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This paper introduces to the early pioneers in the field of laminar flow described by the 
Hagen Poiseuille law. After giving some biographical information, the experimental 
setups are briefly explained and the original data are given in the form of diagrams 

scaled to modern units. Then the way of argument of Hagen, Poiseuille, Hagenbach and 
others is reviewed. The early historical development of, corrections to, and the scope 

and limits of the Hagen Poiseuille law receive thus due attention.  
 

Keywords: Hydrodynamics, Laminar Flow, Viscosity, Hagen Poiseuille Flow, Hagenbach 
Correction 

 
I. Introduction 

The fundamental law describing laminar flow in pipes has been discovered 162 
years ago by a German hydraulician G.H.L. Hagen and a French physiologist J.L.M. 
Poiseuille. It is fundamental for all branches of technology and science where laminar 
flow through pipes occurs. It also applies to problems as the blood flow through veins 
and arteries. It has been experimentially confirmed for liquids of a wide range of 
viscosities.  

21 years after its discovery the theoretical explanation was given by E. Hagenbach 
(and F. Neumann). Its limits at the transition to turbulent flow were successfully 
analyzed by the English physicist O. Reynolds 44 years after its discovery. Laminar flow 
in pipes is studied by most students in the world nowadays. It is a beautiful example of 
the agreement of theory and experiment in classical physics.  

This historical review first introduces some of the main players (Hagen, Poiseuille 
and Hagenbach). This selection may be representative, but certainly many other 
hydraulicians and scientists would deserve mentioning in this context [36].  

After giving a short derivation of the Hagen Poiseuille law (HP law) as it is found 
in modern undergraduate text books, old physical units are explained. Then the 
historical experiments by Hagen and by Poiseuille are explained, and the original data 
given in the easy to digest form of diagrams converted to modern international units.  

The last major section reviews the reasoning of Hagen, Poiseuille, Hagenbach and 
others who improved and tested the limits of the HP law in theory and experiment.   

The list of original literature at the end – though far from complete – may give the 
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interested reader an occasion to study the sources himself. For readers of French, 
especially the original works of Poiseuille make a very good, clearly structured reading.   

II. Biographical information 
II.1 Gotthilf Heinrich Ludwig HAGEN 

Gotthilf Heinrich Ludwig Hagen was born on 3rd March 1797 in Königsberg in 
Prussia as son of a local official. In high school his math teacher became interested in 
him and introduced him to higher mathematics. Beginning in 1816 he studied under 
Bessel, doing some astronomic works. He became land surveyor and architect by 1822. 
Hagen hiked on a study trip through the Netherlands, France, Switzerland, Italy and 
Tirol, especially interested in hydraulic structures. He started to work in hydraulics in 
Danzig, Pillau and Berlin (1830), where he worked also for the navy port 
Wilhelmshaven. In 1842 he became member of the Berlin Academy of Science, and in 
1843 honorary doctor at the University of Bonn. Parallel to this career, he worked as a 
teacher for hydraulics, bridge and road construction. He published a “Manual of 
Hydraulics”, and the “Principles of Statistics” and performed hydrodynamic research on 
laminar and turbulent[1] flow. In his very last days he measured the air resistance of 
plane disks. Hagen died on 2nd February 1884. [2] 

II.2 Jean Louis M. POISEUILLE 
Jean Louis M. Poiseuille was born 1799 in Paris. He studied medicine, devoting 

special attention to experimental physiology. The title of his doctoral thesis (1828) read: 
“Research about the force of an aortic heart” for which he received a gold medal by the 
French Academy of Sciences. Also another work “Research about the origin of motion of 
the blood in the veins” (1832) received a prize. In 1839 he published a work entitled: 
“Research about the origin of motion of the blood in the capillary vessels” and in 1840 he 
presented short reports about his “Research on the liquids in pipes of small diameters” 
to the French Academy of Sciences. In 1842 he became a member of the French 
Academy of Medicine. Poiseuille worked as the editor of the “Dictionary of common 
medicine” and finally died on 25th December 1869. [3] 

II.3 Eduard HAGENBACH-BISCHOFF 
Eduard Hagenbach-Bischoff was born on 20th February 1833 in Switzerland as 

son of a professor on church history. He studied in Basel, Berlin, Geneva, Paris 
especially with Merian, Dove, Magnus and Jamin. He became doctor in 1855 and 
started to teach physics and chemistry at the Polytechnic of Basel. In 1859 he became 
professor of mathematics at Basel University and in 1862 for physics. He died on 23rd 
December 1910 in Basel. At Basel University he displayed a certain skill as a science 
organizer.  

Hagenbach researched fluorescence, electric discharging, glaciers and 
hydrodynamics. He theoretically established the Hagen-Poiseuille law and gave first 
considerations to boundary layers with respect to turbulent motion. A smaller work of 
him in hydrodynamics is about a bullet on a water jet.  

III. Modern treatment of the Hagen-Poiseuille law 
The liquid in a pipe sticks to the wall, i.e. v(R)=0 and flows most rapidly in the 

center. The velocity gradient has radial direction. We consider the forces on a coaxial 
liquid volume cylinder of radius r and length l. The net cylinder mantle friction force is 
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This is the modern form of the Hagen-Poiseuille law. [4] 
IV. The historic measurements of Hagen and Poiseuille 

Especially Hagen used outdated physical units when he reported his results [5]. 
Therefore a list of these units together with the modern equivalents is given in Table 1. 
 



value name value name

0 degree Reaumur 0 degree Celsius
80 degree Reaumur 100 degree Celsius

144 Pariser Linien 0,3248 m
1  Pariser Linie 2,26 mm
1 Pariser Fuss 324,8 mm

1 Pariser Zoll 27.066 mm

1 Preussisches Loth 15 g

1 mmHg = 1 Torr 101325/760 Pa (Pascal)
1 cmHg 101325/76 Pa
1 cmH2O 98.0665 Pa

Pressure

Weight

1 Pariser Fuss = 12 Pariser Zoll

old unit new unit

Temperature

Length

 
  Table 1: Old and new physical units. [2,6,7,8,9] 

 
IV.1. The historic measurements of Hagen (1839) 

 
Fig. 1. Experimental setup of Hagen. [2] 

The apparatus used by Hagen [2] is shown in Fig. 1. The letters in Fig. 1 stand for: 
A  test pipe 
B  water pressure cylinder 
C  measuring rod 
D  swimming brass bowl 
E  half cylinder, providing the water for B through a bottom connection 
F  water reservoir 
G  swimming sheet metal case guided by  
H  two vertical wires guiding G 



K  water outflow sheet metal case receiving the out-flowing water 
The measured values of Hagen[2] are displayed in the Figures 2a – 2f. The units 

have been converted to modern metric SI units.  

 
Fig. 2a, T=10.3°C, l=0.47320m, r=0.00128m       Fig. 2b, T=10.5°C, l=1.0897m, r=0.00201m 

  
Fig. 2c, T=8.8°C, l=1.0466m, d=0.0029515m       Fig. 2d, T=7.6°C, l=1.0897m, r=0.00201m 

  
Fig. 2e, T=1.25°C, l=1.0897m, r=0.00201m        Fig. 2f, x: T in °C , y: viscosity η(T) in Pa s 

Fig. 2: Hagen’s measurements (squares) and his quadratic approximation formulas 
(dotted curves) according to [2]. (a-e) x: pressure in Pa, y: flow in kg/s. The solid lines show 
the Hagen-Poiseuille law [5]. (f) viscosity measurements and calculations by Hagen [2], and 
viscosity according to Pery [10]. 

Some discussion of Hagen’s experimental method, his calculations for Fig. 2, his 
theoretical interpretation, and for his version of the Hagen-Poiseuille law will follow in 
section. V.1. 

IV.2. The historic measurements of Poiseuille (1840) 
The apparatus used by Poiseuille[2] is shown in Fig. 3. The letters in Fig. 3 stand 



for: 
M  bulb shaped glas container with a vertical copper 

e
e

c
e
p

m
c
m

 Fig. 3 

pipe on top and three glas pipes emerging from M: 
1. The first pipe is connected with a compressor 

pump 
2. The second with an open manometer 
3. The third with a 60 liter compressed air 

reservoir made of thick copper sheet 
N  conic sink in order to collect impurities 
A   spherical ampoulla 
m,n two levels. The volume between m and n has been 
thoroughly determined in advance. The levels are 
observed through a sliding telescope. Everything below 
m is immerged in a thermal bath for temperature 
stabilization. 

-f  the narrow experimental flow pipe connected to M through a-b-c-d-e 
   spherical widening after which the experimental flow pipe begins 

Poiseuille went through an elaborate quality control program in order to select 
apillary pipes with constant circular cross sections. For measuring the pressure he 
mployed a water manometer, and several mercury manometers depending on the 
ressure range. 

The measured values of Poiseuille [2,11,12,13] are compiled in Fig. 4. Instead of 
illimeters and mmHg, we strictly use meters and Pa, respectively. This should help to 

ompare the measurements of Hagen and Poiseuille with each other and with modern 
easurements.  

  
Fig. 4a, 1/time ~ pressure, three different pipes.               Fig. 4b 1/time ~ pressure 



  
Fig. 4c, 1/time ~ pressure                Fig. 4d, log-log plot: (diameter)4 to flow 

  
Fig. 4e, time ~ length for three different diametres            Fig. 4f, water viscosity η(T) 

Fig. 4 Measurements of Poiseuille. (a-c) 1/time proportional pressure, x: pressure in Pa, y: 
1/time in 1/s.[2,11,13] (a) squares: length l=0.0758m, diameter d=0.000142 m, triangles: l=0.07505m, 
d=0.000113m, diamonds: l=0.050225m, d=0.000043m. (b) l=0.00210m, d=0.000029m. (c) l=0.364m, 
d=0.0001316m. (d) x: log10(d in m), y: log10(flow in kg/s) showing the proportionality 
flow~d4.[11,13,2] (e) time of flow proportional length, squares: d=0.000085m, triangles: 
d=0.000029m, diamonds, d=0.00001394m, x: length in m, y: time of flow of same ampulla volume in 
s.[11] (f) water viscosity η(T) [12,13,2], x: T in °C, y: η in Pa s, the solid curve η(T) according to Pery 
[10].  

V. The reasonings of Hagen, Poiseuille, Hagenbach and others 
V.1. The arguments of Hagen 

Hagen starts by referring to even earlier research by Gestner in 1796 [14] by 
Prony in 1804 [15] and Eytelwein in 1814/15 [16]. He remarks that he is limiting his 
research to laminar flow and continues then to give a detailed technical description of 
his experimental apparatus, part of which is shown in Fig. 1. He measured temperature 
in °Reaumur, length in Parisian inches and Parisian lines, and mass in terms of  the 
Prussian Lot. He seemed to be not to critical about the quality of the pipes he used, he 
rather determined their inner volume with a scale (filled minus empty).  

After conducting five experiments with three pipes of varying diameter, length 
and temperature (comp. Fig. 2a-e), he fitted quadratic approximations for the pressure 
in terms of the flow (dotted curves in Fig. 2a-e). In the second half of his paper he 
exclusively concentrates on arguing with the approximation coefficients. Hagen 
remarks that especially the linear coefficient exhibits a strong temperature dependence.  

He explains the quadratic coefficient to be due to the acceleration of the water. He 



rightly says that the water in the center is faster than the water at the pipe wall, but as 
we saw in section III, his assumption of a conic as opposed to parabolic velocity profile 
was premature.  

The last third of his paper concentrates on the linear coefficient, which 
corresponds to the linear term of the Hagen-Poiseuille law (HP law). Here he first 
establishes the temperature dependence of the linear coefficient, which is equivalent to 
determining the temperature dependence of the viscosity η(T). Next he tries to explain 
the dependence on the radius of the pipe with an integer exponent, which he concludes 
to be –4. In the following theoretical consideration, he obtains the right dependencies 
([2], p. 88), but with wrong numeric factors due to his conic velocity profile. As in section 
III he also tries to analyze the friction forces on thin coaxial water cylinders.  

Hagen finishes his considerations by remarking what influence turbulence will 
have in bigger pipes. He later devoted more research to this [17].  

V.2. The arguments of Poiseuille 
     The early works of Poiseuille were published in the reports (Compte Rendu) of the 
French Academy of Sciences in four parts. The first three parts are his own research 
divided into four sections: on the influence of the pressure[11], the length[11], the 
diameter[11] in 1840, and the fourth section on the temperature[12] in 1841, 
respectively. The fourth part is a report by a commission of four French researchers 
Arago, Babinet, Piobert and Regnault, who had to rigorously verify Poiseuilles results, 
published in 1844. L. Schiller reprinted it in 1933 together with Hagen’s and 
Hagenbach’s papers [2].  

Poiseuille starts off by referring to earlier works of Prony, Bossut, Couplet, 
Dubuat[18], Gerstner[19], Girard[20] and Navier. He states that he has a strong 
physiologically motivated interest in the flow through pipes with diameters less than 
0.01mm (20 times smaller than Hagen’s narrowest pipe).  

In his first section on the pressure he extends the experiments of Hagen to 
pressures 200 times higher values of the pressure. As section IV.2 shows he used 
technically more advanced equipment. Whilst Hagen’s smallest and longest pipe differ 
just by a factor of two, this factor is 50 for Poiseuille’s pipes. The thermal bath (legend to 
Fig. 3) gives Poiseuille the advantage, that he was able to operate at well defined 
temperatures. He concludes that the flow must be directly proportional to the pressure 
difference (see Fig. 4a-c). At the end of the first section he makes a remarks about the 
lower length limit for laminar flow.  

In the section on the length, he keeps pressure, total flow volume and temperature 
constant. He used the technique of taking a long pipe and chopping of portions until the 
lower limit for laminar flow is reached. He concludes that the flow must be inversely 
proportional to the length of the pipe (see Fig. 4e).  

He then keeps pressure, temperature, total flow volume and length constant and 
investigates pipes of different diameters (see Fig. 4d). He notes that his result of the 
flow through capillary pipes shows the proportionality of the flow to the 4th power of the 
diameter and not the square, as derived earlier by Navier.  

In his final section on the temperature dependence of the proportionality 
relationship he steps the temperature in steps of five °C from 0 to 45°C. He carefully 
takes the volume variations of the ampulla between the levels m and n in Fig. 3 into 



account. The reasonable agreement of his quadratic approximation in the temperature 
with modern values is shown in Fig. 4f.  

In the report on their examination of Poiseuilles research, Arago, Babinet, Piobert 
and Regnault give a more detailed description of previous works and of Poiseuilles 
experimental apparatus. They point out that previous works didn’t find the d4 
dependence, since they operated with lengths below the laminar flow limit. The explain 
in detail why the influence of density variations of water with temperature is negligible. 
New experimental results of Poiseuille about the influence of admixture of pure alcohol, 
using pure ethanol itself or mercury were also included in the report. The four 
examiners seem also to have undertaken a number of experiments themselves in order 
to verify Poiseuilles claims.  

V.3. The arguments of Hagenbach 
Hagenbach’s focus [21,2] is on viscosity. Up till 1860 it were experimentalists 

rather than theorists who introduced it. Hagenbach discards the treatment for velocity 
in the cases of plates vibrating in liquids or liquids oscillating in U-shaped pipes as 
mathematically too complicated. Thus he is left with the simple flow through pipes and 
he further restricts himself to liquids that wet the pipe wall. As Wiedemann before (see  
the next subsection) he analyzes the motion in terms of coaxial liquid cylinders with 
mantle thicknesses of molecular diameters. Yet as Schiller [2] remarks, this latter 
choice is not really essential. Hagenbach shows that a finite adhesive force between 
liquid and boundary wall necessitates v(R)=0 (boundary condition of section III.)  

Hagenbach goes on to explicitly acknowledge the convincing agreement of 
Poiseuilles experiments [11,12,13,2] with the Hagen-Poiseuille law as stated in section 
III. His own experiments (conducted in Wiedemann’s laboratory) serve him rather to get 
an insight in the practical circumstances of such measurements and to get data for 
relatively short pipes, where the HP law as originally given by Poiseuille fails. After this 
reassurance of the theoretical and practical aspects of the HP law, he uses it to define 
the viscosity η as: 

tlV
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He then derives an expression for the case that the kinetic energy of the moving 
liquid itself is not negligible: 
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The expressions given by Hagenbach himself missed a factor of 21/3 in the Ansatz for the 
kinetic energy, as remarked by Schiller[2]. This is the reason for the slight differences in 
exponents of 2 compared with the formulas in Hagenbach’s original publication [21,2]. 
Schiller’s annotations to the rest of Hagenbach’s paper [2] show that this 21/3 factor 
further improves the agreement between experiment and theory. The second term in the 



equation for η is called kinetic correction or Hagenbach correction[22]. It has even 
become part of a German Industrial Norm [23] for correctly measuring viscosity. 

Next Hagenbach uses the improved formula for η to show that it is more 
appropriate for shorter pipes by recalculating the previous experiments. He then 
applies the new formula for η also to past measurements of Poiseuille and Hagen, 
clearly improving their agreement with the theory, i.e. η(T)=const. for constant 
temperature T. Poiseuille used glass pipes and Hagen copper pipes. That η doesn’t 
depend on that demonstrates that the flow is governed by internal cohesion forces and 
not by adhesive wall forces, once the boundary layer with v(R)=0 has developed.  

Hagenbach goes on to compare his formula with the quadratic approximation 
formula of Hagen. Schiller remarks that taking the correct 21/3 factor into account 
brings both formulas into reasonable agreement.  

In the final quarter of his paper, Hagenbach analyzes measurements for wide 
pipes previously conducted by Dubuat [24] and Darcy [25]. He mentions that 
engineering formulas by Gerstner[26], Prony[15], Eytelwein[27] and Weisbach[28] apply, 
but fail to give a microscopic explanation. Hagenbach now assumes a material 
dependent turbulent flow resistance proportional to the square of the velocity:  av2. 
The resulting differential equation for v is non-trivial. He therefore just treats the case 
for strong turbulence (large a). He argues that the parabolic velocity profile should 
deform into an elliptic one.  

With this in hand, he takes wide pipe measurements by Darcy[25], inserts the 
viscosity obtained by interpolation from other measurements of Poiseuille and 
calculates the turbulence resistance coefficient a. a varies only 3% around a constant 
value. In a final step Hagenbach compares his elliptic velocity distribution with a 
velocity distribution observed by Darcy[29] with a Pitot pipe. This shows that close to 
the wall, the elliptic velocity distribution needs to be heightened.  

It may be interesting to remark that it seems that an error free derivation of the 
kinematic correction has first to been given by another physicist, Franz Neumann 
(Königsberg, 1798-1895) [2,35].  

V.4. Wiedemann, Glaser and Schiller 
Wiedemann[30], in whose laboratory Hagenbach is working, is motivated to find 

the force necessary to drive an electrolyte through porous clay. He views it as a system 
of capillaries. Assuming viscosity to be the force necessary to pull one liquid molecule 
past another, he deduces the HP law in fairly the same way as in section III.  

He conducts a series of measurements with the same experimental geometry, but 
varying electrolytes: sulfuric acidic copper oxide, nitrous acidic copper oxide, nitrous 
acidic silver oxide, sulfuric acid, potassium, nitrous acidic ammonia. The temperatures 
in his experiments range between 14 and 20 °C, except for the sulfuric acidic copper 
oxide (T between 15°C and 74°C).  

He observes that the viscosity increases stronger than the salt concentration. 
Something, which is especially valid for sulfuric acid. The only exception is nitrous 
acidic ammonia, with declining viscosity for increasing salt concentrations. Wiedemann 
remarks (giving explicit values for sulfuric copper oxide), that in general increase of 
temperature strongly reduces the viscosity.  

Heinrich Glaser [31] looks at the validity of the HP law including the kinetic 



correction given by Hagenbach (section V.3.) for a wide range of viscosity values. In 
order to do that he mixes turpentine oil (low viscosity) and colophony (high viscosity) in 
varying concentrations. He refers to a work by R. Reiger [32] showing the validity of the 
HP law for high viscosities η(T)=4×106Pa s up to 1012Pa s, at temperatures of 8.2°C to 
9.0°C. Then Glaser quotes the viscosity formula of Hagenbach, including the kinematic 
correction and briefly explains about Reynolds [33] distinction between laminar and 
turbulent flow.  

For turpentine oil he measures the viscosity for temperatures from 0 to 85°C in 
steps of 5°C. He then looked for limits to the validity of the HP law. In the range of 5 to 
23.5 hPa (hecto Pascal) he finds no deviation but remarks on changes of the viscosity 
under very high pressures. At a pipe radius of 0.29mm he finds a lower limit of l=60mm 
for the validity of the kinematically corrected HP law (p=139 hPa, T=7.1°C). For pipes of 
fixed length=151mm with T=7.1°C and p=139 hPa, he varies the radius and finds that 
the HP law is valid up to R=0.4mm. He concludes that the validity of the HP law 
depends foremost on the pipe radius.  

Then Glaser turns to mixtures of turpentine oil and colophony. He measures the 
viscosity for colophony concentrations from 0 to 100%. He finds that η increases rapidly, 
especially for higher concentrations of colophony (100%: η(7.1°C)=1021Pas). He then tries 
to test the HP law for 80% colophony with η=108Pa s. For a pipe of R=4.9mm and 
l=105mm, he finds the law valid for all pressures (1.3×104 to 2.13×105 Pa s). For pipes of 
R=4.9mm, p=1925hPa and T=11.5°C he finds the HP law valid for all measured lengths 
(l=24mm to 206mm). It seems to him for such high values of η no lower length limit 
exists.  

Operating at T=11.7°C and p=1925hPa he found (for 80% colophony) the HP law 
valid even for a radius as big as 15.2mm. At such high viscosities no turbulence 
developed. Glaser also tried to find a lower radial limit. For lengths around 150 to 
250mm he found lower radial limits of R=1mm (η=108Pas), R=5mm (η=1010Pas) and 
R=10mm (η=1012Pas). Down to these radii the HP law proved valid, below them, 
η increased rapidly and the flow eventually stopped. Glaser further conducted 
experiments just at the lower radius limit and just below it at a low pressure of only 
251hPa. After waiting up to two days, he found the HP law again valid. As an 
explanation for this strong radius dependence of η, he quoted Maxwell’s relaxation 
hypothesis [34]: 

R
a

−
=
1

' ηη , 

where η’ is the viscosity to be used in the HP law for pipes of radius R, and a is a 
constant depending on the elastic properties of wall and liquid, and on dimensions of the 
wall. η is the true viscosity. 

 Through his experiments Glaser confirmed the HP law even for very high 
viscosities. It may be of interest to know that Glaser was a student of Wiedemann as 
well.  

L. Schiller edited and commented three works of Hagen, Poiseuille and 
Hagenbach in 1933 [2]. His comments contain valuable corrections and information. He 



emphasizes the importance of Hagen’s work. Maybe because of his time and because 
before him people like Hagenbach had called the HP law simply Poiseuille’s law, 
omitting the name of Hagen. Schiller’s own works are referred to in [2]. 

VI. Conclusion 
This review concentrated on selected historical papers concerned with the HP flow. 

After giving some biographical background information about Hagen, Poiseuille and 
Hagenbach, the original experiments were shown. Then I presented the original data of 
Hagen and of Poiseuille in the form of diagrams. Following this I presented the main 
ideas of Hagen, Poiseuille, Hagenbach and a few other early researchers. The major 
achievements in this field seem all to have been arrived at during the course of the 44 
years between the discoveries of Hagen and Poiseuille and the successful distinction of 
laminar and turbulent flow by O. Reynolds in 1883. The HP law keeps to be 
fundamental for many aspects of our daily life as well as for future technological 
developments. The laws of laminar flow are nowadays well understood, whereas the 
theory of turbulence is yet an open and vibrant field of research.  
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