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----- Preface 
In this paper we approach the problem with a simple empirical observations of the fluctuations 
Energy under vacuum, nuclei to higt atomic number, and nuclear interactions 
That affect them, including the phenomena called cold fusion, 
  
We are led to believe that the oscillations of the electrons induce fluctuations in energy nuclei. With 
changes in energy density of the core, density variations involving definition of space between 
quarks and production of Higgs bosons, which decay rapidly in Z ° bosons, W bosons decaying into 
The problem of mergers and fission induced by cold nuclear phenomena, has been addressed in the 
first part of the article where they took into account nuclei with atomic number less than 4. 
The central point is that it takes vortices of electrons and nuclei, 
for nuclear reactions and mergers cold. 
With simple analogy with what happens in the vortex elements, and elemental analysis, we can 
assume vortex structures with fairly ordered, with average temperatures 
components of very similar. 
At the center of the vortex, the nuclei components can have temperatures similar enough, we can 
assume a state BEC for nuclei in the center of the vortex. 
In this case, we can assume that the fields axion  produced by exchange between quarks of different 
nuclei in quasi-BEC and composed of photons super-luminal, may be in a state very excited, 
very strong, and can have a range of microns. 
The vortices then, can range from the size of microns to nano-meters .. 
The same state is conceivable BEC is obtained from exchanges assionici very strong, 
we can assume that trade even if the components of micrometric crystals, and in Mossbauer 
phenomenon .. 
With this approach, very  simply , we obtain results that confirm the observations made from the 
analysis of the behavior of nuclei with atomic number less than 4. 
  
The results are the same, with a possible explanation of the phenomenon in the fullness of time 
decay alpha, beta and fission. 
We use this empirical approximations for a rigorous mathematical analysis, according to the 
standard parameters, involves the use of 19 free parameters standard, +9 parameters for the 
oscillation energy vacuum quasi-standard + 7 parameters for the Higgs bosons, 
+ 100 parameters for self-interaction with the Higgs fields.(SUSY semplice) 



we must proceed with empirical experiments, for statistics calculated behavior. 
  
---- First statistical section decay  you weak and weak mergers and fissions weak. 
The basic mechanism of the decays taken into consideration, is always to the lighting of an area of 10-18mt, 
such as to create virtual pairs of Z °, which fail to react with the quarks of the nuclei, and to change taste and 
electric charge to themselves., and in this case is being treated "implicit". 
We can also predict that the Z ° bosons are the pro duct of the decay of Higgs bosons, the interaction 
between electrons and quarks in a state TAU. 
The Higgs bosons are neglected to simplify for the moment, even if they allow a much more detailed and 
comprehensive of the various nuclear phenomena and the phenomena of suppression of the particles 
produced in a vacuum. 
In other articles, I propose a general empirical formula based on the energy density of nuclear and 
electronic, to calculate the probability of nuclear phenomena. 
For simplicity, in this article is not addressed. 
Processes -beta decay, alpha decay, mergers and cold fissions. 
  
  
In the case of decay beta-, we can hypothesize a "excitation of a neutron" internal to the nucleus, 
with a decrease in density with lifting from the surface of the core. 
Density change that leads to the decay 
In the case of decay of the single neutron, with frequency of about 10 ^ .3 / sec, 
We can think of a mechanism inside of a narrowing down quarks and one up quark, while the rest is 
down to the size of "normal,,, 
with a narrowing internal to a radius of about 10 ^ -16 m. 
We therefore density ratio in the neutron, 
enough to have the frequency considered. 
In the case of proton decay, we have some interesting ... 
the same mechanism that we have applied neutron, leads us to considerations of a behavior different 
ending .. 
If we shrink the up and down quarks inside to the 10 ^-17mt, (we are considering a proton ionized 
without the addition of stabilizing electron valence) 
and we should also have a bulge down outwards, towards the 10 -13 m, with density ratio of about 
10 ^ -16, and in this case we may have lighting frequency of the space of 10 ^ -18 mt necessary to 
the creation of pairs of Z ° virtual. 
. We have the same rate of decay with the statistics of density and that of electron capture, 
considering the proton is ionized, or "normal, we obtain the calculated half-life 
10^ +113  years . 
Will not be easy to find experimentally, half-life of this frequency, but still within the parameters 
considered by the various theories. 
Integrating the data that are present in the formulas, we could identify specific behaviors general 
decay of nuclei. 
In cases of known natural decay by experimental observation, with a suitable calculation program, 
we could find the actual values of density, distance and other parameters in the two statistics, and 
build a model of the nucleus very precise. 
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Fig.1-painted image of the interior of a proton. with phase "strangeness 
  
We consider that enough small changes to the radius of the electron and the proton, 
with minor variations of the rays of the nucleus and the electron, or with a neutron in the case  
of β - ,with a very small change of the relative densities, to have all the data corresponding to those 
actually found experimentally., 
The data cross the two aggregates, lead us to a very precise model of the nucleus and protons and 
neutrons and, 
and could lead to much more simplified models of neutron and proton, with a greater understanding 
of the relationship between electro-weak force and strong nuclear force. 
We may regard the quarks as composite particles, formed, in the case up, by two positron and an 
electron, joined together by neutrinos and antineutrinos, with bonding by strong forces of the 
Casimir vacuum, 
particular asymmetries between spin and electric charge, and neutrinos, define a process of matter-
antimatter annihilation very complex and with half-lives of about 10 +113 years 
Down-in the case, we have two electrons and a positron, the differences in charge +2 / 3 and -1 / 3 
are always derived from the composition asymmetries, asymmetries of CP violation. 
  
Important to note that the model explains why a boson Z °, interacting with a quark, it changes 
strangeness, 
The model also explains why the difference between quark and anti-quark is due to the internal 
presence of neutrinos with left chirality know and neutrinos with right-hand chirality. 
  
2nd --- DECAY  α  
the alpha decay, which is believed to belong to the field of the strong force, and therefore should 
have no correlation with the weak decays, could have interesting explanations, and rientr are fully 
in the forms assumed for the decays "weak. 



 
Fig.2-- pictorial view of a group of Be9 
  
In unstable nuclei, chains of 2 protons and two neutrons, present inside the nucleus unstable, may 
vibrate and become detached from the rest of the core, and may illuminate the  distance of 10-16cm, 
or less, and produce pairs of Z ° from the virtual empty. 
The pairs interact with the 4 particles, and will change state and flavor, the transmuted into alpha-
odd, then decay very rapidly in alpha, and the excess energy of 23 Mev produced by melting is used 

for the emission to the outside of the αparticles. 
  

               
  
Fig.3 - excitation chain 2 protons and 2 neutrons inside the nucleus 
With this mechanism, strange, α absorb and re-emit large amounts of energy drawn from the 
binding, and the two neutrons and two protons bound to alpha can transform the excess energy 
produced by their fusion) in enough energy to break away from the nucleus, and give normal alpha 
radiation .. 



The two neutrons arriving at energies of over 1300 Mev, and at this point it has the identification of 

the space of 10-16cm and transformation into Ξ−   
I always get two protons to energies of 1300Mev transmuted into Ξ° 

 
Fig.4-chain internal diagram P + N + P + N bonding with α 
  

decay in Ξ °. 10-10 sec, for the particular conditions of bond already happened blend together in 
alpha He4 glued weak.with a strong emission of energy due to the mass defect,. and are detached 
from the core, according to the following reactions 
  
N + Z*  −−−−−>  Ξ−  
P + Z*   −−−−−>   Ξ° 
2 Ξ° + 2 Ξ-−−−>   4Νε∗∗(xi strange particle still in nucleo) 
4Νε∗∗     −−−−>   He4    
formulas reaction 

4Ξ°−  +  4W ∓  −−−−−> 4He 
The energy produced by the fusion of the particles, approximately about 23 Mev, is returned to the 
core, and the alpha is emitted to de-energize the core. 
We could also explain and fission of nuclei, always with discovery mechanisms lighting of interior 
spaces in the nuclei, including complex chains of neutrons and electrons, with the variables already 
described. 
It is also possible a different reaction, perhaps less likely, 
possible but as far as I know. 
Only laboratory tests and measures addressed, can 
Confirm the phenomena, and identify the weights of the various possibilities. 



  
3a --- decay and induced fission in nuclei of iron, thorium, carbon and other elements 
  
The greater stability of nuclei to high atomic number, makes possible a large amount of decays 
"simultaneous, with protons and neutrons in the nucleus with energy exchanged with the vortices 
electronic, and arriving to transmute the nucleus in an element in rapid decay, with fission final 
destroys the vortex electronic 
We may have reactions in the chain of nucleons, with intermediate stages strange, and Xi-Xi ° 
Previous analyzed for alpha phases. 
We may also have different reactions in the quark inside the nucleus, up and down quarks present in 

pairs of nucleons with change of flavor, with an intermediate step in sigma, Σ°,  chain to 2 different 

chain to 4 of decay .α 
The tiles and nucleons are "excited over 1300Mev with the whirlpools of electrons. 
The electrons in the vortex around the cores have an electromagnetic behavior similar to the 

"normal electron capture, but in this case do not produce illumination of space and production of Z°  
their task is exhausted with the transfer of electromagnetic energy to the nucleus with photons 

axions .. 
We can in some way, and inject induce behaviors of the vortex, chains of millions, of electrons 
outside the nucleus, with appropriate electromagnetic fields or sonic. 
And produce chains of many millions of electrons, united to spin, in vortex around the cores 
We have then excitation of protons that can define a space of 10-19 m between pairs of neutrons 
and protons, and are able to produce Z ° bosons that change flavor to interacting nuclei 
  

 
Fig.5-- chain diagram 2 inner core Fe56 
  



In the particular case of Fe56 we 6 protons, neutrons and 6, which interagis cone together to 

form  Σ° 
The internal quark 6 protons and 6 neutrons interact with the Z ° bosons produced by the 
illumination of spaces 10 ^-17cm between the nucleons., And start the reactions that lead to the 
protons to become N., and neutrons in P 
The core of Fe56, is subjected to 12 transformations strange,  6Σ°+ 6Σ° and turns into nucleus 
Fe46 * (+12 s) strange unstable .. 
To a chemical, it may be similar to a core of CA56. 

The core of strange Fe (46 +12 * (under the shares it energy decays of 12Σ° decade with fission, in 
times in the order of 10-20 sec., 
SUBTRACTION with energy of about 43 MeV, or 0.0046 amu mass increase of the final 
components of the reaction 
obtained at the expense of energy we put into the system to produce chains of electrons. 
W bosons - are annihilated each other and reabsorbed by the gaps of the vacuum energy and we 
have no emission of particles and energy outward beyond the fission products itself. 
We could have a chain with 16 neutral strange particles, in this case, we have a group with similar 
characteristics argon 56 
  
  

 
Fig 6 ----- fission of the nucleus of Fe56 in 2 AL27 + 2 N 
  
Fe56 +  12(Z°*) −−−−>  Fe*46(12Σ° ) 
Fe*46(12Σ°   + 12W+ )−−−>2Al27 +2 N   
  
In the case of Fe57, we have 2 +3 N AL27 
We may have in complex nuclei with atomic number> 18, including the case of Fe56, 

a possible branching different rationale, with formation of chains α 
  



 
Fig 7 --- alpha chains in Fe 56 

The energy produced by 'gluing 3   α weak internal produces the fission of the nucleus 
  
We could also have a different channel of transmutation, with the formation of 4-chain alpha-phase 
delta 
  
In this case, we would  phase where 4 alpha phase delta produce a core with characteristics similar 
to argon 56, with fission into 4 parts and we get the immediate reaction in 2AL27 + 2N 
We note that in the case of fission of  
 Fe56 −−>Al27+ AL27 + 2N 
to balance the mass defect endothermic, we must address in the iron core, at least 43 MeV of 
energy. 
The reaction in 2 +2 N AL27 seems to be the most favorable for the need less energy. 
Other reactions 

Fe56-−−−> 3O16 +He4 +4N 
With input power over 80Mev 
Or 

Fe54 −−−> 3O16 + He4 + 2N 

Fe54-−−−> 2O16 +Ne20 +2N 
With input power over 78Mev 
In addition, no emission of neutrons, 

Fe56 −−−> 2O16  +2B12 
With beta-decay in 10 milliseconds B12 into  C12 
  
Input of energy beyond 52Mev, 
this reaction could be the basis for the enormous carbon emissions observed in volcanic reactions 
 



  
  
For many experiments, these processes of cold-induced fissions, we produce neutrons, which have a 
sconcert behavior. 
They seem to have channeled trajectories or affected by electromagnetic radiation, very difficult for 
normal neutrons. 
Possible explanation. 
Protons can get a lot of energy by electromagnetic vortices of electrons, and can become omega- 
In this case, if they do not interact with other nuclei, in 10 ^ -10 seconds, decay into neutrons, 
with subtraction of energy from the environment for about 0.8 Mev. 
But I'm afraid of being strange negatively charged, and thus affected the  Influence of 
electromagnetic fields, and maintain the trajectory affected after the conversion into neutrons 
normal 
Equation 
  
H+3(Z *)+ energy(0.8 Mev) −>   Ω− −>  N 
  
This equation explains the behavior of neutrons detected channeled 
In different experiments by mr. Carpinteri and Mr. Cardone. 
Normally, the free protons, in environment, can have phase strange Xi, 
acquire from the environment about 0.5 Mev, which then decay into protons when ricedono. 
  
H+2(Z *) +0.5 Mev−−> Ξ° −−−> P +0.5 Mev 
  
  
  
  
  
4a-transformations and mergers electro-weak induced in nuclei of carbon, thorium and other nuclei. 
  
In many experiments, we reactions of carbon-based, strangely "energy. 
The decays are very rapid, similar to those of the strong force, and differ in some respects from 
those observed in normal nuclei, are different because the conditions inside a core of Fe 56 are 
different from those so far studied, and observed 
  
these inexplicable results  with a mechanism of carbon nuclei quite complex, but similar to the 

previous explicate for iron., in this case the quarks pass in phase strange Σ° ∗ reactions with 
  
P + Ζ°  −−−>     Σ∗°  
Ν +Ζ°  −−−>     Σ∗° 
  
These reactions involving  may be only one part, 
C12  +4(Z°*) −−−−> C*(4p+2Σ°+2 Σ° +4 n) 
  
Or completely involve the C12 core 
C(12 Σ∗°)  decays to C12 with time in the order of 10 ^ .10 sec with the mechanism of resorption 
of W without producing emission of energy. 
  



The core strange thus produced, has neutral charge, and allows a fusion very likely with a core of 
C12. normal if it is able to interact within the time allowed by the decay. 
 
C*(12Σ∗°)= C*12  
C*12 + C12 −−−−>Mg24* 
  
MG24 * decays in the manner already illustrated hereinabove in MG24 and emits the energy 
resulting from the mass defect with a cascade of photons widest spectrum of energy. 
  
Mg24*  −−−−> Mg24  + Σγ (1.4 Mev )  

  
C12 12. 6 98.9 0 + Stable   
MG24 2 3.985 12th 78.99 0 + Stable   
  
the core of the C12 * strange neutral nuclei can fuse with other elements, having charge neutral and 
thus have a great chance to transmute and produce a number of elements with important energy 
production .. 
  

 
Fig.8-- formation of nuclei with neutral strange passage Σ° ∗  
  
We also have interesting reactions involving oxygen., And that are based completely transform O16  
O*(16 Σ∗°  ) a neutral particle 
In some cases we observe a energization of nuclei OH-, with vortices electronic around the nucleus 
of O16, detachment of the H radical, 



and transformation with strange decay of the nucleus of O16 
for the particular conditions of the experiments, we have a good chance that the nuclei strange 
neutral O16 *, for the particular conditions of the experiments, 
in times of 10-10 sec, can meet and melt easily, at low temperatures with the following reactions; 
O16*strange  + O16 −−−> S32*strange −−−> S32  + fotoni (16.5 Mev) 
  
S32 31.9721 16th 95.02 0 + Stable 
O16 15.9949 8 99,762 0 + Stable 
  
If the core is not strange O16 * in the time of 10-10 sec other nuclei decays into O16 normal, with 
no power output. 
 find also other strange fusions involving aluminum nuclei, nuclei of sodium and chlorine and 
silicon. 
We have the possibility that the excess energy due to the fusion, is emitted photons with axions, and 
nuclei of oxygen or carbon, act as a receiving antenna, and fission in alpha. 
In the case of O16 -----> 4 He4 with energy endo-energy of about 4 Mev 

-           a different possibility, which concerns' energy emitted by fusion of complex nuclei, 
with photons assionici, 
but most likely the carbon nuclei have the best chance to be absorbing photons assionici., 
we could have triple fission track, with the fission of a nucleus of C12 in 3 neutral strange nuclei 
4He * sn and training with Triple track of alpha 
C12 −−−> 3 He4*sn −−−> 3He4 
  
  

 
Fig .9-triple track of 4 He, fission of C12 
The  fission reaction  C12 in 3 alpha, 
  
may also be described in 
C12+ (12W)  −−−> 3 He4     



Reaction endo-energy obtained at the expense of energy immes know in the core of C12 with 
photons assionici., Of about 7.3 MeV, obtained by fusion of nuclei in cold fusion reactions. 
This reaction is very likely in cold fusion in living organisms 
Possible traces of experimental decays of C12 in 3 alpha, are the tracks in CR39 detected by Pam Boss  
  
5th - single neutron decay 
The mechanism of the decay of the neutron is more complicated than the single beta decay-
observed in complex nuclei. 
In this particular case are the three quarks to excite each other to define a space of 10 ^ - 16 cm, and 
the pairs of virtual Z ° thus produced, lead to a decline in the neutron proton complex mechanism. 

 
Fig.10-diagram of Feynmann decay − β 
. N  −−−> P +  e−+  ννννε  ̄ 
 

 
Fig.11-beta-decay 
  



Free neutrons decay times of about 15 minutes, with a reaction to complet 
  
 down +Z° −−−>   s+ fotone +W-  −−−> up   +   e- +  ννννε  ̄  
 up  + Z°   −−−>   s +  fotone + W+  −−−>  down 
 
  
The mechanism of decay could be practically similar to the above, in this specific case are the three 
quark excited to each other, up to define a space of 10 ^ - 16 cm, and the pairs of Z ° virtual thus 
produced, lead to decay the neutron into a proton with a mechanism similar to the previous one. 
compressed but in times of about 10 ^ -23 seconds. 
  
Ν −−−−>     p + e− + ννννε¯  
  
6a-proton decay single 
  
A mechanism of self-excitation may occur in individual protons, but only allows the internal energy 
of the illumination between the down and alternatively one of the two up quark, and is not achieved 
the possibility of emission of a W + free normally. 
In addition, the continuous exchange of photons assionici, does not produce appreciable entropy. 
. 

 
Fig .12. The proton is stable and can not decay into neutron 
  
We have a possible decay of a proton into a neutron without interaction with electrons, as we have 
shown, with a reaction that relates to another external element, a neutrino. 
  



 
  
Fig.13. interaction of proton and neutrino 
  
final reaction 
P + Ve ------ � N + e+ + Ve 
  
The reaction has extremely small cross sections. 
  
Single proton decay in positron 
For this phenomenon, we hypothesize mechanisms more complex lighting with energy states very 

unlikely the proton, which could decay into and +   + Neutral pion., With a time course longer than 
15 minutes, we are certainly more than the 10 +33 years, probably over 10 years +113. 

 
  
Fig.14-example of proton decay photons in e + e 
  
  
In the case of the proton, the decay time with empirical formulas density is about 10 ^ +113 years, 
much greater than the minimum allowed by quantum calculations, about 10 ^ +33 years, 



compatible but with the above in the case of electron capture and the upper limit allowed dala 
quantum mechanics. 
intervene or artificially from the outside to modify this type of rate frequency, is very difficult. 
  
  
--- Ratings General- 
In summary: 
  
1-Tr attiamo decay β -,   + β in nuclei with many nucleons, forming the nucleus, and we assume a 
neutron or proton 
can swing on the core itself, and illuminate a space of 10-19mt, resulting in the production of Higgs 
bosons, which decad ono in Z ° bosons and subsequent interaction with the final processing of the 
neutron into a proton and vice versa. 
  
2-treat the decay ,α where small chains of two protons and two neutrons can vibrate on the core, 
locating the space for the production of pairs of Z ° it virtual. 
  
3-treat decay β - in individual neutrons, which have special conditions, where the quarks can be 
detached from each other and find a space that produces virtual Z °, and then decay in about 15 
minutes in proton + e-+ antineutrino, 
  
4-treat the phase strange induced in a single proton from vortices of electrons and in individual 
deuterons. 
  
5 - treat proton decay "stable 
  
  6-treat transmutation-induced fission in complex nuclei 
  
  
We have shown how, with the same mechanism based lighting of spaces with "light heavy 
Or bundles of bosons Z °  the decay of Higgs bosons, we can explain all types of decays, and also 
the strange reactions of fusion or fission in cold fusion. 
It said one of the major differences between the mechanisms of nuclear decay weak and strong, the 
different energy response of the particles involved in the phenomena. 
  
  
CONCLUSIONS --- 
  
  
  
With the introduction of the concept of nuclear energy density probability frequency of capture and 
decay, we can treat statistically beta-and beta + decays in a simplified way, 
also we can bring everything to a single parameter, the amount of space or distance illuminated by 
the behavior of electrons and quarks with the production of Z °, and interactions with magnetic 
fields. 
And then also the possibility of identifying techniques that can artificially affect the "normal natural 
characteristics of these decays. 
This seems easier in the case of oscillations of electrons, neutrons than forming the nucleus, but 
points out that unify the two types of decay could open many avenues for new kinds of 
technologies. 



In addition, we have a large contribution from the analysis of behavior "deep pairs of W ∓ And 
possible interactions with real quarks, to treat a simplified model of protons and neutrons, which 
allows us a simplified analysis of the electro-weak force and the strong nuclear 
  
  
The decay behavior of artificial fusion reactions can explain the "weak and release of energy that 
we observe in the so-called cold fusion. 
We could open a new nuclear chemistry with a huge amount of possibilities and permutations of the 
mergers, to high energies, the old dream that could come true alchemy. 
In addition, certain behaviors may open interesting perspectives also for uses of energy production. 
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Table of sinboli 

α = alpha decay in nuclei 

β = beta decay in nuclei 

γ = photon  

∆ = delta phase in the nucleus 

Σ = sigma hyperon 

Λ = lambda hyperon 

Ξ = Xi hyperon 

Ω = omega hyperon 
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