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In this paper, it is shown how continuous Clifford Cl3,0-valued admissible wavelets can
be constructed using the similitude group SIM(3), a subgroup of the affine group of R3.

We express the admissibility condition in terms of a Cl3,0 Clifford Fourier transform
and then derive a set of important properties such as dilation, translation and rotation

covariance, a reproducing kernel, and show how to invert the Clifford wavelet transform of

multivector functions. We invent a generalized Clifford wavelet uncertainty principle. For
scalar admissibility constant it sets bounds of accuracy in multivector wavelet signal and

image processing. As concrete example we introduce multivector Clifford Gabor wavelets,

and describe important properties such as the Clifford Gabor transform isometry, a
reconstruction formula, and an uncertainty principle for Clifford Gabor wavelets.
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1. Introduction

Transformations such as the Fourier transformation are powerful methods for signal
representations and feature detection in signals. The signals are transformed from
the original domain to the spectral or frequency domain. In the frequency domain
many characteristics of a signal are seen more clearly. In contrast to the Fourier
kernel, wavelet basis functions are localized in both spatial and frequency domains
and thus yield very sparse and well-structured representations of piecewise smooth
signals (signals that are smooth except for a finite number of discontinuous jumps),
important facts from a signal processing point of view.
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On the other hand Clifford geometric algebra leads to the consequent
generalization1 of real and harmonic analysis to higher dimensions. Clifford alge-
bra accurately treats geometric entities depending on their dimension as scalars,
vectors, bivectors (plane area elements), and volume elements, etc. The distinction
of axial and polar vectors in physics, e.g. is resolved in the form of vectors and
bivectors. The quaternion description of rotations2 is fully incorporated in the form
of rotors. With respect to the geometric product of vectors division by non-zero
vectors is defined. Clifford algebra has applications in signal and image processing.3

This motivated Mitrea4 to generalize discrete real wavelets to discrete Clifford al-
gebra wavelets. Some properties of these extended wavelets were also demonstrated.
This first work was then followed by Brackx and Sommen5,6 who proposed an ex-
tension of real wavelets to the Clifford algebra Cl0,n called the continuous Clifford
wavelet transform. This approach used a group composed of dilations, translations
and the Spin-group. Quaternion (Cl0,2) wavelets have been studied by Zhao and
Peng, 7 and applied by Bayro-Corrochano.8

Zhao9 also constructed continuous Clifford algebra Cl0,n-valued wavelets using
the semi-direct product of closed GL(n,R) subgroups with the translation subgroup
of Rn. Some properties of these extended wavelets were investigated using the clas-
sical Fourier transform. The main differences of our present work and Zhao’s work
are

• the specification and implementation of the underlying transformation
group

• the signature of the Clifford algebra
• the use of a Clifford Fourier transformation instead of a mere complex

Fourier transformation
• a detailed investigation of the multivector algebra properties of the admis-

sibility constant, including a nontrivial condition on its scalar and vector
parts

• the derivation of wavelet uncertainty inequalities.

The purpose of this paper is to construct Clifford algebra Cl3,0-valued wavelets using
the similitude group SIM(3) and then give a detailed explanation of their properties
using the Clifford Fourier transform (CFT) described in 10, 11, 12. This form of
the CFT has e.g. also been applied by Felsberg 13 as a way to compute monogenic
signalsa. Other variants of the CFT were introduced by Brackx et al. 1 who extended
the Fourier transform to multivector valued function-distributions in Cl0,n with
compact support. A related applied approach for hypercomplex Clifford Fourier
transformations in Cl0,n was followed by Bülow et al 14. Ell and Sangwine 15,16

and Le Bihan et al 17 introduced and applied a quaternion Fourier transformationb

aMonogenic signals are a two-dimensional analogue of the complex analytic signal. They allow to
extract a local phase amplitude and a local phase vector for two-dimensional images. 13

bNote that the quaternion algebra is isomorphic to the Clifford algebra Cl0,2.
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(QFT) for (color) image and signal processing. Buelow 3 used quaternionic Gabor
filters based on the QFT to introduce a local quaternionic phase for two-dimensional
images. Hitzer 18 deepened the algebraic and geometric properties of the QFT, and
generalized the QFT to higher dimensional Clifford Fourier transformations.

These enormous conceptual and practical benefits of using CFTs compared to
mere complex Fourier transformations should suffice to warrant the full use of the
Clifford geometric algebra framework in wavelet analysis as well. We further empha-
size the rigorous derivation of results because the use of non-commutative Clifford
algebra in wavelet theory is a non-trivial step compared to commutative complex
wavelet theory.

Based on the uncertainty principle for the CFT we derive a generalized Clifford
wavelet uncertainty principle. For scalar admissibility constant the interpretation
of this uncertainty principle proceeds as usual.

As a concrete example we generalize complex Gabor wavelets to multivector
Clifford Gabor wavelets. Next, we describe some of their important properties and
we consequently establish an uncertainty principle for Clifford Gabor wavelets.

The outline of this paper is as follows. In section 2, we briefly review Clifford
algebra, the CFT, and the similitude group SIM(3). In section 3, we discuss the
basic ideas for constructing the Clifford algebra wavelet transform. We then de-
rive important properties of our newly constructed wavelet transform. In section
4, we show how to derive the generalized Clifford wavelet uncertainty principle.
In section 5, we present the example of multivector Gabor wavelets and show to
what extent the properties of these Clifford Gabor wavelets resemble that of real
wavelets. Finally, the uncertainty principle for the Clifford Gabor wavelet transform
is presented.

2. Basics: Clifford algebra, Clifford Fourier transform, similitude
group

This section introduces the basic concepts1,19,20,21 of the Clifford geometric algebra
Cl3,0 and its Clifford Fourier transform 10,11,12. We also recall the similitude group
SIM(3) and its properties from the viewpoint of wavelets.

2.1. Real Clifford Algebra Cl3,0

Let us briefly review some basic facts of the Clifford geometric algebra Cl3,0 of R3

(for more details see 1, 19, 20 and 21). Let {e1, e2, e3} be an orthonormal basis of
the real 3D Euclidean vector space R3. The associative geometric multiplication of
the basis vectors is governed by

e2
k = 1, ek el = −el ek for l 6= k, k, l = 1, 2, 3. (2.1)

The Clifford geometric algebra over R3 denoted by Cl3,0 then has the graded 23 = 8-
dimensional basis

{1, e1, e2, e3, e12, e31, e23, e123}, (2.2)
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Table 1. Cl3,0 basis in terms of real and dual vectors and scalars, reverted basis, ordered by grade.

Grade Name Basis Reverted Basis

0 real scalar 1 1
1 real vectors {e1, e2, e3} {e1, e2, e3}
2 bivectors / dual vectors {i3e1, i3e2, i3e3} {−i3e1,−i3e2,−i3e3}
3 trivector / dual scalar i3 −i3

where 1 is the real scalar identity element (grade 0), e1, e2, e3 ∈ R3 are vectors
(grade 1),

e12 = e1e2 = i3e3, e31 = e3e1 = i3e2, e23 = e2e3 = i3e1 (2.3)

are a basis of bivectors (grade 2), and

e123 = e1e2e3 = i3, i23 = −1 (2.4)

defines the unit oriented pseudoscalarc (grade 3), i.e. the highest grade blade ele-
ment in Cl3,0. i3 is central in Cl3,0. These properties allow us to rewrite the basis
multivectors in terms of e1, e2, e3, and i3 as in table 1.

The general elements of a geometric algebra are called multivectors. Every mul-
tivector f ∈ Cl3,0 can be expressed as

f =
∑
A

fAeA, fA ∈ R, A ∈ {0, 1, 2, 3, 12, 31, 23, 123}. (2.5)

The reverse f̃ (i.e. vector factors in reverse order) of a multivector f (an anti-
automorphism that corresponds to complex conjugation in table 1) is given by

f̃ =
∑
A

fAẽA = 〈f〉0 + 〈f〉1 − 〈f〉2 − 〈f〉3, (2.6)

where 〈. . .〉k indicates grade k selection. Note that we often write 〈. . .〉 for 〈. . .〉0.
The symmetric scalar productd of multivectors f, g̃ is defined as the scalar (grade

0, indicated by 〈. . .〉0 = 〈. . .〉) part of the geometric product fg̃ of multivectors

f ∗ g̃ = 〈fg̃〉0 =
∑
A

fAgA. (2.7)

The modulus (or magnitude) |f | of a multivector f ∈ Cl3,0 is defined as

|f |2 = f ∗ f̃ =
∑
A

f2
A . (2.8)

cOther names in use are dual scalar, trivector or unit oriented volume element.
dThe use of the ∗ symbol for the scalar product is well-established standard in Clifford geometric

algebra literature 21.
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Replacing in (2.5) the real components fA by real functions fA(x),x ∈ R3 yields
a multivector-valued function f : R3 → Cl3,0 of the form

f(x) =
∑
A

fA(x)eA. (2.9)

It is convenient to introduce an inner product of R3 → Cl3,0 functions f, g as
follows

(f, g)L2(R3;Cl3,0) =
∫

R3
f(x)g̃(x) d3x =

∑
A,B

eAẽB

∫
R3
fA(x)gB(x) d3x. (2.10)

Note thate

d3x =
dx1 ∧ dx2 ∧ dx3

i3
(2.11)

is scalar valued (dxk = dxkek, k = 1, 2, 3, no summation). In (2.10) the inner
product ( , )L2(R3;Cl3,0) satisfies the following conditions1

(f, g + h)L2(R3;Cl3,0) = (f, g)L2(R3;Cl3,0) + (f, h)L2(R3;Cl3,0),

(f, λg)L2(R3;Cl3,0) = (f, g)L2(R3;Cl3,0)λ̃,

(fλ, g)L2(R3;Cl3,0) = (f, gλ̃)L2(R3;Cl3,0),

(f, g)L2(R3;Cl3,0) = (̃g, f)L2(R3;Cl3,0)
. (2.12)

where f, g ∈ L2(R3;Cl3,0), and the constant multivector λ ∈ Cl3,0. The scalar part
of the inner product gives the L2-norm

‖f‖2
L2(R3;Cl3,0)

=
〈
(f, f)L2(R3;Cl3,0)

〉
=
∫

R3
f(x) ∗ f̃(x)d3x

(2.7)
=
∫

R3

∑
A

f2
A(x)d3x. (2.13)

In particular for g = af, f, g ∈ L2(R3;Cl3,0), a ∈ R3 we get because of 〈af ãf〉0 =
〈aff̃a〉0 = 〈a2ff̃〉0 = a2f ∗ f

‖af‖2
L2(R3;Cl3,0)

=
∫

R3
a2f(x) ∗ f̃(x)d3x =

∫
R3

a2
∑
A

f2
A(x)d3x. (2.14)

Definition 2.1 (Clifford module). Let Cl3,0 be the real Clifford algebra of 3D
Euclidean space R3. A Clifford algebra module L2(R3;Cl3,0) is defined by

L2(R3;Cl3,0) = {f : R3 −→ Cl3,0 | ‖f‖L2(R3;Cl3,0) <∞}. (2.15)

eThe division by the geometric algebra unit volume element i3 in (2.11) to obtain a scalar infini-

tesimal volume is a matter of choice. Defining instead the pseudoscalar d3xp = dx1 ∧ dx2 ∧ dx3

would work equally well. It would simply mean, that all integrals using d3xp instead of d3x in

this paper would have to be multiplied by −i3 = 1
i3

, which is central in Cl3,0.
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2.2. Cl3,0 Clifford Fourier Transform (CFT)

Let us first define10,11,12 the Clifford Fourier transform (CFT) on L2(R3;Cl3,0) as
follows

Definition 2.2 (Clifford Fourier transform (CFT)). The Clifford Fourier
transform (CFT) of f(x) ∈ L2(R3;Cl3,0), with

∫
R3 |f(x)|d3x < ∞ is the function

F{f}: R3 → Cl3,0 given by

F{f}(ω) = f̂(ω) =
∫

R3
f(x) e−i3ω·x d3x, (2.16)

where ω ∈ R3, ω · x = ω ∗ x = ω1x1 + ω2x2 + ω3x3.

Because i3 is central in Cl3,0, the Clifford Fourier kernel e−i3ω·x will also com-
mute with every multivector of Cl3,0.

Theorem 2.1 (Inverse CFT). The Clifford Fourier transform F{f} of f ∈
L2(R3;Cl3,0) with

∫
R3 |f(x)|d3x <∞ is invertible with inverse

F−1[F{f}](x) = f(x) =
1

(2π)3

∫
R3
F{f}(ω) ei3ω·x d3ω. (2.17)

The following theorem shows that a rotation of the argument of f leads to the
same rotation of the argument of F{f} (see table 2).

Theorem 2.2 (Rotation property). If rθ ∈ S0(3), then the Clifford Fourier
transform of f(r−1

θ
(x)) is given by

F{f(r−1

θ
(.))}(ω) = F{f}(r−1

θ
(ω)), ω ∈ R3. (2.18)

Proof Equation (2.16) immediately gives

F{f(r−1

θ
(.))}(ω) =

∫
R3
f(r−1

θ
(x))e−i3ω·x d3x

=
∫

R3
f(y)e−i3ω·(rθy) det(rθ) d3y

=
∫

R3
f(y)e

−i3(r
−1

θ
ω) · y

d3y. (2.19)

�
Table 2 summarizes basic properties of the CFT. See 11 for more details and

proofs.

2.3. Similitude group

We consider the similitude group SIM (3) denoted by G, a subgroup of the affine
group of motion on R3 associated with wavelets as follows (for more details see 23)

G = R+ × SO(3)⊗ R3 = {(a, rθ, b)|a ∈ R+, rθ ∈ SO(3), b ∈ R3}, (2.20)
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Table 2. Properties of the Clifford Fourier transform (CFT)

Property Multivector
function

Clifford Fourier transform

Linearity αf(x) + β g(x) αF{f}(ω) + βF{g}(ω)
constants α, β ∈ Cl3,0

Delay f(x− a) e−i3ω·aF{f}(ω)
Shift ei3ω0·xf(x) F{f}(ω − ω0), ω0 ∈ R3

Scaling f(ax) 1
|a|3F{f}(

ω
a ), a ∈ R \ {0}

Rotation f(r−1

θ
(x)) F{f}(r−1

θ
(ω))

Convolution [f?g](x) F{f}(ω)F{g}(ω)
Planch. Th. (f1, f2)L2(R3;Cl3,0) = 1

(2π)3 (F{f1},F{f2})L2(R3;Cl3,0)

Parseval Th. ‖f‖L2(R3;Cl3,0) = 1

(2π)
3
2
‖F{f}‖L2(R3;Cl3,0)

Gaussian e−(ax)2/2 (2π)3/2|a|−3e−(ω/a)2/2

where SO(3) is the special orthogonal group of R3, and θ = (θ1, θ2, θ3) with
θ1 ∈ [0, π], θ2, θ3 ∈ [0, 2π]. Instead of (a, rθ, b) we often write simply (a,θ, b). More
precisely, we represent SO(3) of R3 by rotors R

SO(3) = {r | r(x) = R̃xR,R ∈ Cl+3,0/{±1}, R̃R = RR̃ = 1}. (2.21)

Any r ∈ SO(3) has a unique Euler angle representation with rotors of the form

R = Rz(θ3)Ry(θ1)Rz(θ2), (2.22)

where Rz, Ry denote rotors about the z- and y-axes, respectively. Note that the
group G includes dilations, rotations and translations. The representation defined
by (2.20) is consistent with the group action (a,θ, b) on R3 as follows

(a,θ, b) : R3 → R3

x 7→ aR̃(θ)xR(θ) + b. (2.23)

The above leads to two important propositions.

Proposition 2.1. With respect to the representation defined by (2.20), G is a non-
abelian group in which (1, 1, 0) and (a−1, r−1,−a−1r−1(b) = −RbR̃/a) are its iden-
tity element and inverse element, respectively.

Proposition 2.2. The left Haar measuref on G (see 24) is given by

dλ(a,θ, b) = dµ(a,θ)d3b,

dµ(a,θ) =
dadθ

a4
, dθ =

1
8π2

sin θ1dθ1dθ2dθ3, (2.24)

fThe right Haar measure on G is dδ(a, θ, b) = dadθ
a

d3b.
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where dθ is the Haar measure on SO(3) (see 25).

We often abbreviate dµ = dµ(a,θ), dλ = dλ(a,θ, b). Similar to (2.10) the inner
product of f(a,θ, b), g(a,θ, b) ∈ L2(G;Cl3,0) is defined by

(f, g)L2(G;Cl3,0) =
∫
G
f(a,θ, b) ˜g(a,θ, b) dλ(a,θ, b), (2.25)

and its associated scalar norm

‖f‖2
L2(G;Cl3,0)

=
〈
(f, f)L2(G;Cl3,0)

〉
=
∫
G
f(a,θ, b) ∗ f̃(a,θ, b)dµ. (2.26)

3. Clifford algebra Cl3,0-valued wavelet transform

3.1. Basics

Based on the concepts of Clifford algebra, one can extend the real continuous wavelet
transform to a continuous Clifford wavelet transform. This section constructs the
Clifford algebra Cl3,0-valued wavelets from a group theoretical point of view. We
will see how some properties of the classical wavelet transform are extended in the
new construction. In particular we look at the admissibility condition, inner product
and norm identities, and a reproducing kernel. We define the unitary linear operator

Ua,θ,b : L2(R3;Cl3,0) −→ L2(G;Cl3,0)

ψ(x) −→ Ua,θ,b ψ(x) = ψa,θ,b(x)

=
1
a3/2

ψ(r−1

θ
(
x− b

a
)). (3.1)

The family of wavelets ψa,θ,b are so-called daughter Clifford wavelets with a ∈
R+ as dilation parameter, b ∈ R3 as the translation vector parameter, and θ as
the SO(3) rotation parameters. The normalization constant a−3/2 ensures that the
norm of ψa,θ,b is independent of a, i.e.

‖ψa,θ,b‖L2(R3;Cl3,0) = ||ψ||L2(R3;Cl3,0). (3.2)

This can be seen from

‖ψ
a,θ,b‖

2
L2(R3;Cl3,0)

=
∫

R3

∑
A

1
a3
ψ2
A(r−1

θ
(
x− b

a
)) d3x

=
1
a3

∫
R3

∑
A

ψ2
A(z)a3 det(rθ) d3z

=
∫

R3

∑
A

ψ2
A(z) d3z. (3.3)

Applying (2.13) to the last line of (3.3), we obtain the desired result. �
In the Cl3,0 Clifford Fourier domain, equation (3.1) can be represented in the

form
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F{ψa,θ,b}(ω) = e−i3b·ωa
3
2 ψ̂(ar−1

θ
(ω)). (3.4)

Substituting (x− b)/a = y for the argument of (3.1) under the CFT integral of
(3.4) gives

F{ψa,θ,b}(ω) =
∫

R3

1
a

3
2
ψ(r−1

θ
y)e−i3ω·(b+ ay)a3 d3y

= e−i3b·ωa
3
2

∫
R3
ψ(r−1

θ
y)e−i3aω · y d3y

= e−i3b·ωa
3
2 ψ̂(ar−1

θ
(ω)).

�

3.2. Admissibility

In analogy to Zhao9 we call ψ ∈ L2(R3;Cl3,0) admissible wavelet if

Cψ =
∫

R+

∫
S0(3)

a3{ψ̂(ar−1

θ
(ω))}∼ ψ̂(ar−1

θ
(ω)) dµ, (3.5)

is an invertible multivector constant and finite at a.e. ω ∈ R3. The admissibility
condition is important to guarantee that the Clifford wavelet transform is invertible
as we will see later. We notice that for ω = 0 we get ψ̂(0) =

∫
R3 ψ(x)ei30·x d3x = 0

for the scalar part of Cψ to be finite. Therefore, like classical wavelets (see 26), an
admissible Clifford-valued mother wavelet ψ ∈ L2(R3;Cl3,0) has to satisfy∫

R3
ψ(x) d3x =

∫
R3
ψA(x)eA d3x = 0, (3.6)

where ψA(x) are real-valued wavelets. It means that the integral of every component
ψA of the Clifford mother wavelet is zero:

∫
R3 ψA(x)d3x = 0. The admissibility

constant (3.5) can be simplified to

Cψ =
∫

R3

˜̂
ψ(ξ)ψ̂(ξ)
|ξ|3

d3ξ. (3.7)

According to (3.5) or (3.7) it is not difficult to see with (2.6) that Cψ = C̃ψ.
Consequently, we have

Cψ = 〈Cψ〉+ 〈Cψ〉1, (3.8)

with positive scalar part (〈Cψ〉 > 0)

〈Cψ〉 =
∫

R3
〈{ψ̂(ξ)}∼ψ̂(ξ)〉 1

|ξ|3
dξ3 =

∫
R3

|ψ̂(ξ)|2

|ξ|3
dξ3 =

∥∥∥ |ξ|−3/2 ψ̂(ξ)
∥∥∥
L2(R3;Cl3,0)

=
∫

R3
[〈ψ̂(ξ)〉2 + 〈ψ̂(ξ)〉21 − 〈ψ̂(ξ)〉22 − 〈ψ̂(ξ)〉23]

1
|ξ|3

dξ3, (3.9)
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and vector part

〈Cψ〉1 =
∫

R3
〈{ψ̂(ξ)}∼ψ̂(ξ)〉1

1
|ξ|3

dξ3 (3.10)

=
∫

R3
[〈ψ̂(ξ)〉〈ψ̂(ξ)〉1 + 〈ψ̂(ξ)〉1 · 〈ψ̂(ξ)〉2 − 〈ψ̂(ξ)〉2 · 〈ψ̂(ξ)〉3]

1
|ξ|3

dξ3,

where the dot · indicates the Hestenes inner product 21 or left contraction 22. The
inverse of Cψ is given by

C−1
ψ =

〈Cψ〉 − 〈Cψ〉1
〈Cψ〉2 − 〈Cψ〉21

. (3.11)

This leads to the following theorem.

Theorem 3.1 (Admissibility). The admissibility constant defined by (3.5) is
invertible as in (3.11) if and only if

|Cψ| <∞ and 〈Cψ〉21 6= 〈Cψ〉2. (3.12)

3.3. Clifford Wavelet Transform

Definition 3.1 (Clifford wavelet transform). We define the Clifford wavelet
transform with respect to the mother wavelet ψ ∈ L2(R3;Cl3,0) as follows

Tψ : L2(R3;Cl3,0) → L2(G;Cl3,0)

f → Tψf(a,θ, b) =
∫

R3
f(x) ˜ψa,θ,b(x) d3x

= (f, ψa,θ,b)L2(R3;Cl3,0). (3.13)

Note that in general the order of (3.13) is fixed because Clifford multiplication
is non-commutative. Alternatively, we may use a convolution (?) to express (3.13)
by

Tψf(a,θ, b) =
∫

R3
f(x) ˜ψa,θ,b(x) d3x = (f ? ψa,θ)(b) (3.14)

where

ψa,θ(x) =
1
a

3
2
ψ{(r−1

θ
(
−x

a
))}∼.

The Clifford wavelet transform (3.13) has a Clifford Fourier representation of
the form

Tψf(a,θ, b) =
1

(2π)3

∫
R3
f̂(ω) a

3
2 {ψ̂(ar−1

θ
(ω))}∼ ei3b·ω d3ω (3.15)
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Proof We have

Tψf(a,θ, b)
(3.13)
= (f, ψa,θ,b )L2(R3;Cl3,0)

Planc. T.=
1

(2π)3
(f̂ , ψ̂a,θ,b )L2(R3;Cl3,0)

=
1

(2π)3

∫
R3
f̂(ω)

[
ψ̂a,θ,b(ω)

]∼
d3ω

(3.4)
=

1
(2π)3

∫
R3
f̂(ω) a

3
2

[
ψ̂(ar−1

θ
(ω))

]∼
ei3b·ω d3ω.

This proves (3.15). �
With the inverse CFT (3.15) becomes

Tψf(a,θ, b) = F−1
{
a

3
2 f̂(.)[ψ̂(ar−1

θ
(.))]∼

}
(b), (3.16)

or equivalently

F(Tψf(a,θ, .))(ω) = a
3
2 f̂(ω){ψ̂(ar−1

θ
(ω))}∼. (3.17)

3.4. Properties of the Clifford wavelet transform

Theorem 3.2 (Left linearity). Let f, g ∈ L2(R3;Cl3,0) and ψ ∈ L2(R3;Cl3,0) be
a Clifford mother wavelet. The Clifford wavelet transform Tψ is a linear operator,
i.e.,

[Tψ(λf + µg)](a,θ, b) = λTψf(a,θ, b) + µTψg(a,θ, b), (3.18)

with multivector constants λ, µ in Cl3,0.

Theorem 3.3 (Translation covariance). Let ψ ∈ L2(R3;Cl3,0) be a Clifford
mother wavelet. If the argument of Tψf(x) is translated by a constant x0 ∈ R3 then

[Tψf(· − x0)](a,θ, b) = Tψf(a,θ, b− x0). (3.19)

Proof Equation (3.13) gives

[Tψf(· − x0)](a,θ, b) =
∫

R
f(x− x0) ˜ψa,θ,b(x) d3x

=
∫

R
f(x− x0)

1
a3/2

[
ψ(a−1r−1

θ
(x− b)

]∼
d3x

=
∫

R3
f(y)

1
a3/2

[
ψ
(
a−1r−1

θ
(y − (b− x0))

)]∼
d3y

= Tψf(a,θ, b− x0).

Theorem 3.4 (Dilation covariance). Let ψ ∈ L2(R3;Cl3,0) be a Clifford mother
wavelet. If c is a real positive constant, then
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[Tψf(c·)](a,θ, b) =
1
c3/2

Tψf(ac,θ, bc). (3.20)

Proof Equation (3.13) gives again

[Tψf(c·)](a,θ, b) =
∫

R3
f(cx)

1
a3/2

[
ψ(r−1

θ
(
x− b

a
))
]∼

d3x

=
∫

R3
f(y)

1
a3/2

[
ψ

(
r−1

θ
(
y/c− b

a
)
)]∼ 1

c3
d3y

=
1
c

3
2

∫
R3
f(y)

1
(ac)3/2

[
ψ

(
r−1

θ
(
y − bc

ac
)
)]∼

d3y

=
1
c3/2

Tψf(ac,θ, bc).

Theorem 3.5 (Rotation covariance). Let ψ ∈ L2(R3;Cl3,0) be a Clifford mother
wavelet. If rθ and rθ0

are both rotations, then

[Tψf(rθ0
·)](a,θ, b) = Tψf(a,θ′, rθ0

b), (3.21)

with rotors Rθ′ = Rθ0
Rθ.

Proof Applying equation (3.13) and using the fact that the product of two
rotations is always a rotation,20 we obtain

[Tψf(rθ0
·)](a,θ, b) =

∫
R3
f(rθ0

x) ˜ψa,θ,b(x) d3x

=
∫

R3
f(rθ0

x)
[
ψ(r−1

θ
(
x− b

a
))
]∼

d3x

=
∫

R3
f(y)

[
ψ

(
r−1

θ
(
r−1

θ0
y − b

a
)

)]∼
det−1(rθ) d3y

=
∫

R3
f(y)

[
ψ

(
r−1

θ
r−1

θ0
(
y − rθ0

b

a
)
)]∼

d3y

=
∫

R3
f(y)

[
ψ

(
(rθ0

rθ)−1(
y − rθ0

b

a
)
)]∼

d3y

= Tψf(a,θ′, rθ0
b),

where we omit brackets like rθ0
x = rθ0

(x). This proves (3.21). �
These four properties above correspond to classical wavelet transform properties.
Now we will see the differences between the Clifford and the classical wavelet trans-
forms.

Theorem 3.6 (Inner product relation). Let ψ ∈ L2(R3;Cl3,0) be an admissible
Clifford mother wavelet and f, g ∈ L2(R3;Cl3,0) arbitrary. Then we have

(Tψf, Tψg)L2(G;Cl3,0) = (fCψ, g)L2(R3;Cl3,0)

= 〈Cψ〉(f, g)L2(R3;Cl3,0) + (f〈Cψ〉1, g)L2(R3;Cl3,0). (3.22)
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Before proving theorem 3.6 we remark that for 〈Cψ〉1 = 0 the operator
〈Cψ〉−1/2Tψ is an isometry from L2(R3;Cl3,0) to L2(G;Cl3,0).
Proof By inserting (3.15) into the left side of (3.22), we obtain

(Tψf, Tψg)L2(G;Cl3,0)

=
∫
G
Tψf(a, b,θ) {Tψg(a, b,θ)}∼ d3bdµ

=
∫

R+

∫
S0(3)

a3

(2π)6
(
∫

R3
[
∫

R3
f̂(ω){ψ̂(ar−1

θ
(ω))}∼ei3b·ωd3ω∫

R3

{
(ĝ(ω′){ψ̂(ar−1

θ
(ω′))}∼ei3b·ω

′
}∼

d3ω′]d3b)dµ. (3.23)

For abbreviation, we use the notation

Fa(ω) = f̂(ω){ψ̂(ar−1

θ
(ω))}∼, Ga(ω′) = ĝ(ω′){ψ̂(ar−1

θ
(ω′))}∼.

Equation (3.23) can then be rewritten as

(Tψf, Tψg)L2(G;Cl3,0)

=
1

(2π)6

∫
R+
a3

∫
S0(3)

(
∫

R3
[
∫

R3
Fa(ω)ei3b·ω d3ω∫
R3
{Ga(ω′)ei3b·ω

′
}∼ d3ω′]d3b)dµ

(2.16)
=

1
(2π)6

∫
R+
a3

∫
S0(3)

(∫
R3
F̂a(−b) {Ĝa(−b)}∼d3b

)
dµ

P. T.=
∫

R+

∫
S0(3)

a3

(2π)3

(∫
R3
Fa(ξ)G̃a(ξ) d3ξ

)
dµ

=
∫

R3

1
(2π)3

(∫
R+
a3

∫
S0(3)

f̂(ξ){ψ̂(ar−1

θ
(ξ))}∼ ψ̂(ar−1

θ
(ξ))˜̂g(ξ) d3ξ

)
dµ

=
1

(2π)3

∫
R3
f̂(ξ)

(∫
R+

∫
S0(3)

a3{ψ̂(ar−1

θ
(ξ))}∼ ψ̂(ar−1

θ
(ξ))dµ

) ˜̂g(ξ) d3ξ

(3.5)
=

1
(2π)3

∫
R3
f̂(ξ)Cψ ˜̂g(ξ) d3ξ

P. T.=
∫

R3
f(x)Cψ g̃(x) d3x = (fCψ, g)L2(R3;Cl3,0),

where P.T. denotes the Plancherel theorem of table 2. �
As a consequence of theorem 3.6, we immediately obtain

Corollary 3.1 (Norm relation). Let ψ ∈ L2(R3;Cl3,0) be a Clifford mother
wavelet that satisfies the admissibility condition (3.5). Then for any f ∈
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L2(R3;Cl3,0) we have

‖Tψf‖2
L2(G;Cl3,0)

= 〈(fCψ, f)L2(R3;Cl3,0)〉 = Cψ ∗ (f, f)L2(R3;Cl3,0)

= 〈Cψ〉‖f‖2
L2(R3;Cl3,0)

+ 〈(f〈Cψ〉1, f)L2(R3;Cl3,0)〉

= 〈Cψ〉‖f‖2
L2(R3;Cl3,0)

+ 〈Cψ〉1 ∗ 〈(f, f)L2(R3;Cl3,0)
〉1 (3.24)

According to (2.13) we can rewrite the left hand side of (3.24) in the form

‖Tψf‖2
L2(G;Cl3,0)

=
∫

R3

∫
R+

∫
SO(3)

∑
A

〈Tψf(a,θ, b)〉2A dµd3b. (3.25)

3.5. Inverse Clifford wavelet transform, reproducing kernel

In the following we will first derive the important inverse Clifford Cl3,0 wavelet
transform for multivector functions.

Theorem 3.7 (Inverse Clifford Cl3,0 wavelet transform). Let ψ ∈
L2(R3;Cl3,0) be a Clifford mother wavelet that satisfies the admissibility condition
(3.5). Then any f ∈ L2(R3;Cl3,0) can be decomposed as

f(x) =
∫
G
Tψf(a, b,θ)ψa,θ,b C

−1
ψ dµd3b,

=
∫
G
(f, ψa,θ,b)L2(R3;Cl3,0)ψa,θ,bC

−1
ψ dµd3b, (3.26)

the integral converging in the weak sense.

Proof Indeed, we have for every g ∈ L2(R3;Cl3,0)

(Tψf, Tψg)L2(G;Cl3,0) =
∫
G
Tψf(a,θ, b){Tψg(a,θ, b)}∼ dµd3b

=
∫
G

∫
R3
Tψf(a,θ, b)ψa,θ,b(x)g̃(x) d3xdµd3b

=
∫

R3

∫
G
Tψf(a,θ, b)ψa,θ,b(x) dµ d3b g̃(x) d3x

=
(∫

G
Tψf(a,θ, b)ψ

a,θ,b dµd
3b , g

)
L2(R3;Cl3,0)

. (3.27)

Applying (3.22) of theorem 3.6 gives for every g ∈ L2(R3;Cl3,0)

(fCψ, g)L2(R3;Cl3,0) =
(∫

G
Tψf(a,θ, b)ψa,θ,b dµd

3b , g

)
L2(R3;Cl3,0)

. (3.28)

Taking the scalar part of (3.28) we obtain

〈(fCψ, g)L2(R3;Cl3,0)〉 = 〈
(∫

G
Tψf(a,θ, b)ψa,θ,b dµd

3b , g

)
L2(R3;Cl3,0)

〉. (3.29)
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Because the inner product identity (3.29) holds for every g ∈ L2(R3;Cl3,0) (and in
particular for all basis elements of the Clifford module of def. 2.1) we conclude that

f(x)Cψ =
∫
G
Tψf(a, b,θ)ψa,b,θ(x) dµd3b , (3.30)

or equivalently, because of the assumed invertibility of Cψ

f(x) =
∫
G
Tψf(a, b,θ)ψa,b,θ(x)C−1

ψ dµd3b.

(3.13)
=

∫
G
(f, ψa,θ,b)L2(R3;Cl3,0)ψa,θ,b C

−1
ψ dµd3b. (3.31)

which completes the proof. �
Weak convergence of (3.26) means that for all g ∈ L2(R3;Cl3,0) holds

(
∫
G
Tψf(a, b,θ)ψa,θ,bdµd

3b C−1
ψ , g)L2(R3;Cl3,0) → (f, g)L2(R3;Cl3,0). (3.32)

Using the properties of the inner product (2.12), it is not difficult to show that

(3.26) can alternatively be rewritten in the form (C−1
ψ = C̃−1

ψ because of (3.11))

f(x) = C−1
ψ

∫
G
{ψa,b,θ}

∼ (ψa,θ,b , f̃ )L2(R3;Cl3,0) dµd
3b. (3.33)

Theorem 3.8 (Reproducing kernel). We define for an admissible Clifford
mother wavelet ψ ∈ L2(R3;Cl3,0)

Kψ(a,θ, b; a′,θ′, b′) = (ψa,θ,bC
−1
ψ , ψ

a′,θ′
,b′)L2(R3;Cl3,0). (3.34)

Then Kψ(a,θ, b; a′,θ′, b′) is a reproducing kernel in L2(G, dλ), i.e,

Tψf(a′,θ′, b′) =
∫
G
Tψf(a,θ, b)Kψ(a,θ, b; a′,θ′, b′) dλ. (3.35)

Proof By inserting (3.26) into the definition of the Clifford wavelet transform
(3.13) we obtain

Tψf(a′,θ′, b′) =
∫

R3

{∫
G
Tψf(a,θ, b) ψa,θ,b(x) dλ C−1

ψ

}
˜ψ

a′,θ′
,b′(x) d3x

=
∫
G
Tψf(a,θ, b)

{∫
R3
ψa,θ,b(x)C−1

ψ {ψ
a′,θ′

,b′(x)}∼ d3x

}
dλ

=
∫
G
Tψf(a, b,θ)Kψ(a,θ, b; a′,θ′, b′) dλ, (3.36)

which completes the proof. �
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4. Uncertainty principles for Clifford algebra Cl3,0 wavelets

It is known that uncertainty principles play an important role in the development
and understanding of quantum physics. In quantum physics this means that par-
ticle momentum and position cannot be simultaneously measured with arbitrary
precision. In classical harmonic analysis the uncertainty principle of a function and
its Fourier transform establishes a minimum of the products of the variances. The
same holds for the multivector CFT.11 12 The uncertainty principle for the continu-
ous wavelet transforms establishes a lower bound of the product of the variances of
the continuous wavelet transform of a function and its Fourier transform (see e.g.
27).

We extend this idea to the Clifford algebra Cl3,0 wavelet transform, i.e. we show
how the Clifford algebra Cl3,0 wavelet transform and the Clifford Fourier transform
of a multivector function are related.

4.1. Uncertainty principles for general admissibility constant

Let us first formulate a general statement in the following theorem. That this is
indeed the generalized form of an uncertainty principle will be seen in the special
case of scalar Cψ in corollary 4.1, which follows in section 4.2.

Theorem 4.1 (Generalized Clifford wavelet uncertainty principle). Let ψ
be a Clifford algebra wavelet that satisfies the admissibility condition (3.7). Then
for every f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4
[
Cψ ∗ (f, f)L2(R3;Cl3,0)

]2
. (4.1)

Before we attempt the proof of theorem 4.1 we derive the following two useful
lemmas.

Lemma 4.1 (Integrated variance of CFT of Cliff. wavelet transf.).∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

dµ = Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0). (4.2)

Proof We observe that∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

dµ (4.3)

(2.14)
=

∫
R3

∫
R+

∫
SO(3)

ω2[F{Tψf(a,θ, . )}(ω)] ∗ F̃{Tψf(a,θ, . )}(ω) dµ d3ω

(3.17)
=

∫
R3

∫
R+

∫
SO(3)

a3[˜̂ψ(ar−1

θ
(ω))ψ̂(ar−1

θ
(ω))]︸ ︷︷ ︸ ∗[

˜̂
f(ω)f̂(ω)] ω2dµd3ω

= Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0) .
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�
In some cases only the scalar part of the admissibility constant matters on the

right hand side of (4.2), as shown in

Lemma 4.2 (With scalar admissibility constant). If either one of the factors

is scalar, or the two vector parts are perpendicular: 〈Cψ〉1 ⊥ 〈(ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)〉1
we get instead∫

R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

dµ = 〈Cψ〉0 ‖ωf̂‖2
L2(R3;Cl3,0)

. (4.4)

Now we begin with the proof of theorem 4.1.
Proof We apply to Tψf(a,θ, b), where b ∈ R3 is the main variable and a,θ are
function parameters, the established uncertainty principle for multivector functions
in order to get with (2.13) (compare Theor. 6 of 11 for more details, × simply
represents multiplication of real scalars)

‖bTψf(a,θ, . )‖2
L2(R3;Cl3,0)

× ‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

≥ 3(2π)3

4
‖Tψf(a,θ, . )‖4

L2(R3;Cl3,0)
(4.5)

Taking the square root on both sides of (4.5) we obtain[
‖bTψf(a,θ, . )‖2

L2(R3;Cl3,0)

] 1
2 ×

[
‖ω F{Tψf(a,θ, . )}‖2

L2(R3;Cl3,0)

] 1
2

≥
√

3(2π)3/2

2
‖Tψf(a,θ, . )‖2

L2(R3;Cl3,0)
(4.6)

Integrating both sides of (4.6) with respect to dµ we obtain∫
R+

∫
SO(3)

([
‖bTψf(a,θ, . )‖2

L2(R3;Cl3,0)

] 1
2

×
[
‖ω F{Tψf(a,θ, . )}‖2

L2(R3;Cl3,0)

] 1
2
)
dµ

≥
√

3(2π)3/2

2

∫
R+

∫
SO(3)

‖Tψf(a,θ, . )‖2
L2(R3;Cl3,0)

dµ. (4.7)

Applying the multivector Cauchy-Schwartz inequality to the left hand side of (4.7)
gives (∫

R+

∫
SO(3)

‖bTψf(a,θ, . )‖2
L2(R3;Cl3,0)

dµ

) 1
2

×

(∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

dµ

) 1
2

≥
√

3(2π)3/2

2

∫
R+

∫
SO(3)

‖Tψf(a,θ, . )‖2
L2(R3;Cl3,0)

dµ. (4.8)
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Taking the square on both sides of (4.8) and inserting the definitions of the norms
of lines 1 and 3 of (4.8) we get with (2.14)∫

R+

∫
SO(3)

∫
R3

b2Tψf(a,θ, b) ∗ [Tψf(a,θ, b)]∼ dµd3b

×
∫

R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0)

dµ

≥ 3(2π)3

4

(∫
R+

∫
SO(3)

∫
R3
Tψf(a,θ, b) ∗ [Tψf(a,θ, b)]∼ dµd3b

)2

. (4.9)

We now recognize the L2(G;Cl3,0)-norms in lines 1 and 3 of (4.9) and with
lemma 4.1 we replace the second line of (4.9) to become

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4
‖Tψf‖4

L2(G;Cl3,0)
. (4.10)

Substituting for the right hand side (3.24) we finally get

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4
[
Cψ ∗ (f, f)L2(R3;Cl3,0)

]2
, (4.11)

which concludes the proof of theorem 4.1. �

4.2. Uncertainty principle for scalar admissibility constant

For scalar Cψ we get due to (4.4) and a similar identity for the right hand side of
(4.11) the following corollary

Corollary 4.1 (Uncertainty principle for Clifford wavelet). Let ψ be a Clif-
ford algebra wavelet that satisfies the admissibility constant (3.7). Then for every
f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

‖ωf̂‖2
L2(R3;Cl3,0)

≥ 3Cψ
(2π)3

4
‖f‖4

L2(R3;Cl3,0)
. (4.12)

This shows indeed, that theorem 4.1 represents a multivector generalization of
the uncertainty principle of corollary 4.1 for Clifford wavelets with scalar admissi-
bility constant.

In the field of information theory and image processing corollary 4.1 establishes
bounds for the effective width times frequency extension of processed signals or
images.
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5. Extension of complex Gabor wavelets to multivector Clifford
Gabor wavelets

In signal processing complex Gabor (or Morletg) wavelets are used extensively for
signal analysis.29 30 31 Complex Gabor wavelets are well localized in both space
and frequency domains which is very important in understanding signals. Two-
dimensional complex Gabor wavelets are composed of a complex exponential func-
tion and a Gaussian function. They generally can be written as

h(x) =
1

2πσ1σ2
e
− 1

2

�
x2
1

σ2
1
+

x2
2

σ2
2

� [
ei(u0x1+v0x2) − e−

1
2 (σ2

1u
2
0+σ

2
2u

2
0)
]
, (5.1)

where σ1 and σ1 are the standard deviations of the Gaussian function.
Complex Gabor wavelets can be extended to multivectors. This extension is

obtained by replacing the complex kernel ei(u0x1+v0x2) in the 2D complex Gabor
wavelets (5.1) by the Clifford Fourier kernel ei3ω·x. It then takes the form

ψc(x) = g(x;σ1, σ2, σ3)
(
ei3ω0·x − e−

1
2 (σ2

1u
2
0+σ

2
2u

2
0+σ

2
3w

2
0)
)

= g(x;σ1, σ2, σ3) ei3ω0·x − η(x), (5.2)

where ω0 = u0e1 + v0e2 + w0e3 denotes a frequency vector. The 3D Gaussian
function g(x;σ1, σ2, σ3) in (5.2) is defined by

g(x;σ1, σ2, σ3) =
1

(2π)
3
2σ1σ2σ3

e
− 1

2

�
x2
1

σ2
1
+

x2
2

σ2
2
+

x2
3

σ2
3

�
,

and

η(x) = g(x;σ1, σ2, σ3)e−
1
2 (σ2

1u
2
0+σ

2
2u

2
0+σ

2
3w

2
0)

is a correction term in order for equation (3.6) to be satisfied (see 23). Applying
the shift and the scaling properties of table 2, we can rewrite the Clifford Gabor
wavelets (5.2) in terms of the Cl3,0 Clifford Fourier transform as follows

F{ψc}(ω) = e−
1
2 (σ2

1(ω1−u0)
2+σ2

2(ω2−v0)2+σ2
3(ω3−w0)

2) −

e−
1
2 (σ2

1(ω2
1+u2

0)+σ
2
2(ω2

2+v20)+σ2
3(ω2

3+w2
0)). (5.3)

It is easy to see that F{ψc}(0) = 0. The representation of the Clifford Gabor
wavelets (5.2) shows that they are formally analogous to the 3D complex Gabor

gGabor paved the time-frequency plane in uniform cells and associated each cell with a wave shape
of invariant envelope with a carrier of variable frequency. Morlet kept the constraint resulting from
the uncertainty principle applied to time and frequency, but he perceived that it was the wave

shape that must be invariant to give uniform resolution in the entire plane. For this he adapted
the sampling rate to the frequency, thereby creating, in effect, a changing time scale producing a

stretching of the wave shape. (Goupillaud28)
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wavelets. We can apply the Euler formula to the trivector exponential which gives
the Clifford Gabor wavelets (5.2) in the form

ψc(x) = g(x;σ1, σ2, σ3) cos(ω0 · x) + i3g(x;σ1, σ2, σ3) sin(ω0 · x)− η(x). (5.4)

This shows that the resulting wavelets consist of a real scalar part and a trivector
part. We note that (5.3) is a real-valued scalar function. As a consequence the
admissibility constant (3.5) will also be real. It means that we have

0 < Cψc =
∫

R+

∫
SO(3)

a3
[
ψ̂c(ar−1

θ
(ω))

]2
dµ

(3.7)
=
∫

R3

(ψ̂c(ξ))2

|ξ|3
d3ξ <∞, (5.5)

is a real positive scalar constant and finite at a.e. ω ∈ R3.
We summarize some important properties of Clifford Gabor wavelet transform

in the following theorems corresponding to theorem 3.6, corollary 3.1 and theorem
3.7.

Theorem 5.1 (Inner product relation). Let ψc ∈ L2(R3;Cl3,0) be a Clifford
Gabor wavelet and f, g ∈ L2(R3;Cl3,0) arbitrary. Then we have

(Tψcf, Tψcg)L2(G;Cl3,0) = Cψc(f, g)L2(R3;Cl3,0). (5.6)

In other words the operator C
− 1

2
ψc Tψc is an isometry from L2(R3;Cl3,0) to

L2(G;Cl3,0). An immediate consequence of (5.6) is

Theorem 5.2 (Norm relation). Let ψc ∈ L2(R3;Cl3,0) be a Clifford Gabor
wavelet that satisfies the admissibility condition in the sense of (5.5). Then for
any f ∈ L2(R3;Cl3,0) we get

‖Tψcf‖2
L2(G;Cl3,0)

= Cψc‖f‖2
L2(R3;Cl3,0)

(5.7)

Theorem 5.3 (Reconstruction formula). Let ψc ∈ L2(R3;Cl3,0) be a Clif-
ford Gabor wavelets that satisfies the admissibility condition (5.5). Then any
f ∈ L2(R3;Cl3,0) can be decomposed as

f(x) = C−1
ψc

∫
G
(f, ψc

a,θ,b )L2(R3;Cl3,0) ψ
c
a,θ,bdµd

3b, (5.8)

the integral converging in the weak sense.

This theorem shows that any multivector function f can be reconstructed from
the Clifford Gabor transform.

As a consequence of the general uncertainty principle for Clifford wavelets with
scalar admissibility constant of corollary 4.1 we have

Theorem 5.4 (Uncertainty principle for Clifford Gabor wavelet). Let
ψc be a Clifford Gabor wavelet that satisfies the admissibility constant (5.5). Assume
‖f‖2

L2(R3;Cl3,0)
= F < ∞ for every f ∈ L2(R3;Cl3,0), then the following inequality

holds

‖bTψcf(a,θ, b)‖2
L2(G;Cl3,0)

‖ωf̂‖2
L2(R3;Cl3,0)

≥ 3Cψc

(2π)3

4
F 2. (5.9)
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6. Conclusions

We showed how Clifford algebra Cl3,0-valued wavelets extend the classical wavelets
on scalar functions to multivector functions. Multivector wavelet admissibility de-
pends on both the scalar and vector parts of the admissibility constant. Important
properties such as translation, dilation and rotation covariances, a reproducing ker-
nel, and a reproduction formula for multivector functions were demonstrated.

We established the general form of a new uncertainty principle for Clifford
wavelets, which becomes analogous to the usual scalar formulation (corollary 4.1)
when the admissibility constant itself is scalar. In the field of information theory
and image processing this Clifford wavelet uncertainty principle establishes bounds
for the effective width times frequency extension of processed signals or images.

We then applied our formalism by extending complex Gabor wavelets to Gabor
multivector wavelets, and looked at some of their important properties. We also
established a new uncertainty principle for the Clifford Gabor wavelets.
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