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Abstract

Zanaboni Theory is mathematically analyzed in this paper. The con-
clusion is that Zanaboni Theorem is invalid and not a proof of Saint-
Venant’s Principle; Discrete Zanaboni Theorem and Zanaboni’s energy
decay are inconsistent with Saint-Venant’s decay; the inconsistency, dis-
cussed here, between Zanaboni Theory and Saint-Venant’s Principle pro-
vides more proofs that Saint-Venant’s Principle is not generally true.
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1 Introduction

Saint-Venant’s Principle in elasticity has its over 100 year’s history [1, 2]. Boussi-
nesq and Love announced general statements of Saint-Venant’s Principe [3, 4].
The early and important researches contributed to the principle are the articles
[3-9]. Zanaboni [7, 8, 9] developed a theory trying to concern Saint-Venant’s
Principle in terms of work and energy. The theory was concerned later by
Biezeno and Grammel [10], Pearson[11], Fung[12], Robinson[13], Maissoneuve[14],
Toupin[15, 16], Horgan and Knowles [17] , Horgan[18], Zhao[19] and Knops and
Villaggio [20, 21]. It is evident that Zanaboni Theory has profound influence on
the history and development of Saint-Venant’s Principe .

In the present paper, we discuss invalidity of Zanaboni Theorem and incon-
sistency between Zanaboni Theory and Saint-Venant’s Principle.
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2 Zanaboni Theorem

In 1937, Zanaboni published a theorem trying to deal with Saint-Venant’s Prin-
ciple of bodies of general shape [7]. The result played an influential role in the
history of research on Saint-Venant’s Principle, restoring confidence in formu-
lating the principle [16] .

Zanaboni Theorem is described as follows [7]:
Let an elastic body of general shape be loaded in a small sphere B by P ,

an arbitrary system of self-equilibrated forces, otherwise the body is free. Let
S′ and S′′ be two arbitrary nonintersecting cross sections outside of B and S′′

be farther away from B than S′ . Suppose that the body is cut into two parts
at S′ . The system of surface tractions acting on the section S′ is R′, and the
total strain energy that would be induced by R′ in the two parts is denoted by
UR′ . Similarly, we use R′′ and UR′′ for the case of the section S′′ which would
also imaginarily cut the body into two pieces (See Fig.1).

Then, according to Zanaboni,

0 < UR′′ < UR′ . (1)

3 Zanaboni Theorem is Invalid

3.1 Zanaboni’s Proof

The proof of Zanaboni Theorem is (See [7, 10, 12, 13]) :
Assume that the stresses in the enlarged body C1 + C2 are constructed by

the following stages . First, C1 is loaded by P . Second, each of the separate
surfaces S1 and S2 is loaded by a system of surface traction R. Suppose that R
is distributed in such a way that the deformed surfaces S1 and S2 fit each other
precisely, so that displacements and stresses are continuous across the joint of
S1 and S2. Then C1 and C2 are brought together and joined with S as an
interface. The effect is the same if C1 and C2 were linked in the unloaded state
and then the combined body C1 + C2 is loaded by P .(See Fig.2)

Thus
U1+2 = U1 + UR1 + UR2 + UPR, (2)
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where U1+2 is the strain energy stored in C1 + C2 , U1 is the work done by P
in the first stage, UR2 is the work done by R on C2 in the second stage, UR1 is
the work done by R on C1 if C1 were loaded by R alone , UPR is the work done
by P on C1 due to the deformation caused by R , in the second stage.

Now the minimum complementary energy theorem is used. All the actual
forces R are considered as varied by the ratio 1 : (1+ε) , then the work UR1 and
UR2 will be varied to (1+ ε)2UR1 and (1+ ε)2UR2 respectively because the load
and the deformation will be varied by a factor (1+ ε) respectively. UPR will be
varied to (1 + ε)UPR because the load P is not varied and the deformation is
varied by a factor (1 + ε) . Hence, U1+2 will be changed to

U ′
1+2 = U1 + (1 + ε)2(UR1 + UR2) + (1 + ε)UPR. (3)

The virtual increment of U1+2 is

∆U1+2 = ε(2UR1 + 2UR2 + UPR) + ε2(UR1 + UR2). (4)

For U1+2 to be a minimum, it is required from Eq.(4) that

2UR1 + 2UR2 + UPR = 0. (5)

Substituting Eq.(5) into Eq.(2), he obtains

U1+2 = U1 − (UR1 + UR2). (6)

By repeated use of Eq.(6) for U1+(2+3) and U(1+2)+3 (See Fig.1), then

U1+(2+3) = U1 − (UR′1 + UR′(2+3)), (7)

U(1+2)+3 = U1+2 − (UR′′(1+2) + UR′′3)

= U1 − (UR1 + UR2)− (UR′′(1+2) + UR′′3). (8)

Equating Eq.(7) with Eq.(8), he obtains

UR′1 + UR′(2+3) = UR1 + UR2 + UR′′(1+2) + UR′′3. (9)

It is from Eq.(9) that

UR′1 + UR′(2+3) > UR′′(1+2) + UR′′3 (10)

because UR1 and UR2 are essentially positive quantities . Equation (10) is Eq.(1)
, on writing UR′ for UR′1 + UR′(2+3), etc. And Eq.(1) is “ proved ”.
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3.2 Confusion in Zanaboni’s Proof

In Zanaboni’s proof (See [7, 10, 12, 13]), Eq.(8) is deduced by confusing. The
first is the confusion of the construction (1 + 2) in Fig.1 , where its “ far end
” is loaded ( by R′′ ) , with the construction C1 + C2 in Fig.2, where its “ far
end ” is free. The second confusion is that of work W and energy U , especially
W1+2 and U1+2. In fact, Eq.(2) should be revised to be

U1+2 = W1 +WR1 +WR2 +WPR (11)

and Eq.(6) should be corrected to

U1+2 = W1 − (WR1 +WR2). (12)

And then the use of Eq.(12) should result in (See Fig.1)

U1+(2+3) = W1 − (WR′1 +WR′(2+3)), (13)

U(1+2)+3 = W1+2 − (WR′′(1+2) +WR′′3). (14)

Thus Eq.(8) , then Zanaboni Theorem, which would be equivalent to

0 < WR′′ < WR′ , (15)

(See Eq.(1)) , is not deducible from Eq.(12), Eq.(13) and Eq.(14) because of

W1+2 ̸= U1+2, (16)

as is reviewed by Zhao [19].

4 Energy Theorem for Zanaboni Problem

4.1 Understanding UR′ and UR′′

From Eq. (2) we know that UR1 is the work consisting of the work done by
R on the displacement induced by R itself and the work done by R on the
displacement induced by P , regardless of the claim in the proof that UR1 is the
work done by R on C1 if C1 were loaded by R alone . In other words, UR1 is the
work done by R on the resultant displacement of the displacement induced by
R itself and the displacement induced by P . Therefore, UR1 + UR2 is the total
work done by R on the displacements of the two faces of section S, then UR′ and
UR′′ are the total work done by R′ and R′′ on the displacement of sections S′

and S′′ respectively. On the other hand, it is reasonable to understand UR′ and
UR′′ in this way if Zanaboni Theorem Eq.(1) tends to express Saint-Venant’s
Principle in a sense.
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4.2 Energy Theorem for Zanaboni Problem

If energy decay has to be discussed for Zanaboni Problem, we have, from the
understanding of UR′ and UR′′ in the last subsection, that

UR′′ = UR′ = 0, (17)

where UR′ and UR′′ are the “ total ” strain energies induced by R′ and R′′

respectively in the related parts. We will prove Eq.(17) in the following subsec-
tions.

4.3 Proof of Energy Theorem, Equation of Continuity of
Stress and Displacement, First Disproof of Zanaboni
Theorem

We consider the section S, which is outside B and cuts the body into two pieces
C1 and C2 and where R1 and R2 are the tractions on the opposite sides of the
section respectively (See Fig.2 ).

We suppose that Cartesian coordinates are established for defining stresses
and displacements of the body. Then continuity, across the section, of stresses
and displacements results in Eq. (17). In fact, for linear elasticity, the work
done by the traction R1 on the right side of the section, S1, is

WR1 =
1

2

∫
S

∫
(

3∑
i=1

3∑
j=1

τijnjui) ds (18)

where τij are the stress components at the face S1, nj are the direction cosines
of the normal to the right face S1 and ui are the displacement components of
the face S1.

The work done by the traction R2 on the left side of the section, S2, is

WR2 =
1

2

∫
S

∫
[

3∑
i=1

3∑
j

τij(−nj)ui] ds (19)

where τij are the stress components at the face S2 because of continuity of stress,
(−nj) are the direction cosines of the normal to the left face S2 and ui are the
displacement components of the face S2 because of continuity of displacement.
From Eq.(18) and Eq.(19) we have the total work done by R on the section as

WR = WR1 +WR2 = 0. (20)

Equation (20) is defined to be the equation of continuity of stress and dis-
placement for Zanaboni’s problem.

Using Eq.(20) repeatedly for R′ and R′′ ( or S′ and S′′ ) in Fig.1 , it is
obtained that

WR′′ = WR′ = 0. (21)
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The total work WR′′ and WR′ are equal to the total induced strain energy
UR′′ and UR′ respectively , and so Eq.(17) is deduced from Eq.(21), Zanaboni
Theorem Eq.(1) is disproved.

4.4 Another Proof of Energy Theorem, Equation of En-
ergy Conservation, Second Disproof of Zanaboni The-
orem

The energy of the body without sectioning (See Fig.2) is

U = WP (22)

where WP is the work done by the load P .
The energy of the imaginarily-sectioned body (See Fig.2) is

U(C1+C2) = WP +WR1 +WR2 (23)

where WP is the work done by the load P , WR1 and WR2 are the work done
by R1 and R2 respectively. It is obtained from Eq.(22) and Eq.(23) that

WR = WR1 +WR2 = 0 (24)

because
U = U(C1+C2). (25)

Equation (24) is defined to be the equation of energy conservation for Zan-
aboni’s problem because of the argument put forward in the next subsection.

Using Eq.(24) repeatedly for R′ and R′′ ( or S′ and S′′ ) in Fig.1 , Eq.(21)
and then Eq.(17)) are proved, Zanaboni Theorem Eq.(1) is disproved again.

4.5 Absurdity of Zanaboni Theorem Violating the Law of
Conservation of Energy

If Zanaboni Theorem Eq.(1) were true , it would be required that

WR = WR1 +WR2 > 0. (26)

Then it would be deduced from Eq.(22) , Eq.(23) and Eq.(26) that

U(C1+C2) − U = WR1 +WR2 > 0, (27)

which means energy growth of the body by imaginary sectioning. Then one
could accumulate strain energy simply by increasing the “imaginary” cuts sec-
tioning the elastic body. That violates the law of energy conservation because
energy would be created from nothing only by imagination, as is reviewed by
Zhao [19].
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5 Variational Theorems for Zanaboni’s Prob-
lem, Conditions of Joining

5.1 Variational Theorem of Potential Energy , Condition
of Joining, Third Disproof of Zanaboni Theorem

From the construction of the body C1 +C2 in Section 3.1 ( See Fig.2) we know
that S1 and S2 are the parts of the boundaries of C1 and C2 for joining, or
the opposite sides of the interface S inside the body C1 + C2 . In the proof of
Zanaboni (See [7, 10, 12, 13]), he treats S1 and S2 in the latter way because
stress-strain relation which is established inside elastic bodies has been used for
the argument , that is, when R is considered as varied by the ratio 1 : (1+ε), the
deformation is considered as varied by a factor (1 + ε) . However, to establish
the variational theorem of potential energy for Zanaboni’s problem , we deal
with the structure of the body in the former way, that is :

Considering S1 and S2 are the joint boundaries of C1 and C2 , the potential
energy or the strain energy in the combined body is

Up
(C1+C2)

= WP +WR1 +WR2 , (28)

where Up
(C1+C2)

is the strain energy stored in C1 + C2 ; WP is the work done

by P ; WR1 and WR2 are the work done by R1 and R2 respectively.
Suppose that the displacements on S1 and S2 are varied by the ratio 1 : (1+ε)

respectively and the loads R1 and R2 remain unchanged, then it is easy to find,
for linear elasticity, from Eq.(28), that

δUp
(C1+C2)

= ε(WR1 +WR2). (29)

And the condition of stationarity of Up
(C1+C2)

, according to Eq.(29), is

WR = WR1 +WR2 = 0. (30)

Therefore, the variational theorem of potential energy for Zanaboni’s prob-
lem is:

The potential energy Up
(C1+C2)

stored in the combined body C1 + C2 is

stationary as the total work WR done by the load R on the joint surface S
equals zero.

Equation (30) is the condition of joining C1 and C2 to construct the body
C1+C2 for Zanaboni’s problem, which leads to Eq.(17) because WR is equal to
UR.

5.2 Variational Theorem of Complementary Energy , I-
dentical Condition of Joining, Fourth Disproof of Zan-
aboni Theorem

Considering S1 and S2 are the joint boundaries of C1 and C2 , the complemen-
tary energy in the combined body , which is equal to the potential energy in
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the combined body for linear elasticity, is

U c
(C1+C2)

= WP +WR1 +WR2 , (31)

where U c
(C1+C2)

is the complementary energy in C1 +C2 ; WP is the work done
by P ; WR1 and WR2 are the work done by R1 and R2 respectively.

Suppose that R1 and R2, the loads on S1 and S2, are varied by the ratio
1 : (1+ε) respectively and the displacements on S1 and S2 remain fixed without
variation, then it is easy to find, from Eq.(31), that

δU c
(C1+C2)

= ε(WR1 +WR2). (32)

And the condition of stationarity of U c
(C1+C2)

, according to Eq.(32), is

WR = WR1 +WR2 = 0. (33)

Therefore, the variational theorem of complementary energy for Zanaboni’s
problem is:

The complementary energy U c
(C1+C2)

in the combined body C1 + C2 is sta-
tionary as the total work WR done by the load R on the joint surface S equals
zero.

Equation (33) is the condition of joining identical to Eq.(30) for Zanaboni’s
problem, which leads to Eq.(17) because WR is equal to UR.

We emphasize the consistency, equivalence or identity of the equation of
continuity of stress and displacement , Eq.(20), the equation of energy conser-
vation, Eq.(24) and the condition of joining, Eq.(30) or Eq.(33), and each of
them results in Eq.(17), instead of Eq.(1). Thus the argument, for example, put
forward by Fung [12] , that Zanaboni Theorem is a mathematical formulation
or proof of Saint-Venant’s Principle is unreasonable because of the invalidity of
Zanaboni Theorem.

6 Discrete Zanaboni Theorem and Discussion

6.1 Discrete Zanaboni Theorem

By means of the reciprocal theorem, Knops and Villaggio prove, alternatively,
“ Zanaboni’s fundamental inequality ”

VΩ2(ui) ≤ VΩ1(u
(1)
i )− VΩ(ui), (34)

where VΩ2(ui) and VΩ(ui) are the strain energy stored in Ω2 and Ω respectively;

VΩ1(u
(1)
i ) is the work done by P on Ω1; Ω2, Ω1 and Ω correspond to C2, C1

and C1+C2 in Fig.2 respectively, for linear homogeneous isotropic compressible
elastic material. [20]

By elongation of the body [20], Eq.(34) is developed into

VΩ(p)
(u

(p)
i ) ≤ VΩ(p−1)(u

(p−1)
i )− VΩ(p)(u

(p)
i ), p = 2...n, (35)
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where

Ω(p) =

q=p∪
q=1

Ωq. (36)

Based upon Dirichlet’s principle, they provide an alternative derivation of “
Zanaboni’s fundamental inequality ”

VΩ(p+1)
(u(p+1)) + VΩ(p+1)(u(p+1)) ≤ VΩ(p)(u(p)) (37)

for anisotropic non-homogeneous compressible linear elastic material.[21]
For both cases, linear homogeneous isotropic compressible elastic material

and anisotropic non-homogeneous compressible linear elastic material, Knops
and Villaggio give

lim
n→∞

VΩ(n)(u(n)) = V ≥ 0, (38)

and then obtain

lim
n→∞

VΩ(n)
(u(n)) = 0 (39)

from Eq.(35) and Eq.(37) respectively. [20, 21]
Equation (39) is considered to be “ Saint-Venant’s principle ” by Knops and

Villaggio. [20, 21]

6.2 Inconsistency between Discrete Zanaboni Theorem
and Saint-Venant’s Principle: Our Discussion

Each of Eq. (35) and Eq.(37) means

VΩ(n)
(u(n)) ≤ VΩ(n−1)(u(n−1))− VΩ(n)(u(n)). (40)

From Eq.(38), Eq.(39) and Eq.(40), we have two solutions of “ limit of
VΩ(n−1)(u(n−1)) ” :

A.
lim

n→∞
VΩ(n−1)(u(n−1)) > 0, (41)

B.
lim

n→∞
VΩ(n−1)(u(n−1)) = 0. (42)

If it is accepted that effect of body elongation is equivalent to effect of
increase of distance from the load , Eq. (39) and Eq.(41) may correspond to “
discretized ” Saint-Venant’s decay as long as

Ω(n) ̸= ∅ (43)

because it is possible from them, in virtue of positive-definiteness, that

lim
n→∞

ρ(x) = 0, x ∈ Ω(n); (44)

lim
n→∞

ρ(x) > 0, x ∈ Ω(n−1),
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where ρ(x) is strain energy density distribution.
However, combination of Eq.(39) and Eq.(42) is inconsistent with Saint-

Venant’s decay because they imply

lim
n→∞

ρ(x) = 0, x ∈ Ω(n) and x ∈ Ω(n−1), (45)

and there is no decay of strain energy density at all.
Furthermore, the inconsistency, discussed here, between Discrete Zanaboni

Theorem and Saint-Venant’s decay provides a kind of proof, added to those in
the article [19], that Saint-Venant’s Principle is not generally true. [19]

7 Zanaboni’s Energy Decay and Related Con-
tributions

7.1 Zanaboni’s Energy Decay

A semi-infinite prismatic cylinder Ω = D × [0,∞) of uniform bounded plane
cross-section D, whose boundary ∂D is Lipschitz continuous, is occupied by an
anisotropic nonhomogeneous compressible linear elastic material in equilibrium
subject to zero body force, self-equilibrated load Pi distributed pointwise over
the baseD×{0} and an otherwise traction-free surface. Introducing the notation

Ω(x3) = D × [x3,∞) (46)

so that Ω = Ω(0), Zanaboni obtains the energy decay [8, 21]

VΩ(x3)(u) = VΩ(u) exp(

∫ x3

0

p(η)dη) (47)

by integrating

p(x3) ≡
V ′
Ω(x3)

(u)

VΩ(x3)(u)
≤ 0. (48)

Zanaboni postulates

x−1
3

∫ x3

0

p(η)dη = −2k−1 ∀x3 ≥ 0, (49)

where k > 0, for establishment of explicit energy decay. [9, 21]

7.2 Inconsistency between Zanaboni’s Energy Decay and
Saint-Venant’s Principle: Our Comment

The limit
lim

x3→∞
Ω(x3) (50)

10



is not mathematically determined in Zanaboni’s theory and , reasonably, has
three options.

If

lim
x3→∞

Ω(x3) = ∞ (51)

or 0 < lim
x3→∞

Ω(x3) = ω < ∞,

then, in virtue of positive-definiteness,

lim
x3→∞

ρ(x) = 0, x ∈ Ω(x3), (52)

where ρ(x) is the strain energy density distribution in Ω(x3). Equation (52)
corresponds to Saint-Venant’s decay.

However, if
lim

x3→∞
Ω(x3) = 0, (53)

then
lim

x3→∞
ρ(x) = C > 0, x ∈ Ω(x3), (54)

where C takes any positive value.
Equation (54) is inconsistent with Saint-Venant’s decay. The inconsistency,

discussed here, between Zanaboni’s energy decay and Saint-Venant’s decay pro-
vides a proof, similar to those in the article [19], that Saint-Venant’s Principle
is not generally true. [19]

7.3 Zanaboni’s Energy Decay and Toupin-type Energy De-
cay

Following Eq.(47), energy decays with explicit decay rates are established by
Toupin [15] and Berdichevskii [22], trying to formulate Saint-Venant’s Principle
in the similar way. Zhao reviews this type of energy decay in [19], conclud-
ing by explicit mathematical analysis that Toupin’s Theorem is not a formula-
tion of Saint-Venant’s Principle and Toupin-type decay is inconsistent with the
principle. The comment on Toupin’s Theorem by Zhao applies in principle to
Zanaboni’s energy decay and vice versa. [19]

7.4 Knops and Villaggio’s Illustration

By the way, Knops and Villaggio establish an explicit energy decay

VΩ(x3)(u) ≤ [
Q2 exp(−λ

(1)
1 x3)

(1− exp(−2λ
(1)
1 x3))2

+
Q3 exp(−2λ

(1)
1 x3)

(1− exp(−2λ
(1)
1 x3))4

]

∫
D
PiPidS

(1− q)2
(55)

for an anisotropic nonhomogeneous compressible linear elastic semi-infinite non-
prismatic cylinder to illustrate Zanaboni’s formulation further.
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It seems to us that, mathematically, Eq.(55) is a linear combination of two
weighted energy decays of Toupin-type. [19]

Numerical comparison of decay rates is given by Knops and Villaggio, con-
cluding that “ decay rates estimated using Zanaboni’s procedure compare favourably
with those calculated from known exact solutions , and represent considerable
improvement on those typically derived by different inequalities, even for non-
prismatic cylinders. ” [21]

It seems to us that, logically, the validity of comparison means that Eq. (55)
formulates no more than a Knops and Villaggio’s version of Toupin-type decay.
[19]

8 Zanaboni Theory and Saint-Venant’s Princi-
ple

Boussinesq, Mises and Sternberg try to express Saint-Venant’s Principle in terms
of stress or dilatation [3, 5, 6] , but Zanaboni Theory tries to express Saint-
Venant’s Principle mathematically in terms of work and energy [7, 8, 9]. This
“ pioneer ” work has profound influence on study of the principle.

Biezeno, Pearson, Fung and Robinson [10, 11, 12, 13] include Zanaboni The-
orem in their books individually. Fung, for example, accounts it “ one possible
way to formulate Saint-Venant’s principle with mathematical precision ”, declar-
ing “ the principle is proved ”. [12]

Toupin, however, does not evaluate Zanaboni Theorem with high opinion.
He remarks at first that

“ While the theorems of Boussinesq, von Mises , Sternberg and Zanaboni
have independent interest, I have been unable to perceive an easy relationship
between these theorems and the Saint-Venant Principle ” [15] , then comments
in another way in Ref.[16]:

“ In 1937, O. Zanaboni proved an important theorem for bodies of general
shape which begins to restore confidence in Saint-Venant’s and our own intuition
about the qualitative behavior of stress fields. ” He continues his remark by
saying that

“ It is possible to sharpen Zanaboni’s qualitative result and to derive a
quantitative estimate for the rate at which the elastic energy diminishes with
distance from the loaded part of the surface of an elastic body.” Toupin’s results
are cited and explained afterwards.

It seems that the establishment of the well-known Toupin Theorem of energy
decay should be the achievement of sharpening Zanaboni’s “ qualitative ” result.
[15, 16] However, Horgan and Knowles review Zanaboni’s work, saying

“ The notion of examining the distribution of strain energy in an elastic body
apparently first appeared in papers concerned with Saint-Venant’s principle by
Zanaboni (1937a,b,c); Zanaboni did not, however, estimate the rate of decay of
energy away from the loaded portion of the boundary , and his results do not
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appear to be directly related to those of Toupin (1965a) or Knowles (1966). ”
[17]

It seems that Horgan and Knowles do not qualify mathematically Zanaboni’s
results for formulation of Saint-Venant’s Principle. [17, 18]

Exploring “ Zanaboni’s version of Saint-Venant’s principle ” , Knops and
Villaggio derive “ Zanaboni’s fundamental inequality ” by different methods
, review and illustrate Zanaboni’s energy decay, extend the version to elasto-
plastic bodies, nonlinear elasticity and linear elasticity with body force. [20, 21]

Considering its influence on the history and development of Saint-Venant’s
Principle, further academic survey of Zanaboni’s results is inevitable. Our re-
sults of mathematical analysis in this paper tell that Zanaboni Theorem is in-
valid, Discrete Zanaboni Theorem and Zanaboni’s energy decay are inconsistent
with Saint-Venant’s decay. The inconsistency, discussed in this paper, between
Zanaboni Theory and Saint-Venant’s Principle provides more proofs, added to
those in the article [19], that Saint-Venant’s Principle is not generally true. [19]

9 Conclusion

A. Zanaboni Theorem is invalid, and is not a proof of Saint-Venant’s Principle.
B. Discrete Zanaboni Theorem is inconsistent with Saint-Venant’s decay.
C. Zanaboni’s energy decay is inconsistent with Saint-Venant’s decay.
D. The inconsistency, discussed in this paper, between Zanaboni Theory and
Saint-Venant’s Principle provides more proofs that Saint-Venant’s Principle is
not generally true.
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