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ABSTRACT

Conventional illustrations of elementary relations and physical applications of geometric algebra are 
helpful, but restricted in communicating full generality and time dependence. The main restrictions are one 
special perspective in each graph and the static character of such illustrations. Several attempts have been
made to overcome such restrictions. But up till now very little animated and interactive, free, instant access,
online material is available. 
This talk presents therefore a set of well over 60 newly developed (freely online accessible[1]) JAVA applets.
These applets range from the elementary concepts of vector, bivector, outer product and rotations to triangle
relationships, oscillations and polarized waves. A special group of 21 applets illustrates three geometrically 
different approaches to the representation of conics; and even more ways to describe ellipses. Finally 
Clifford’s circle chain theorem is illustrated for two to eight primary circles. The interactive geometry
software Cinderella[2] was used for creating these applets. Some construction principles will be explained
and a number of applets will be demonstrated. The interactive features of many of the applets invite the user 
to freely explore by a few mouse clicks as many different special cases and perspectives as he likes. This is
of great help in "visualizing" the geometry encoded in the concepts and formulas of Geometric Algebra. 

1. INTRODUCTION 

1.1 Geometric Algebra

I do think that at the beginning of the 21st century, we

have strong reasons to believe, that all of mathematics

can be formulated in a single unified universal[8] way,

with concrete geometrical foundations. Why is geometry

so important? Because it is that aspect of mathematics,

which we can imagine and visualize. The branch of 

mathematics, which Grassmann said “far surpasses” all

others [9] is now known under the name universal

geometric calculus. The algebraic “grammar” geometric

calculus uses is geometric algebra. Some of the 

applications of geometric algebra in the engineering

sciences are: computer vision, graphics and

reconstruction, robotics, signal and image processing,

structural dynamics, control theory, quantum computing,

bioengineering and molecular design, space dynamics,

elasticity and solid mechanics, electromagnetism and

wave propagation, geometric and Grassmann algebras,

quaternions and screw theory, automated theorem

proving, symbolic algebra and numerical algorithms.[10]

1.2 Cinderella created JAVA applets 

I originally learned about the JAVA based interactive

geometry software Cinderella[2] from Leo Dorst[3]. He

also used it to do some geometric algebra illustrations.

Here I have elaborated his approach, producing a variety

of online JAVA applets, part of them animated and part

of them interactive. Especially the interactive applets

invite to explore the full meaning of geometric

relationships in a visual way. With permission, I have

freely drawn on the material of David Hestenes’ New

Foundations for Classical Mechanics[4]. You can tour

the applets without using this book. But if you have it, it 

might increase the fun of reading it. Another important

source is Dorst, Mann and Bouma's geometric algebra

MATLAB tutorial GABLE[5].

Particularly in the section on conics I have compiled an

instructive variety of ways to obtain conics (points, pairs

of intersection lines, circles, ellipses, hyperbolas and

parabolas).

Finally, W.K. Clifford's circle chain theorem in the

ordinary Euclidean plane refers to a "chain of theorems"

of increasing complexity. Every one of this infinite



sequence of theorems must be true for the whole to be

true. You will find the illustrations for n=2 to n=8

primary circles through one point O. 

The applets work with Netscape 6.2, Explorers 5 and 6,

but not with Netscape 4.7. In each group the first applet

may take some time, because your browser has to load

the 412k cindyrun.jar file. Later on some of the more

involved applets may also take a few minutes to appear

on your screen. One needs to take into account that

Cinderella is inherently two dimensional. That is three

dimensional projections may sometimes get disarranged.

The easiest way to resolve this is to use the refresh button

of the browser to start a particular applet afresh.

2. VECTORS AND BIVECTORS

2.1 Vectors

Fig. 1 Commutativity of vector addition. Vector division. 

Fig. 2 The intersection (meet M) of two planes A,B.

This first group of applets illustrates how vectors can

be represented by arrows, which are identical up to 

translations. The vector length and orientation

(opposite directions) can be changed by dilations. The

addition of vectors is defined as attaching one vector

to the tip of another and drawing the result from the 

beginning of the first to the end of the second. The

additive inverse of a vector brings it back to zero. 

Special properties of vector addition are 

commutativity (Fig. 1a), associativity, vector

subtraction. The properly defined geometric

multiplication of vectors also has a multiplicative

inverse, that is in geometric algebra one can naturally 

divide by vectors as well. One particular application

of vector division (Fig. 1b) is the calculation of

projection and rejection of one vector with respect to 

another by using the inner and outer product parts of 

the geometric product of vectors. 

All these properties of vectors are illustrated in a set of

interactive applets. 

2.2 Bivectors 

Area elements, the non scalar parts of the geometric

product of vectors are simply called bivectors.

Multiplying by a three-volume element results in a 

dual vector perpendicular to the bivector. The inner

product is naturally extended to include products of

bivectors and vectors. The inner product of a vector

and a bivector is a vector in the bivector plane 

perpendicular to the projection of the vector into the 

bivector plane. 

The projection and rejection of a vector with respect 

to a bivector uses the same algebraic expressions as 

that of the vector vector case. 

Geometric algebra easily allows to calculate the 

intersection line vector (meet M in Fig. 2) of two

planes without ambiguity in one step. 

3. OUTER PRODUCT AND TRIANGLE 

The outer product of two vectors (Fig. 3) is the

non-scalar part of the geometric product resulting in an

oriented area element, which can be defined by one

vector sweeping along the other. The JAVA applets

make it possible to make this “sweeping” visible as an 

animated motion. But the outer product is not restricted

to two dimensions. Sweeping an area element bivector 

along a third vector gives an oriented volume element

trivector. It does not matter which side face of a

parallelepiped is used for sweeping, we always get the

same trivector with positive or negative orientation. 

The outer product is distributive (Fig. 4). The outer

products of the side vectors of a triangle immediately

lead to the law of (oriented) sines. Both facts are



illustrated by applets in the triangle category.illustrated by applets in the triangle category.

  

Fig. 5a) Right angle rotation Fig. 5b) Rotation with expo- 

 with unit area element. nential of unit area element.

 Fig. 6a) Rotation by two       Fig. 6b) General rotation

plane reflections.             by rotor R operation.

Fig. 7a) Euler angles of rotation. Fig. 7b) Rotation interpolation.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

4. ROTATIONS 4. ROTATIONS 

  

Geometric algebra offers elegant ways to describe

rotations without introducing coordinates or matrices.

E.g. the full geometric multiplication of a vector with a

(unit area) bivector gives a 90 degree rotation (Fig. 5a).

Capitalizing on this one can easily demonstrate how the

exponential of a bivector yields arbitrary plane rotations

(Fig. 5b). 

Geometric algebra offers elegant ways to describe

rotations without introducing coordinates or matrices.

E.g. the full geometric multiplication of a vector with a

(unit area) bivector gives a 90 degree rotation (Fig. 5a).

Capitalizing on this one can easily demonstrate how the

exponential of a bivector yields arbitrary plane rotations

(Fig. 5b). 

Another simple way to describe rotations is through two

successive reflections at planes which comprise half of 

the angle of the resulting rotation (Fig. 6a). These planes

of reflection can be denoted by unit vectors n

perpendicular to them. The geometric product  of

these two unit bivectors is the desired rotation operator

(rotor), which must be applied in both orders  and 

from the left and right. Rotors can be written in 

terms of the angle of the two vectors and of the

area element of the plane defined by . This brings

us full swing back to the exponential description of

rotations already mentioned, this time in the full general

form proper for the rotation of objects in higher 

dimensions. The same coordinate free rotor rotation can

be applied to vectors and bivectors (Fig. 6b). 

Another simple way to describe rotations is through two

successive reflections at planes which comprise half of 

the angle of the resulting rotation (Fig. 6a). These planes

of reflection can be denoted by unit vectors n

perpendicular to them. The geometric product  of

these two unit bivectors is the desired rotation operator

(rotor), which must be applied in both orders  and 

from the left and right. Rotors can be written in 

terms of the angle of the two vectors and of the

area element of the plane defined by . This brings

us full swing back to the exponential description of

rotations already mentioned, this time in the full general

form proper for the rotation of objects in higher 

dimensions. The same coordinate free rotor rotation can

be applied to vectors and bivectors (Fig. 6b). 
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The exponential rotor form of rotations gives us a 

coordinate and matrix free understanding of the well

known Euler angles (Fig. 7a). And it leads on to an

incredibly simple algorithm for interpolating between

arbitrary orientations (Fig. 7b), e.g. of plane area

elements. This is of great use for both computer graphics

and robot manipulations.

The exponential rotor form of rotations gives us a 

coordinate and matrix free understanding of the well

known Euler angles (Fig. 7a). And it leads on to an

incredibly simple algorithm for interpolating between

arbitrary orientations (Fig. 7b), e.g. of plane area

elements. This is of great use for both computer graphics

and robot manipulations.

Fig. 3 Outer product of two vectors.

Fig. 4 The outer product is distributive.

  

  

  

  

  

  

  

  

  

      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

5. OSCILLATIONS AND WAVES 5. OSCILLATIONS AND WAVES 

  

5.1 Oscillations 5.1 Oscillations 

  

All basic forms of symmetric and antisymmetric

oscillations in longitudinal (Fig. 8), transverse (Fig. 9)

and circular (Fig. 10) directions are easily formulated by

geometric algebra and visualized by animated applets.

As one may expect by now, geometric algebra can again

do it without coordinates. It really brings out the full

All basic forms of symmetric and antisymmetric

oscillations in longitudinal (Fig. 8), transverse (Fig. 9)

and circular (Fig. 10) directions are easily formulated by

geometric algebra and visualized by animated applets.

As one may expect by now, geometric algebra can again

do it without coordinates. It really brings out the full



geometric nature of oscillations without artificially

resorting to a Cartesian coordinate system.

Fig. 8 Symmetric longitudinal oscillation.

Fig. 9 Antisymmetric transverse oscillation. 

Fig. 10 Symmetric circular oscillation.

5.2 Circular polarized waves 

Circular polarized waves standing, rotating or traveling

in arbitrary directions of any wavelengths receive an 

elegant fully geometric description in geometric algebra. 

Fig. 11 Right and left circular polarized waves. 

The applets in this category show right and left polarized

circular waves (Fig. 11) which can be turned

interactively, or observed traveling by animation. The

user can continuously choose the wavelength

interactively.

6. CONIC INTERSECTIONS 

Conic intersections are a vast and immensely important

topic in geometry, mathematics and its applications. The

geometric and analytic properties of these particular

curves are most fascinating, but the incredible variety of

equivalent descriptions can be very confusing and rather

elusive for the student. To address this subject a

comprehensive study has been carried out to first show

the “conic” nature of circles, ellipses, parabolas,

hyperbolas, points and intersecting pairs of lines, and to

fully illustrate with interactive “hands on” the variety of 

equivalent descriptions. Cinderella even allows to

capture the infinite properties of parabolas and

hyperbolas by visualizing the spatial infinity in its

spherical view. 

6.1 Intersecting the cone 

This is now meant to be taken literally as the procedure

for obtaining all conics. In both finite Euclidean view

and in the (infinite) spherical view the position and

orientation of a plane intersecting a cone can be freely

manipulated interactively (Fig. 12a). This creates before

the eyes of the user all known varieties of conics. The

spherical view (Fig. 12b) shows how finite ellipses

become parabolas closed at infinity and then

continuously open up to become hyperbolas. By just

dragging the mouse pointer across the screen the user

can freely explore, what many pages of text books and

many conventional illustrations just cannot show due to

their limitations to selective static perspectives. 

Fig. 12a) Conic       Fig. 12b) Sperical

intersection. projection.

6.2 Semi-latus rectum formula 

A famous formula for all conics is 

)ˆ1( r

l
r , (1)

with l the semi-latus rectum, r the length of the radius

vector pointing in the unit vector direction , and

the excentricity vector. 

r̂

How formula (1) achieves to include circles, ellipses,

parabolas (Fig. 13) and hyperbolas is made visible by a

variety of applets. In the interactive version, the user can

continuously create all conics by dragging the mouse



Fig. 15 Description of ellipse by polar angle (top left) two 

oplanar circles (top right) and two non-coplanar planes.c

along the directrix line. Special animated versions show

how all values of the formula sweep out the complete

conics. At the same time the infinite behavior is captured

again with the help of the spherical view (Fig. 14). 

6.3 Ellipse in various disguises 

One conic, the ellipse has a particular variety of

equivalent ways to describe it. There are besides the

literal conic intersection and the semi-latus rectus

formula three other interesting descriptions (Fig. 15). 

Yet another way to describe it as a member of the class

of second order curves will be treated in the next section. 

The three descriptions mentioned above are illustrated in

both interactive and animated ways by remarkably

simple and aesthetic Cinderella applets. Needless to say

that the elegant descriptions of planes as bivectors and

that of rotations by rotors make all this in the framework

of geometric algebra quite easy.

Fig. 13 Semi-latus rectus generation of parabola. 

Fig. 14 Parabola in spherical view closing at infinity.

6.4 Second order curves 

All curves of the form

2

2

210 aaa
r ,                 (2)

with any three vectorsa , , and scalars  and 

 describe conics. Taking  in (2) as functions of

yields a specific conic. For >0 ellipses, for =0

parabolas and for <0 hyperbolas. It sounds incredible,

but the truth of (2) can be immediately visualized using

interactive and animated JAVA applets created with 

Cinderella (Fig. 16). In the interactive version all three

vectors and the values of the scalar parameters can be

freely varied to provide full intuition on how the formula

works. The spherical view captures again what happens

at infinity.

0 1a
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Fig. 16 Ellipse as second order curve. 

7. Clifford’s chain circle theorem 

Clifford's circle chain theorem in the ordinary Euclidean

plane refers to a "chain of theorems" of increasing 

complexity. Every one of this infinite sequence of 

theorems must be true for the whole to be true. It begins

with two circles passing through a common point O 

(n=2). The next theorem in the chain is for the case of 

three circles through a common point O (n=3) and so 

forth for n=4,5,6, ... If one takes the point O to infinity

the n circles become n straight lines (circles with infinite



radii.) The interactive JAVA applets show illustrations

for the cases n=2, ... ,8 circles through O (Figs. 17, 18). 

These illustrations are each accompanied by a detailed 

description. Each illustration shows the magnificent

intersection properties that lead in odd cases to a final

circle and in even cases to a final point. 

It is most interesting to note that a purely algebraic proof

of the case n=5, based on the conformal geometric

algebra model of the Euclidean plane has been found[7].

With the help of the geometric product of vectors one

can construct an algebra of Clifford brackets, with which

the proof becomes possible. This illustrates how even

Clifford’s own inventions submit over time to the

descriptive power of his geometric algebra. 

Fig. 17 Clifford’s circle chain theorem (n=4). 

Fig. 18 Clifford’s circle chain theorem (n=7). 
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