF__Z_ﬁ
Proof 29
. 1PT 2 . PB 2
d-05=-—a-or=——a-or.
r r r
Proposition 30
1. =,1 3(a-f)’-|fad
—(a-6)2—2: ( ) 4| |
2 r r
Proof 30
1, =,1°P2®1_ - -f\Ps
2 2 2 re
=1\, . 1. - _ . P12
_(a 8—3)a-r——3a 8(& r) =
r r
~ A2 2
3a-f . 1 Frd 3@ f)?-|fnd
rt ror rt



Proposition 31

.1 —4@- r)® +4f ndld
r r
Proof 31
1 -:1 1, -1 _ =, 1P
Z(3-0°===(a-0)=(a-0)* = =
S(@ 0 5 =2@ )@
1, = 3@ F)?-|fnraf s
—(a.o =
3( ) r
132(@-f)a-o@-f-2fraa-off ra
3 r

1 P23,25,27

N |f/\<’?1|2 2 i #|f/\é|
2(a-r) +2|fAdf-a
r 3 r_
r4

2(é-f)|f/\é|2+§|fAé|2f-a—4(é-f)3+

"
ﬂ|an|2f-a (s BV AR AP
3 _—4A@-f’+4fnaa-f

Proposition 32

Proof 32

R P71 - sta r(ll)a r
a-ologr==a-or =—
r r r

Proposition 33

Forintegerkand T # 0 ifk<0:

a-or2 = 2ki - 20D,

Proof 33

a-orX=3a-or’ _2kr2" 3. 8r 2kr2k 3.f

=2kr?*23.F = 2ka - rr2®?,
Proposition 34

Forintegerkand I # 0 if 2k+1<0:
a-or2 =% (a + 2ka - fr).

Proof 34

1 1 1.1 1_1_1
- --—-t-cag+tZgazac+
X—a X X X X X X
Proof 35
1 P -1 & (-d-o)¢1
=exp(-a-o0)—= —,
X — P( )7( § kI X
- . P28
(-a-8) = = (-a-8)(-a-d)~ -
X X
- - - P5
(a8 TaT = (a4 a)[%aﬂ -
X X X X
- - P28
(a0 (2 Da L caa )
X X X X
- P5,28
2(-a-8)tatas -
X X X

Proposition 36 (Legendre Polynomials)
The Legendre Polynomials P, are defined by:
1 i P (xa) <& P (Xa)

n+1 —|12n+1 *
X AT N

x-a & |x
The explicit first four polynomials are:
P (xd) =1
R(xa)=X-a



P,(x&) =|x" P, (%a) = [x["[a" P, (%4).
Proof 36

nt|X]
=1 1 _ =z,1 1 1
q—§-87+—(§-6)27 —(a 8)374_
2 R
= Py(Xa) =1
o =1°P 1 _ éHPlO 1 .W3.x
—a- T:Ta' X:Ta R = -
X[ X X
=R (Xd)=X-a
ladpt-tadcads-
2 X
1 ~ . 3.XPs
—=(3-0 _
e

P5,7,21,23

6|x|6 |X|

Homogeneity of degree n of the P,
(-a-9)" 1 * P, (Xa)
n! |)—(>| |X|2n+l

1y Pea58)

| |2(n+1)+l

(n + 1)‘ Pn+1(ié)
n! |)_(.|2(n+1)+l

P, (xa)
| |2n+1

=(-&-0)->
X

P7

~ =z 1 L 1 -
[_a.a|x|2n+ljp( a) |X|2n+la 8P (Xa)—

2n+1 Sa)d . P10
| TZ:rZ ”( ) a|X| | |2n+1 aPn(xa) =
2n+1_ _._ a-x 1 -
|QT2r—1‘:2 n(xa)% - |)_(.|2n+l a aPn (Xa) =



P,(Xa)a-X isa homogeneous function of degree n+1, if
we assume P, to be homogeneous of degree n:

S, (x-8) R A
k=0

assume

P (X&)

o, =const. which is especially true for n=0,1,2,3. The

right term
_ _.n ‘ P4,5,9
d-o0P(xd)=a-0) e (X-A) X" a"* =
k=0
S o fa-3(x-a) x[am +

e (%-2)* (- e B =
Zak{ X&) ta-a) %" ar +

(% 8) {(n R X}é”“

4

& (n-K)(X &)

Rizzn:akk(i a) g Tan e .
k=0

a (n—k)(X-&) %" "a""

yields |)*(|2 a- éPn (X&) , to be homogeneous of degree n+1.

(n+D!P,,,(Xa) _

| |2(n+1)+1 -

Hence

(Polynomial homogeneous of degree n +1)
—|2(n+1)+1
X

. By induction

every P, will therefore be homogeneous of degree n. This and

Pr.1(Xa)

the explicit expressions above for HZU‘T)” fully prove for
X

aln:  P,(xd8) = x| P,(xd) = |'[a]" P, (%8).
Definition 37 (redefinition of differential, over-dots)
F(a@)=

where the over-dots indicate, that only F is to be differentiated

- M1r - L
a-ana(aaF +aaF),

andnot 4.

Proposition 38

For d¢A =G'(1), P=P :

d-0,=a-P(0;)=P(@)-0,, P(@)eA,.
Proof 38

. P18 . Pig_n =
d-0,=4a P(@Q:Za a“@ -o0,)=

k=1

n - P18 -

P(é) E1k(£‘k -82) :P(a) ai
k=1

Proposition 39

F(a) = F(P(a)) = P(8) - oF .

F(8)=0,if P(d)=0.

Proof 39
def13,P38 def13

E@ = FE(P@) = P@a)-oF,
= F(d)=0,if P(a)=0.
Proposition 40 (differential of composite functions)

For F(X)=G(f(X)) and

fixeA =G'(1) > f(X) e A =G*(1)
a-oF = f(d)-0G
F(@)=G(f(a)) (Def.13)

The differential of composite functions is the composite of
differentials.

E(x,a) =G(f(x), f(X,a)) (explici)
Proof 40
Taylor expansion (P12):

f(Xx+m@a)=f(X)+a- 8f(x)+ r?(a- 6) f(X)+...

def1 Taylor (P12)

a-0G(f (%)) :%G(f(furzé)) =

def 13



defl .
= f(d)-0,G(X

=0

d = ~ '
=G +rf@) |-
=f(@@)- dG  (evaluation at corresponding points.)

Definition 41 (second differential)
F.:(X)=b-0d-0F(X).

Suppressing X : Faﬁ =h-0d-oF .
Proposition 42 (integrability condition)
F.=F

ab ~ " ba’

The second differential is a symmetric bilinear function of its

differential arguments &, b.

Proof 42
Lo . defl . - AE(¥ =
F_(x)=b-&a-3F(x) = b-o0r XA _
& dr o
d°F (X + 7 + ob)| o
=limlim

do-dz- Ti% oc—07->0

F(X+d@+0ob)-F(X+ob) F(X+7)-F(X)
T

o

which is symmetric under (&,7) <> (6,0‘) . Hence

F.(X)=b-da-oF (x)=4a-db-OF (X) = F., ().
The bilinearity follows from the linearity in each argument (P2,

P3and P14).
Proposition 43 (differential of identity function)

§-8.%=P(d) =0 (x-8)

X

Proof 43
P38

N N P8
a-0,X =P (8)-0;,X=P (a) (firstidentity).
Especially for base vectors 8, € A4, = G'(1) :

g, 0,x=P(a)=4a,,

xi

(

()]
i
—~

x|

D
=

Il
jsbl}
=
jab]
=

!

i

P21 "
-a)=> a4 -a
k

=P, (&) (second identity).
Proposition 44 (operator identity)

5x=3(5x)=555'5

X"

Proof 44

Propositions 18 and 43.
Proposition 45 (derivative from differential)

0,F(X)=0,a-0,F(X)=0,F(%,4).

Proof 45
Proposition 44 and definition 13.
Definition 46

where é is the derivative with respect to the differential

argument @ of F(X,d).

Proposition 47

Proof 47

Vector property (P. 18) of 0= 5X and (18).
Proposition 48 (gradient)

For scalar F = ®(X):

- ®=0, 6P=0AD=0Dd

Proof 48
(21), P. 47 and (23).

Remark 49
In proposition 48 the special definition of Hestenes and
Sobczyk[2] in (20) and (21) for the inner product becomes
important. It should be possible to make it more intuitive by
replacing the inner product with the contraction [4].

Definition 50

Divergence of F: o-F,

Curl of F: OAF

(Full vector derivative of F: oF )
Proposition 51 (vector derivative of sums)
O(F +G) =0F +0G .

Proof 51
def 46 __ P18

J(F+G) = d(F+G)=3(F +G) =

P4

Note that, geometric multiplication is distributive with respect



to addition. For f:XxeA =G'(1)> f(X)eA =G'(I")

Proposition 52 (vector derivative of products)

8(FG) = 5FG + OFG. f@=a(f-a,
Proof 52 is the adjoint of f or explicitly:
- def 46 _ P5_, def 46
O(FG) = &(FG)=0(FG +FG) = 3
B L e . f(x,a)=0,[\(@ 0, f(X){-a'|=0,|f(x,a)-a|.
O0FG+0FG = OFG +0FG. [{ } 87 L ]
The third equality is a special case of P. 51, if we take the Proposition 58
definition of @ i Def. 46 into account, The last term is to be f(@)=o(f-a),
interpreted as: oFG =éy(F()?)G()7)Xy:X, or explicitly: B }
Proposition 53 fx.a)= ai(f (x)-a )
- Proof 58
a)_(.z = 2)_( "~ def 57
Proof 53 f(xa) = o,(@-anfm)al-
- - - . P18 - - P45 _,
X2 = (OX)X + OXX = 0,(8-0)[f(%)-a]=d,(f(x)-a)
- N P43 .
Zékék 5% R+ Zﬁkfék 5% (2] p. 50,_[{5] p. 23 (1.109), p. 24 (1.118), p. 104 (5.11).)
- - Proposition 59
@ (32) T(5 b= F(5"Y\ L f(h'
(Zakakj2+23kxak=225kx 5 = 2% @ +bY) = 1(@)+ ()
k k k Y
Proposition 54 f(ed)=af(@), a sl
6|7(| —3% Proof 59
Linearity of the inner product (9).
Proof 54 Proposition 60
. P18 . P10 (32) Tran)_ Frar
8% = > a6, -0,[% = > & G, -k =& P(f(a))=T(@).
K k Proof 60
Proposition 55 (_ )def 57,P58 | _
P(f@)) = P|o(f(x)-d)|=
For F = F(|7(|) oF = )A(;I—Ii R —
|X| ~ L P
Proof 55 P(@,)f(X)-a" = 0,(f(x)-a) = f(@).
_ P7 ~. . dF P54 _dF Proposition 61
a-oF =a-o0X|——=a-X : — N = N o T rerser
| |d|7<| d|x| f(a@)=0,(f(@)-a)=f(P'(a))
L3 de;AGéaé: 2 - éaé . )A(d—li Pff(d—li. with P* the projection into the range of f and f , ie. into
RN o
Definition 56 (sides of differentiation) A“ =G (1.
Only right side differentiation: Proof 61
_ defse . _ def 57 _ P58 _,
FOG = FoG = FoG. f(a) = 0,(f(a) &) = 0,(f(x)-&) =
Left and right side differentiation (another form of the product e ren a2 oy e P
rule P. 52): 0 (P (X) @) =0, (f(x)-P'(a)) = f(P'(a)).

Lo .o N Proposition 62
FoG = FoG + FoG.

Definition 57 (adjoint) PIP(@) = f(a),



P'fP(d) = f (4).

Proof 62
Line 1: Propositions 57,58.

Line 2: P. 39 and because the range of f and f s

A =GH(I").
Proposition 63 (change of variables)

For F(X)=G(f (X)), ie X —X =f(X) :

def 57

&(a) b Rt
[?(é; )G, = FO)G(X).

Proposition 64 (second differential)

éziF(X) = éﬁégl:éﬁ = (ég 'éa +55 A éé)FaB'

Proof 64
P54 _ R def13 _
5F(X) = 8,(a-3,F () = 3,F,

. AN AN P54
= 5%F (%) = 3,(0,F (%)=, (6.F. ) =
. LR o . . def 41
5510 -0, (6.F: ) =5,8,1b -8, )F.1 =

scalar op.

N P18 _, N N -
3.8,Fc = (B, B, +3; AO,)F.

Proposition 65 (integrability condition for vector derivative)
Oynoy=0=Fy =F,.
Proof 65

def 41

0;)F —(@:0,)(0 - 0,)IF =

integrability (P. 42): F_. =F.

LAOF(X)= d,n0,=0.

Proposition 66 (Laplacian)

Q)l
I|
D!

Integrability of F <

Proof 66
P65 _ -
Integrability of F <:>8 NO; =0

(18)

=, -
< 0y ;ai@i—k

Proposition 67

Proof 67

P53
EIDN xzza A(zx)_—(a AT G

because F =X’ isintegrable.

Proposition 68

Proof 70



=n(P68)

= 1 - rR o r

1= S r A< r__
N KRR PR =0t kfx[FPxe = AT D AGRICED =
X] [X] - Lo
n Sk =Kk Oz AAX(-D)" =(AAG;)X,
T - k|X| = —K
X] X] © 5
=A 18 (X AA)=AAAND)X =
~ | pseudoscalar
Proposition 71 A T(AAD)X o
- ~ _l_ 4 ~ (39)
0, loglx| = |)~(|2 =X AL (0 AAEDIX =
grades: n r+1
Proof 71 . (38)
P55 d Iog|>?| 1@ g @ A—1|—1[(aX A A)- |]>?(—1)r+(r+1)(n-r_1) _
0, log|%| = X e =% = =—>=x" B (39)
|X |X| |X| — A—ll 71[62 . (Al )]X(_l)r+(r+l)(n—r)—r71 _
Proposition 72 _ A(AL. éi]X(_l)(r+l)(n—r)—l+n—r—l (i))
For A=P(A)=(A) : =
= 2o - (35).(36)
82()( . A) = Aaxx =rA. — A —1[(|A) . ai])—((_l)r(n—r)ﬂ(n—r) _
—— —_—
Proof 72 n—r i1
If Ais a simple r-blade, then - _ Proof72
. (39) - . PIA(ai)X = (I‘l - I’)
0x(X-A) = 0, (A-X)(-1)"" =
AATI=D
1= - Pz . _
_[aXAX _ (_1) (GXX)A](—]_) 1_ (?0> a (X A\ A) (A/\ 8 )X (n r)A
2 X
=n(P68) Last step: Multiplication with A from the left. The distributive
1 [5 AX — (=)’ A(é).()”()](—l)r_l _ rule for the inner product gives the same result even for
non-simple A.
. . (39) - Proposition 74
(@, ACED™ = (A 8%,
For A=P(A)=(A)
(ORI P - "
=A0,(X-A)=A"(A-0.)X = P,(0;)X ) N
P1g( _r r P43 _r éxA)? a“Ad, =(-1)"(n-2r)A
=[Zakék -an:Zak(ak-ai)x = aa, kZ;
o . K= K= Proof 74
(33)  AATAL. -
=r, = ai()?A):(AOX))?:rA . .p1g_n - . n -
(0 0;AX = 3" (a, - 0,)AX = ) a“A&, - 9,)X
Last step: Multiplication with A from the left. Distributivity k=1 k=1
(19), (25) gives the same result even for non-simple A. PASQ,
Proposition 73 = a A4,
k=1

For A=P(A)=(A)

. (39),(40)

6. A =0 [A-K+AAK] =

8, (XAA) = AnD,X=(n—-T)A L L
GIX-AED) T +XAAED ] =

Proof 73 ) ) P72
IfA isasimple r- blade then (—1)r[—éX (X-A)+ éx (XA A)] =
P73

, (XAA) 73, (AAR)(-D) = (D' [-rA+ (n=1)A]l = (-1)"(n - 2r)A.



Proposition 75

For a=4(X), b =b(X) :

0;(a-b)
—d-0,b+b-8,a-a-(6, Ab)—b-(, A4)
Proof 75

_ _, P18 RN - -
a- (0, Ab)=8-0,b-0,(b-a)

Definition 76 (Lie bracket)
For a=4a(X), b=b(x) :
[4,b]=d-0,b-b-0,4.
Proposition 77
[4,b]=0,-(@Ab)-bd,-a+ad, -b.
Proof 77

05+ (@nb) = (3, -a)b - (J,-b)a =
b(d,-a)+(a-0,)b—a(,-b)—(b-d,)a
—[@b] = (a-3,)5 - (6-3,)a -

(CAb)- (6, ~8)=h-0,8a-C—C-,a-b
—b-6,(a-c)-¢-0,(a-b)+[c,b]-a.
Proof 78
CAB)-@ynd) = ¢-6-Gyna)) =
¢ (6 5.4-0 (& 6)):6 6.4.c—c.0.4-b
—5-3,(3-€)-b-3,(3-C)
—C-8,(a-b)+C-3,(a-b) =
b-8,(3-€)—¢-8,(3-b)

—=b.0,(a-c)—-c-0,(a-b)+[c,b]-a
Proposition 79

For a=4(X), b =b(X) :

—

Ab)=b-(@, Ad)+0d,-
(@nd,)-b+a-d,b-a

Q)l

a- (0

Proof 79
Jacobi identity (44) =

5-(3, AD)+d,-(DA8)+b-(3AD,)=0=
(41)

AB)=b-(3, A8)+d,-(AAb) =

(39)
(@nd,)-b+a-d,b-3ad,-b.

Proposition 80
For a=4a(X), b=b(x) :

Proof 80
Jacobl |dent|ty 44 =

(@ b)+a (b/\a)+b (a Aa) 0=

Proposition 81
Ax(8 Ab) =
Aab abA A/\ab ab/\A

with the commutator product Ax B of multivectors AB

(45).
Proof 81
(46)
Ax(& ADb) ——(6 /\b)xA =
(46)

_3b-A+ A-EXB - —5;(6/\ A+AndD.
Proposition 82

For A=(A) =A(X), B=(B), =B(X) :



A/\éi AB=(-1)"0, A(AAB)=

AN, AB+ (1) "UBAG, AA
Proof 82

. . (40) =

AnO; AB =(-1)"0, A(AAB),

. . - . (40)
AANO; AB=AA0; AB+(AAO;)AB =
- i . (40)

ArO, AB+(-)"(0;, AA)AB =
AAO, AB+ (1) IB A (G, AA).

4, Conclusion

This article first summarized important geometric algebra
relationships, which are necessary for the thorough and explicit
development of the vector differential calculus part of universal
geometric calculus.

It then showed how to differentiate multivector functions by
a vector, including the results of standard vector analysis. The
vector differential relationships are proven in a very explicit
step by step way, enabling the reader, who is unfamiliar with
the algebraic techniques to get complete comprehension. It
may thus serve as important reference material for studying
and applying vector differential calculus.

Future work in a similar manner should be done to elucidate
the calculus with multivector derivatives.
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