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We refined the concepts of electric current and fluxoid, and London’s equation that
specify quantum phenomena of moving electrons and magnetic flux in a closed circuit similar
to a superconducting ring, so as not to violate the uncertainty principle.

On this basic the relation between the electron motion and magnetic flux in a super-
conductor has been theoretically investigated by means of Faraday’s law and/or canonical
momentum relation.

The fact that minimum unit of the quantized magnetic flux is hc/2e does not mean the
concurrent motion of the two electrons in a Cooper pair as is known so far. However, it is
shown to be related with independent motion of the each electron in a superconducting state.
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I. Review

In 1933, Meissner and Ochsenfeld discovered the phenomenon that the superconductor ex-

cludes the magnetic field, and then in 1935, H. London and F. London theorized Meissner Effect

that occures in the superconductor.

vd the drift velocity of the electron and E, the electric field are related as shown below based

on the Newton’s second law in the superconducting state

m
dvd

dt
= eE, (1)

where m and e are the electron’s mass and charge.

If we substitute J = eρvd where ρ is the number of electrons per unit volume, for vd the

rearranged formula is
dJ

dt
=

ρe2

m
E. (2)

If we apply formula (2), Ampere’s Law
(
∇× B =

4π

c
J

)
and Faraday’s Law

(
∇× E = −1

c

dB

dt

)

we have

∇×
(
∇× dB

dt

)
= −4πρe2

mc2

dB

dt
(3)
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We know that ∇ · B = 0, so

∇2dB

dt
=

4πρe2

mc2

dB

dt
. (4)

Therefore, answer for furmula (4) is

dB

dt
=

dB0

dt
e−

x
λ B = B0e

−x
λ (5)

where x is the inside distance of the superconductor, λ is London penentration depth, and B is

the magnetic field.

Formula (5) explains that the superconductor excludes the mangetic field, where its strength

exponentially diminishes according to the depth of its permiability into the magnetic field on

the surface of the superconductor.

Using formula (2), ∇×A = B, and Faraday’s Law, we have J = −ρe2

mc
A, which is known as

London Equation proposed by the London brothers.

In 1950, F. London presented the concept of fluxoid by presenting

c

e

∮
P · ds1 =

c

e

∮
mvd · ds1 +

∮
A · ds1 (6)

where the left side is floxoid and the first term on the right is the electric current and the second

term is the magnetic flux.

Bohr’s quantum condition can be applied to the left side of formula (6), thus
∮

P · ds1 = nh, (7)

where n = 1, 2, 3, . . . and h is Planck’s constant.

From this, the estimated value of the minimum unit of fluxoid is given by

∴ φ =
hc

e
. (8)

Formula (6) can be induced in relation to formula (2). The electrons in the superconductor

creates the electric current when accelerated by the force generated by the electric field, E, thus,

under the assumption that the electric field E is produced by Faraday’s Law, we have

m
dvd

dt
= eE = −e

c

dA

dt
. (9)

If we rearrange this equation, we have

d

dt

[
mvd +

e

c
A

]
= 0 (10)

[
mvd +

e

c
A

]
= P = constant. (11)
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Formula (6) is induced by applying line integral on both sides of the formula (11).

Also, formula (6) shows that the external magnetic flux becomes quantized going through

the ring hole of superconductor by applying the line integral on its inside path assuming that

there is no electric current in the deep inside of the relatively thick superconductor.

nh = 0 +
e

c

∮
A · ds1, (12)

φ =
hc

e
is induced from the formula (12).

However, its measured value from the superconducting ring was

φ =
hc

2e
= 2.07× 10−15T − m2. (13)

Currently, we believe that the supercurrent is carried by pairs of electrons.

II. The problem of the fluxoid concept

1) From the fluxoid formula,
c

e

∮
P · ds1 =

c

e

∮
mvd · ds1 +

∮
A · ds1, P on the left side of

the equation represents the motion of electrons and the first term on the right side, vd can be

interpreted as the drifting velocity of the electron. This interpretation is supported by Bohr’s

Quantum Condition that is applied to P , which comes from the application of the line integral

on the momentum with its motion path. vd the electric curent of the superconductor may be

interpreted as the drift velocity. However, considering the drift velocity is 1mm per second and

the velocity of the electron is usually several thousand km per second in the Fermi level range, we

can conclude that formula (6) can not characterize the physical principle of the superconductor

due to the lack of correspondence between two numbers of both sides of the formula.

2) The formula, nh = 0 +
e

c

∮
A · ds1 can not provide authentic explanation even though it

attempts to indicate that the magnetic flux becomes quantized under the assumed condition of

no electric current in the deep inside of the superconductor.

To be specific, by combining J = −ρe2

mc
A, Ampere’s Law ∇ × B =

4π

c
J , and B = ∇ × A,

we have ∇× (∇× A) = −4πρe2

mc2
A.

Rearranging this equation and using ∇ ·A = 0 yields ∇2A =
4πρe2

mc2
A, then A = A0e

−x
λ .

That is, from J → 0 and A → 0 in the deep inside of the superconductor, the accurate

definition of formula (13) is given by

nh = 0 + 0 (14)
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This formula shows that the existing evidence that the exterior magnetic flux passing the ring

hole of the superconductor becomes quantized is incorrect.

Since there is a flow of the exterior magnetic field in the hole of superconductor even with

J → 0 and A → 0 in the deep inside of the superconductor, one can assert that the second term

on the right side becomes
∮

A · ds1 = φ rather than
∮

A · ds1 = 0.

However, this proof may show an alternative theory that the first term on the right side

of the equation can not be
∮

mvd · ds1 = 0 because the magnetic field in the ring of the

superconductor reveals not only the exterior magnetic field but also the magnetic field created

by J , the superficial electric current. Therefore, this shows that the evidence of the magnetic

flux quantum using the formula (13) calcuating the exterior magnetic field that passes the ring

at the line integral path inside of the superconductor is a fallacy.

3) Currently accepted fluxoid concept does not match the experimental result obtained from

Little-park. To explain the experimental result, n = 0 should be possible on the left side of the

formula (6). We can not define n = 0 as long as we use the Bohr’s quantum condition to define

the fluxoid. If n = 0, P = 0, which contradicts the fact the any particle confined in a certain

space can not take 0 value according to the Uncertainty Principle.

III. A new theory

The problem shown in the present fluxoid concept essentially comes from the lack of under-

standing the Canonical Momentum Equation. Since the particle confined within limited space

must take other than 0 value, we need to reestablish the concept of the electric current of the

superconductor within the definition of the Uncertainty Principle.

In normal circumstances, the electric current is converted to the drift velocity of electron

within a conductor. The velocity sum becomes 0 without the electric current. This means there

is no the net velocity or momentum. The electrons exist in multiple and gain its own velocity

in case of no electric current in the conductor. However, If we total the velocity of all electrons,

the net momentum is 0 as given by ∑

k

mvk = 0, (15)

where the electric current in the solid is delt under this premise like fomula (15).

The electrons move as shown in formula (16) when E, the constant electric field is maintained

for the duration of t, the time.

mvf − mvi = eEt, (16)
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where mvf is the final momentum and mvi is the initial momentum, which do not take 0 value

according to the Uncertainty Principle.

If we sum up the velocity of all electrons using the formula (16),
∑
k

(mvfk − mvik) becomes
∑
k

mvfk−
∑
k

mvik,
∑
k

mvik = 0 according to the formula (15), then, we have the final
∑
k

mvfk =
∑
k

eEkt.

If we sum it up, from formula (15) the sum of the beninning momentum becomes 0, and

remain the sum of the velocity element that are in the same direction in the eletric field E within

the electron’s end momentum elements.

Therefore, we present the drift velocity, vd that was used by London brothers leads to

mvf − mvi = mvd = eEt. (17)

Using this formula, we have

m
dvf

dt
− m

dvi

dt
= m

dvd

dt
= eE. (18)

Since m
dvi

dt
in formula (18) is not relevant to the electric field, E, then its value becomes

m
dvi

dt
= 0. Using Faraday’s law E = −1

c

dA

dt
, we have

m
dvf

dt
= m

dvd

dt
= eE = −e

c

dA

dt
. (19)

The difference between formula (19) and (1) is that there are more accelerated terms in the

velocity of the electron, these term are those of the drift velocity and equivalence.

From the formula (19), we have

m
dvf

dt
= −e

c

dA

dt
(20)

m
dvd

dt
= −e

c

dA

dt
. (21)

Examining these two formulas, we can speculate that F . London did not distinguish between

(20) and (21) while developing the fluxoid concept.

Formula (20) provides a formula that is similar to the relational expression of the Canonical

Momentum

mV (initial) = mv(final) +
e

c
A. (22)

From formula (21), we can find London Equation and a new concpt of fluxoid

constant = mvd +
e

c
A, (23)
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where the constant includes 0, vd is the drift velocity of the electron, A is vector potential. Since

a constant is calcuated by adding two term, Bohr’s quantum condition can not be applied here

due to its irrelavance to the momentum of electron. If a constant is 0, it would coincide with

London Equation, otherwise it indicates a new fluxoid concept.

In formula (22), mV and mv represent the momentum that indicates the status of each

electron, thus, Bohr’s quantum condition can be applied and can not take 0 for their velocity

based on the Uncertainty Principle.

The following is an attempt to show that the magnetic flux become quantized in the super-

conductor with a hole like the one in the ring of a superconductor.

For convenience, we can substitute mv1 and mv2 for mV and mv into the formula (22), so

mv1 = mv2 +
e

c
A. (24)

Apply dot product on both sides of formula (24) with v1, then

mv1 · v1 = mv2 · v1 +
e

c
A · v1. (25)

By applying dot product on both sides of formula (24) with v2, then we have

mv1 · v2 = mv2 · v2 +
e

c
A · v2. (26)

The combination of (25) and (26) becomes

mv1 · v1 + mv1 · v2 = mv2 · v1 +
e

c
A · v1 + mv2 · v2 +

e

c
A · v2. (27)

This shows that the second term of the left side of formula (27) and the first term of the right

are identical. If we rearrange (27),

mv1 · v1 = mv2 · v2 +
e

c
A · v1 +

e

c
A · v2. (28)

Applying (integral) calculus on formula (28), we have
∫

mv1 · v1dt =
∫

mv2 · v2dt +
e

c

∫
A · v1dt +

e

c

∫
A · v2dt. (29)

This can be simplified to
∫

mv1 · ds1 −
∫

mv2 · ds2 =
e

c

∫
A · ds1 +

e

c

∫
A · ds2. (30)

Bohr’s quantum condition can be applied to the two term of the left side of formula (30) because

the momentum of electrons becomes quantized. Thus,

n1h = n2h +
e

c
φ1 +

e

c
φ2, (31)
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where n1 and n2 are integer with vaues other than 0.

Since the magnetic flux in the ring of superconductor is identical regardless of the electron’s

motion path, we know that (φ1 = φ2 = φ), so we have

φ =
hc

2e
(n1 − n2). (32)

I attempt to calculate the exterior magnetic flux that passes the ring of a superconductor

by using Faraday’s Law even though it would be essentially the same proof as presented above.

Faraday’s Law is ∫
E · ds = −1

c

dφ

dt
(33)

We can substitute eE =
dp

dt
into the left side of the formula since there is no electric resistancy

in the superconductor, thus, ∫
dp

dt
· ds = −1

c

dφ

dt
. (34)

If we develop the formula (34),

1
2
mv2 · v2 −

1
2
mv1 · v1 = −1

c

dφ

dt
. (35)

Applying calculus on both sides of (35)

1
2

∫
mv2 · v2dt − 1

2

∫
mv1 · v1dt = −

∫
1
c

dφ

dt
dt (36)

1
2

∫
mv2 · ds2 −

1
2

∫
mv1 · ds1 = −

∫
1
c
dφ (37)

If magnetic field is delivered under the condition that magnetic field is missing in the ring of the

superconductor, we have

1
2
n2h − 1

2
n1h = −1

c
(φ− 0) (38)

∴ φ =
hc

2e
(n1 − n2). (39)

The exterior magnetic flux becomes quantized in the ring of superconductor as shown above,

therefore, using formula (21) the fluxoid is given by
∫

m
dvd

dt
dt = −e

c

∫
dA

dt
dt (40)

∫
d(mvd) = −e

c

∫
dA. (41)
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As shown in the experiment of Little-park, assuming that vortex gets inserted inside of the ring

hole of the superconductor, formula (41) evolves by using definite integral

[mvd − 0] = −e

c
[A − A0] (42)

mvd +
e

c
A =

e

c
A0. (43)

Applying contour integral on both sides of formula (43)
∮

mvd · ds +
e

c

∮
A · ds =

e

c

∮
A0 · ds. (44)

Using formula (39) we can rearrange the right side of the formula (44) into

mc

ρe2

∮
J · ds +

∮
A · ds = nφ0, (45)

where φ0 =
hc

2e
and J = eρvd.

As a new fluxoid concept, formula (45) coincides with the Little-park experiment, where n is

integer including 0 value, and is free of problems that may cause a conflict with the Uncertainty

Principle.

IV. Conclusion

The existing fluxoid concept contained a problem that contradicts the Uncertainty Principle

by using the Canonical Momentum formula because of no specified distinction between the

velocity and the drift velocity of the electron. To resolve this problem, we strictly defined the

electric current in the superconducting ring and the fluxoid concept to develop an outcome

that two electrons do not accompany in the superconducting state. This result is based on the

fact that the minimum value of exterior magnetic flux,φ is theoretically hc/2e induced from

the Canonical Momentum Equation and Faraday’s Law and the premises of Bohr’s Quantum

Condition must be satisfied before and after the electron’s momentum in the superconductor

takes its effect on the magnetic field.

This outcome may be a useful reference in research related to the superconducting phe-

nomenon.
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