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ABSTRACT

In this paper we present the model of Majorana particle travelling at the speed
of light.
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1 Spinorial equation with Majorana condition

In this paper we present the model of Majorana particle travelling at the speed of light.

Our model is based on the Lorentz invariant equation that can be written in terms of
the ”left” (ξ) and ”right” (η̇) spinor components as follows: ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

 η1̇

η2̇

 = − im

 ξ1

ξ2


 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 = + im

 η1̇

η2̇


(1.1)

This equation looks very similar to the free Dirac equation, but with the opposite sign
in the r.h.s. of the second pair of equations. This equation was earlier considered by
Guang-jiong Ni and Tsao Chang (see [2]), but for some reason Ni and Chang associated
this equation with superluminal neutrinos.

In this paper we will only consider the case of Majorana particles, by requiring that
”left” (ξ) and ”right” (η̇) spinor components of the particle field satisfy the following
Lorentz invariant condition (known as Majorana condition, or Neutrality condition):

η1̇ = + ξ2

η2̇ = − ξ1

ξ1 = − η2̇

ξ2 = + η1̇

(1.2)

If we will put (1.2) into equation (1.1), we will obtain:

 ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

 ξ̄
2

−ξ̄1

 = − im

 ξ1

ξ2


 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 = + im

 ξ̄
2

−ξ̄1


(1.3)
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and after expansion of the formulas and complex conjugation of the first pair of equations
we obtain

(∂0 + ∂3) ξ
2 − (∂1 + i∂2) ξ

1 = + im ξ̄
1

(∂1 − i∂2) ξ
2 − (∂0 − ∂3) ξ

1 = + im ξ̄
2


(∂0 − ∂3) ξ

1 − (∂1 − i∂2) ξ
2 = + im ξ̄

2

− (∂1 + i∂2) ξ
1 + (∂0 + ∂3) ξ

2 = + im ξ̄
1


(1.4)

From (1.4) it is clear that, due to Majorana condition (1.2), the two pairs of equations
(1.1) become equivalent to each other, hence only one of these equations is independent.

2 Momentum density

As usual we define the momentum density 4-vector as a sum of ”left” and ”right” chiral
currents.

The ”left” chiral current is defined as:

pµ =
1

2

(
ξ+σµξ

)
(2.1)

p0 = 1
2

(
ξ+ξ
)

= 1
2

(
ξ1ξ1 + ξ2ξ2

)
p1 = 1

2

(
ξ+σ1ξ

)
= 1

2

(
ξ2ξ1 + ξ1ξ2

)
p2 = 1

2

(
ξ+σ2ξ

)
= i

2
(ξ2ξ1 − ξ1ξ2) p3 = 1

2

(
ξ+σ3ξ

)
= 1

2

(
ξ1ξ1 − ξ2ξ2

) (2.2)

One can easily check that pµp
µ ≡ 0, and that vector pµ = 1

2

(
ξ+σµξ

)
transforms as co-

variant vector.

Similarly, we define contravariant vector p̂µ as ”right” chiral current:

p̂µ =
1

2

(
η̇+σ́µη̇

)
(2.3)

p̂0 = 1
2

(η̇+η̇) = 1
2

(η1̇η1̇ + η2̇η2̇) p̂1 = 1
2

(
η̇+σ́1η̇

)
= 1

2
(η2̇η1̇ + η1̇η2̇)

p̂2 = 1
2

(
η̇+σ́2η̇

)
= i

2
(η2̇η1̇ − η1̇η2̇) p̂3 = 1

2

(
η̇+σ́3η̇

)
= 1

2
(η1̇η1̇ − η2̇η2̇)

(2.4)

Vector p̂µ is also isotropic: p̂µp̂µ ≡ 0.

The momentum density 4-vector (Dirac current) is a sum of ”left” and ”right” chiral
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currents:

Pµ = pµ + gµν p̂
ν (2.5)

or, equivalently

P0 = 1
2

(
ξ1ξ1 + ξ2ξ2

)
+ 1

2
(η1̇η1̇ + η2̇η2̇) = p0 + p̂0

P1 = 1
2

(
ξ2ξ1 + ξ1ξ2

)
− 1

2
(η2̇η1̇ + η1̇η2̇) = p1 − p̂1

P2 = i
2

(
ξ2ξ1 − ξ1ξ2

)
− i

2
(η2̇η1̇ − η1̇η2̇) = p2 − p̂2

P3 = 1
2

(
ξ1ξ1 − ξ2ξ2

)
− 1

2
(η1̇η1̇ − η2̇η2̇) = p3 − p̂3

(2.6)

With spinorial equations (1.1) one can easily find that

∂µp
µ = im

(
ην̇ ξν − ηµ̇ ξ

µ
)

∂µp̂
µ = im

(
ην̇ ξν − ηµ̇ ξ

µ
) (2.7)

and, according to (2.5)

∂µP
µ = 2im

(
ην̇ ξν − ηµ̇ ξ

µ
)

(2.8)

Now it is easy to check that due to Majorana condition (1.2)

ην̇ ξν = η1̇ ξ
1 + η2̇ ξ

2 = 0

ηµ̇ ξ
µ = η1̇ ξ

1 + η2̇ ξ
2 = 0

(2.9)

Consequently we conclude that, due to Majorana condition, both chiral currents pµ and
p̂µ, as well as momentum density current Pµ are conserved.
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3 Spinorial fields

Spinorial fields satisfying the Majorana condition can be chosen in the following form: ξ1

ξ2

 =

 − 1

+ 1

φ(x)

 η1̇

η2̇

 =

 + 1

+ 1

φ(x) (3.1)

where φ(x) is an arbitrary complex valued function.

Using (3.1) we can find that chiral currents (2.2) and (2.4) will be written as

p0 = + φ φ̄ p1 = − φ φ̄

p2 = 0 p3 = 0
(3.2)

and
p̂0 = + φ φ̄ p̂1 = + φ φ̄

p̂2 = 0 p̂3 = 0
(3.3)

Consequently, with our choice of spinorial fields (3.1), the spatial parts of both ciral cur-
rents pµ and p̂µ, as well as momentum density vector Pµ, are opposite in direction to the
axis e1, while the momentum density 4-vector is isotropic: P µPµ = 0. This is the first
indication that our model decsribes the particle that is travelling at the speed of light.

Let us now use the expressions (3.1) for the spinorial fields in the equation (1.4):

(∂0 + ∂3)φ+ (∂1 + i∂2)φ = − im φ̄

(∂1 − i∂2)φ+ (∂0 − ∂3)φ = + im φ̄
(3.4)

By adding and subtracting equations (3.4) we obtain:

(∂0 + ∂1)φ = 0

(∂3 + i∂2)φ = −2imφ̄
(3.5)

The first equation in (3.5) means that the field φ(x) is travelling at the speed of light in
the direction opposite to the axis e1. Together these equations define the evolution of the
field φ(x) in 4 dimensions.

Further generalization of the equation (1.1) (by allowing the ”mass term” m to be not
constant, but variable) is presented in [1].
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