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This paper treats important questions at the interface of mathematics and the engineering sciences. 

It starts off with a quick quotation tour through 2300 years of mathematical history. At the beginning 

of the 21st century, technology has developed beyond every expectation. But do we also learn and 

practice an adequately modern form of mathematics? The paper argues that this role is very likely to 

be played by (universal) geometric calculus. The fundamental geometric product of vectors is 

introduced. This gives a quick-and-easy description of rotations as well as the ultimate geometric 

interpretation of the famous quaternions of Sir W.R. Hamilton. Then follows a one page review of the 

historical roots of geometric calculus. In order to exemplify the role geometric calculus for the 

engineering sciences three representative examples are looked at in some detail: elasticity, image 

geometry and pose estimation. Finally the value of geometric calculus for teaching, research and 

development and its worldwide impact are commented.  
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1. Introduction 

1.1 Mathematicians life 

1. A point is that which has no part. 2. A line is 

breadthless length. …                    Euclid[1] 

…never to accept anything as true if I did not have 

evident knowledge of its truth; …We have an idea of that 

which has infinite perfection. … The origin of the idea 

could only be the real existence of the infinite being that 

we call God.                     Rene Descartes[2]

But on the 16th day of the same month … an 

under-current of thought was going on in my mind, 

which gave at last a result, whereof it is not too much to 

say that I felt at once the importance. … Nor could I 

resist the impulse - unphilosophical as it may have been - 

to cut with a knife on a stone of Brougham Bridge, as we 

passed it, the fundamental formula with the symbols, i, j, 

k;                      Sir William R. Hamilton[3]

…extension theory, which extends and intellectualizes 

the sensual intuitions of geometry into general, logical 

concepts, and, with regard to abstract generality, is not 

simply one among other branches of mathematics, such 

as algebra, combination theory, but rather far surpasses 

them, in that all fundamental elements are unified under 

this branch, which thus as it were forms the keystone of 

the entire structure of mathematics.  

                        Hermann Grassmann[4] 

… for geometry, you know, is the gate of science, and 

the gate is so low and small that one can only enter it as a 

little child.                   William K. Clifford[5]

The symbolical method, however, seems to go more 

deeply into the nature of things. It … will probably be 

increasingly used in the future as it becomes better 

understood and its own special mathematics gets 

developed.                  Paul A.M. Dirac [6]

The geometric operations in question can in an 

efficient way be expressed in the language of Clifford 

algebra.                        Marcel Riesz[7] 

This was Grassmann’s great goal, and he would 

surely be pleased to know that it has finally been 

achieved, although the path has not been 

straightforward.               David Hestenes[8] 
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1.2 Design of mathematics

Over a span of more than 2300 years, Euclid,

Descartes, Hamilton, Grassmann, Clifford, Dirac, 

Riesz, Hestenes and others all contributed

significantly to the development of modern

mathematics. Today we enjoy more than ever the

fruits of their creative work. Nobody can think of 

science and technology, research and development,

without acknowledging the great reliance on 

mathematics from beginning to end. 

Many forms of mathematics have been developed

over thousands of years: geometry, algebra, calculus,

matrices, vectors, determinants, etc. All of which find

rich applications in the engineering sciences as well.

But it takes many years in school and university to

train students until they reach the level of

mathematics needed for today’s advanced

requirements.

Yet very important questions seem to largely go

unnoticed: Is the present way we learn, exercise, apply

and research mathematics really the most efficient and

satisfying way there is? In an age, where we can

double the speed of computers every 3 years, is there

no room for improvement for the teaching and 

application of one of our most fundamental tools

mathematics? How should mathematics be designed,

so that students, researchers and engineers alike will 

benefit most from it?

I do think that at the beginning of the 21st century,

we have strong reasons to believe, that all of

mathematics can be formulated in a single unified

universal[9] way, with concrete geometrical

foundations. Why is geometry so important? Because

it is that aspect of mathematics, which we can imagine

and visualize. The branch of mathematics, which

Grassmann said far surpasses all others [4] is now 

known under the name (universal) geometric calculus.

Its formulation is at the same time surprisingly

simply, clear and straightforward in teaching and 

applications. In my experience it is also of great

appeal for students.

The rest of this paper is divided into four major

sections. In the next section we will see how

geometric calculus defines a new way to multiply

vectors. This immediately gives us a new method to

do rotations and teaches us the nature of Hamilton’s

famous quaternions.

Section three briefly reviews the history of 

geometric calculus.

Section four takes up three examples of geometric

calculus applied to elasticity, image geometry and 

pose estimation. Many other applications more closely

related to other fields of engineering exist as well.

Section five outlines the general benefits for

teaching, research and development. It also comments

on the situation we face in Asia. 

2. New vector product makes rotations easy

At the (algebraic) foundations of Geometric Calculus

[9] lies a new definition of vector multiplication, the

geometric product. It was introduced by Grassmann [4]

and Clifford [14] as a combination of inner product and 

outer product. The outer product was invented by

Grassmann before that. The outer product  of 

two vectors is the (oriented) parallelogram area spanned

by two vectors  and b , illustrated in Fig. 2.1. 

ba

a

Fig. 2.1 Oriented parallelogram area ba

The oriented unit area is denoted by i. But a warning

is in order: i is NOT to be confused with the imaginary

unit of the complex numbers introduced by Gauss! In

two dimensions the area unit i is of similar importance as 

the unit length 1 is for one dimension.

The “new” geometric product then simply reads

bababa . (2.1)

Yes here we add scalar numbers (inner product) and

areas (outer product), but nobody has a problem to put

balls and discs in one box, without confusing them. The

usual multiplication of real numbers is associative, i.e. 

24122)43(2464)32( . (2.2)

It simply doesn’t matter where you put the brackets, the

result is the same. The same is true for the geometric

product of vectors.



Let us now again take two vectors, but of unit length:

, . Multiplying their geometric product  once

more with  we get  again:

â b̂ ba ˆˆ

â b̂

 (2.3)bbbaabaa ˆˆ1ˆ)ˆˆ()ˆˆ(ˆ

What we have just done is to rotate the vector  into

the vector by multiplying it with . This is a

rotation by the angle as seen in Fig. 2.1. This is indeed

a very general description of rotations in the plane of the

rotation. It can be applied to any vector in order to rotate

it in the plane of a  and by the angle The

product deserves thus a separate name

â

b̂

ˆ

ba ˆˆ

ˆ b̂

bâ

sincosˆˆ ibaRab . (2.4)

Remember that the inner product of two unit vectors is 

just cos and the area of the parallelogram they span is

base*height = 1*sin sin i and describe the

rotation as good as  and . A 90° rotation with

cos90°=0 and sin90°=1 is therefore given by

â b̂

i)90( oR . (2.5)

Rotating twice by 90° gives 180°, i.e. turns each vector

into the opposite direction. We therefore have:

1)90()90( 2
iii

oo RR . (2.6)

Independent of this, the Irish mathematician Sir

William R. Hamilton was thinking in 1843 about how to 

describe rotations in three dimensions in the most simple

way. While making a walk he suddenly found the answer

,12
i ,12

j   (2.7a),12
k

1ijk . (2.7b)

Hamilton was so happy that he carved (2.7) immediately

into a stone bridge. He called the four entities {1, i, j, k}

quaternions (=fourfold). [3,10]

For describing a rotation with a quaternion q, we just

need to choose the angle of rotation and the axis

[unit vector in the direction of the axis]:),,( 321 uuu

2
sin)(

2
cos1 321 kji uuuq ,   (2.8a)

2
sin)(

2
cos1~

321 kji uuuq .   (2.8b) 

The rotation of any vector is then given as [11]x

qxqx ~
,  (2.9)

which obviously is much more direct, simpler and

computationally more efficient than the usual 3 by 3

matrix notation. [In (2.3) the rotation operation was one

sided, here it is two sided, because the part of  not in

the rotation plane must not change.] Instead of nine

matrix elements, we need only four parameters

, u  in (2.9).

x

321 ,, uu

Sir Hamilton knew that his new description of

rotations was revolutionary, but what he did not know

and even many of today’s scientists do not yet know is 

the geometric meaning of { i, j, k }. But given that i

represents in two dimensions the (oriented) unit area

element, it is natural to take { i, j, k } to represent the

three mutually perpendicular (oriented) unit area 

elements of a cube, as in Fig. 2.2.

Fig. 2.2 Oriented unit area elements i, j, k of a cube.

This interpretation is indeed consistent and valid in the

framework of Geometric Calculus.[12] In three

dimensions, adding plane area elements, is quite similar

to adding vectors. The result is a new area element. The

sum

)( 321 kjiu uuu (2.10)

in (2.8) is therefore just a new (oriented unit) area

element perpendicular to the axis

. (2.11))( 332211 eueueuu

Just like as in (2.4) each quaternion q (2.8) can therefore

be written as a product of two unit vectors in the plane

uuu baqRq
ˆˆ

2
sin

2
cos .  (2.12)



3. Creation of Geometric Calculus 

300 BC Euclid Geometry

250 AD Diophantes Algebra

1637   Descartes Coordinates

1798   Gauss Complex Algebra

1843 Hamilton Quaternions

1844 Grassmann Extensive Algebra

1854 Cayley Matrix Algebra

Boole

1878 Clifford Geometric Algebra

Sylvester Determinants

1881 Gibbs Vector Calculus

1890 Ricci Tensors

1908 Cartan Differential Forms

1928 Dirac Spin Algebra

Pauli

1957 Riesz Clifford Numb., Spinors

1966 Hestenes Space-Time Algebra

now Geometric Calculus

Fig. 3.1 History of Geometric Calculus [13]

2300 years ago the ancient Greek scholar Euclid

described (synthetic) geometry in his famous 13 books of

the elements. 50 years later (syncopated) algebra entered

the stage through the work of Diophantes. Euclid’s work

[1] was first printed in 1482. But it took yet another 150

years until the French Jesuit monk Rene Descartes [2]

invented analytic geometry. Every student knows him

through his introduction of rectangular Cartesian

coordinates. After the French revolution, Gauss and

Wessel introduced the algebra of complex numbers.

The following 19th century proved very fruitful for the

development of modern mathematics. The Irish

mathematician Sir William R. Hamilton discovered the

quaternions [3,10] in 1843, providing a most elegant way

to describe rotations. One year later published the

German mathematician Herrmann Grassmann his now 

famous work on extensive algebra.[4] Yet at first only

few mathematicians like Hamilton, later Clifford [14]

and Klein and a growing number of others took notice.

10 years later showed G. Boole how algebra can be used

to study locigal operations. In the same year, Cayley 

continued the coordinate approach of Descartes by

introducing matrix algebra. Something which Grassmann

had no need of in the first place.

Then came the year 1878, when Clifford [14] created

the geometric product, in Grassmann’s work it appeared

as central product. After Clifford’s early death

(supposedly because he overworked himself repeatedly),

the algebra based on the geometric product became to be

known as Clifford algebra, yet following his original

intent, it should better be named geometric algebra.

Again in the same year, Sylvester continued to develop

matrix algebra in the form of introducing determinants.

In 1881 Gibbs’ vector calculus followed, which Ricci

enhanced in 1890 to tensor calculus.

In the first half of the 20th century, the names of Cartan

(differential forms, 1908) and of Dirac and Pauli (Spin

Algebra, 1928) deserve to be mentioned. In the second

half of the 20th century (1957), Marcel Riesz [7] gave

some lectures on Clifford Numbers and Spinors. Early in 

his career (1966), a young American David Hestenes

came across Riesz lecture notes and created the socalled

Space-Time Algebra [15], integrating classical and

quantum physics. This marked the beginning of renewed

interest in geometric algebra, combined with calculus.

Sobczyk and Hestenes published in the early 1980ies a

modern classic[9]: Clifford Algebra to Geometric

Calculus – A Unified Language for Mathematics and 

Physics. By the beginning of the 21st century it has

become a truly universal geometric calculus,

incorporating more or less all areas of mathematics, and 

starting to be extensively applied in science and

technology. [16,17,29]

The proponents of geometric calculus have no doubt,

that this new language for mathematics will make its way

into undergraduate syllabi and even school education.

Mathematics will thus become easier to understand,

teach, learn and apply. As for the applications, the next

section will show how geometric calculus is successfully 

used in engineering.

4. Geometric Calculus for Engineers 

4.1 Overview

In order to get an overview of how geometric calculus

supports engineering applications, let me first list some

relevant topics from a recent conference[18] on applied

geometric algebras in computer science and engineering:

Computer vision, graphics and reconstruction

Robotics

Signal and image processing

Structural dynamics

Control theory

Quantum computing

Bioengineering and molecular design

Space dynamics

Elasticity and solid mechanics

Electromagnetism and wave propagation

Geometric and Grassmann algebras



Quaternions and screw theory

Automated theorem proving

Symbolic Algebra

Numerical Algorithms

One should note that the organizers cautioned: “Topics

covered will include (but are not limited to):” and that

geometric algebra itself is only the algebraic fraction of

the full-blown geometric calculus [9]. Limitations of 

space prohibit any complete listing here. 

4.2 Three examples of engineering applications

Trying to choose what to present from the recent

engineering applications of geometric calculus is a very

tough choice, because there are many good applications.

I have chosen three dealing with elasticity, image

geometry and pose estimation.

4.2.1 Example 1: Elastically coupled rigid bodies[19]

Modelling elastically coupled rigid bodies is an 

important problem in multibody dynamics. A flexural

joint has two rigid bodies coupled by a more elastic body.

Such a system is shown in Fig. 4.1. 

Fig. 4.1 Elastically coupled rigid bodies. Source: [19].

It is convenient to avoid specifying an origin, i.e. use

a new homogeneous formulation.[8,19] Rotations R and 

translations T are fully integrated as twistors in screw 

theory. That is, any relative displacement D of two

bodies can be written as

TRD , .   (4.1)DxDx
~

R is the rotation of section 2 and

enenT
2
1

2
1 1)exp( (4.2)

n is the translation vector and  represents an

infinitely far away point in (conformal) geometric

algebra [8,19]. Motion, momentum and kinetic energy

are than given as 

e

xVx
t

,   (4.3)

VMP ,   (4.4)

PVE
2

1
.  (4.5)

V is defined by

VDD
t 2

1
. (4.6)

Finally the potential energy of the elasticity problem can

be written as a sum of basically three kinds of terms,

depending on  and . The first term depends only

on , the second on  and n , and the third only

on . The three terms are therefore the potential

energies of pure rotation, coupled rotation and translation,

and pure translation.

u n

uu

n

The method described here is invariant, unambiguous,

has a clear geometric interpretation and is very efficient 

in symbolic computation. Two researchers have applied

for a patent on the use of the method described here in

software for modeling and simulation.

4.2.2 Example 2: Image geometry[20]

Image processing commonly considers “Euclidean

differential invariants” of the image space (picture plane

times intensity). But this makes not much sense, because

one can’t rotate the image surface to see its “other side”,

but invariants are supposed not to change under such

transformations. It also makes no sense to “mix” the

physical dimensions of the picture plane with the

intensity dimension by transforming one into the other.

But these inconsistencies can be helped by first

introducing a log intensity domain and second making

new definitions for the basic formulas of measuring

angles and distances in the image space.

The log intensity means to divide by a fiducial

intensity and take the logarithm

)
)(

log()(
0I

rI
rz .  (4.7)

A definition very well adapted to the human eye 

functions.

The definition of measurements is not changed,

considering only the picture plane. But if we look at a

plane in the image space perpendicular to the picture

plane, a rotation becomes a shear as shown in Fig. 4.2. 

In geometric algebra one continues to use a description

of rotation as given by (2.9) and (2.10), but the square of

u will be zero instead of -1.



Fig. 4.2 An object is moved through image space

by a parabolic rotation (left). Perpendicular view on

the picture plane (right). Source: [20].

Analyzing the image surface curvature in the image

space gives very natural descriptions of ruts and ridges.

A ridge point, e.g. is “an extremum of (principle)

curvature along the direction of the other (principle)

curvature.” I should be clear that when a curve has one

curvature, a surface (e.g. a saddle) must have two

(principal) curvatures. Fig. 4.3 shows a variety of

common image transformations easily implemented with

our new definition of image space.

Fig. 4.3 Common image transformations. Source: [20].

Top: original, two gradients,  transformation;

middle: intensity scaling, edge burning;

bottom: inversion, dodging and burning, flashing.

Another promising new approach is the structure

multivector which includes information about local

amplitude, local phase, and local geometry of both

intrinsically 1D and 2D signals, isotropous even in 2D. It

gives the proper generalization to the analytic signal

(amplitude+phase) of 1D.[21]

4.2.3 Example 3: Monocular pose estimation[22]

(Conformal) geometric algebra [8,19] can be

successfully used to formalize algebraic embedding of

monocular pose estimation of kinematic chains. This is

helpful for e.g. tracking robot arms or human body

movements. As shown in Fig. 4.4 one relates positions of

a 3D object to a reference camera coordinate system. The

resulting (constraint) equations are compact and clear, 

and easy to linearize and iterate.

Fig. 4.4 Solid lines: camera model, object model, extracted

lines on image plane. Dashed lines: best pose fit. Source: [22].

In a first step the purely kinematic problem of finding

the rotation R and the translation T of the observed model

in Fig. 4.4 is solved by way of exploiting obvious

point-on-line, point-on-plane, and line-on-plane

constraints. Points, lines and planes are defined by the

outer product in (conformal) geometric algeba as 

xeX , (4.8a)

yxeL ,   (4.8b)

zyxeP . (4.8c)

The point-on-plane constraint is e.g. simply given by

0LXXL .  (4.9)

To formulation of a kinematic constraint is now

straightforward by using equation (4.1) for the

displacement D, composed of rotation and translation

0)
~

()
~

( DDXLLDDX .  (4.10)

One now has only to find the best displacement D which

satisfies the constraint (4.10).

Pose estimation of kinematic chains is also evident.

One simply refines the scheme to include internal

displacements. In Fig. 4.4 this can e.g. be internal

rotations changing and



A real application can be seen in Fig. 4.5. The pose of

a doll and the angles of the arms are estimated, by

labeling one point on each kinematic chain segment.

Already few iterations of the linarized problem give a

good estimation of the pose and the kinematic chain

parameters.

Fig. 4.5 The pose of the doll and the angles of the arms

are estimated. Source: [22]. 

This concludes our short tour through the world of

applications of geometric calculus. The literature, the

internet, geometric calculus software, pending patents

[19,23], etc. contain a lot more.

5. Teaching, Research & Development, Marketing

5.1 Teaching of engineering sciences 

Already the teaching of engineering sciences will

benefit greatly from making use of the general geometric

language of geometric calculus. (Linear) algebra and

calculus can be taught in a new unified, easy to 

understand way. Next all of physics is by now

formulated in terms of geometric calculus. [9,12,15,24]

The same applies to basic crystal structures, molecular

interactions, signal theory, etc. Wherever an engineer

employs mechanics, electromagnetism, thermodynamics,

solid state matter theory, quantum theory, etc. it can be

done in one and the same language of geometric calculus

catering for diverse needs. The students will not have to

learn new mathematics, whenever they encounter a

different part of engineering science.

5.2 Research and development

Research and development do already benefit a great

deal from employing geometric calculus. Even the

quaternions [3,10] of Hamilton by themselves are already

of great advantage for aerospace engineering and virtual

reality [11]. Modeling and simulation can now make use

of powerful, new methods. Conference participation

numbers show that computer vision and graphics people

are particularly interested.[18] It also leads to the

development of new and very fast computer algorithms

both for symbolic and numeric calculations.[16,17]

Higher dimensional image geometry may for the first

time ever get a solid theoretical footing, enabling

systematic study and exploration, not just guessing

around.

5.3 Geometric Calculus in Asia?

Both American and European researchers are already

applying for patents [19,23] based on new methods

developed with the help of geometric calculus. In Asia

only few scientists and engineers seem to know about it

or even apply it. A noteworthy exception is now a young

Chinese mathematician [25] highly successful in 

automated theorem proving. He was a student of

Hestenes in Arizona. It seems that the present generation

of foreign Asian students in the Americas and Europe

may be the ones to pave the way for its future in Asia as 

well.

In the poster session, I will demonstrate how to 

visualize geometric calculus with a MATLAB package

developed in Amsterdam and Waterloo.[26] I will also 

demonstrate novel vector field design software, based on

geometric calculus, a joint project by researchers in 

Germany and the US.[27]
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