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This is the abstract. The problem of statement of Saint-
Venant’s Principle is concerned. Statement of Boussinesq
or Love is ambiguous so that its interpretations are in con-
tradiction with each other. Rationalized Statement of Saint-
Venants Principle of elasticity is suggested to rule out the
ambiguity of Statements of Boussinesq and Love. Rational
Saint-Venant’s Principle is suggested to fit and guide appli-
cations of the principle to fields of continuum physics and
cover the analogical case as well as the non-analogical case
discovered and discussed in this paper . “ Constraint-free
” problems are suggested and “ Constraint-free ” Rational
Saint-Venant’s Principle or Rational Saint-Venant’s Princi-
ple with Relaxed Boundary Condition is developed to gen-
eralize the principle and promote its applications to field-
s of continuum physics . Applications of Analogical Ratio-
nal Saint-Venant’s Principle and “ Constraint-free ” Ratio-
nal Saint-Venant’s Principle are exemplified, emphasizing “
properness ” of the boundary-value problems. Three kinds of
properly posed boundary-value problems, i.e., the boundary-
value problem with the undetermined boundary function, the
boundary-value problem with the implicit boundary condi-
tion and the boundary-value problem with the explicit bound-
ary condition, are suggested for both “ constrained ” and “
constraint-free ” problems.

1 Introduction
In 1855 Saint-Venant published his famous “ principle

” [1,2]. Boussinesq (1885) and Love (1927) announce state-
ments of Saint-Venant’s Principe respectively [3, 4]. Trus-
dell (1959) asserts, from the perspective of Rational Mechan-
ics, that if Saint-Venant’s Principle of equipollent loads is
true, it “ must be a mathematical consequence of the gen-
eral equations ” of linear elasticity [5]. It is obvious that
Saint-Venant’s Principle has become an academic attraction
for contributors of Rational Mechanics [6-9] .

Authors understand the principle, actually, in different
ways. We analyze the two different interpretations of the s-
tatements of Boussinesq and Love in this paper and find out
that the interpretations are in contradiction with each oth-

er, and the statements are ambiguous. Therefore, statement
of Saint-Venant’s Principle needs to be rationalized. Then
Rationalized Statement of Saint-Venants Principle , whose
interpretation is itself other than something else, is suggest-
ed to rule out the elements of irrationality of Statements of
Boussinesq and Love.

Authors try to use Saint-Venant’s Principle by means
of analogy in areas of continuum physics [6-9]. Rational
Saint-Venant’s Principle is suggested here to fit and guide
applications of the principle to fields of continuum physics
and cover the analogical case as well as the non-analogical
case discovered and discussed in this paper.

We find that the constraint posed frequently by means
of analogy for discussion of Saint-Venant’s Principle is un-
necessary for Saint-Venant’s decay and could be ruled out
, and so “ constraint-free ” problems are suggested and “
Constraint-free ” Rational Saint-Venant’s Principle or Ratio-
nal Saint-Venant’s Principle with Relaxed Boundary Condi-
tion is developed in this paper to generalize the principle and
promote its applications to fields of continuum physics.

Applications of Analogical Rational Saint-Venant’s
Principle and “ Constraint-free ” Rational Saint-Venant’s
Principle are exemplified, emphasizing “ properness ” of the
boundary-value problems. Three ways are suggested to pro-
pose three kinds of properly posed boundary-value problems:
the boundary-value problem with the undetermined bound-
ary function, the boundary-value problem with the implic-
it boundary condition and the boundary-value problem with
the explicit boundary condition, for both “ constrained ” and
“ constraint-free ” problems.

2 Boussinesq’s and Love’s Statements of Saint-Venant’s
Principle

Boussinesq’s Statement : “ An equilibrated system of
external forces applied to an elastic body, all of the points
of application lying within a given sphere, produces defor-
mation of negligible magnitude at distances from the sphere
which are sufficiently large compared to its radius. ” [3]

Love’s Statement : “ According to this principle, the s-



trains that are produced in a body by the application, to a
small part of its surface, of a system of forces statically e-
quivalent to zero force and zero couple, are of negligible
magnitude at distances which are large compared with the
linear dimensions of the part. ” [4]

3 Interpretations of the Statements
There are two different interpretations, literal and con-

notative, of Boussinesq’s or Love’s Statement:
1. Effect Localization : The equilibrium system of

forces “produces” localized effects or deformations in the e-
lastic body (literal interpretation);

2. Decay of Deformation Field: The deformation field,
which is resulted from the solution of the elastic boundary-
value problem for which the equilibrium system of forces
formulates its near-boundary conditions (boundary condi-
tions of the small near-end in the vicinity of the origin of
coordinates for example), decays monotonically with the dis-
tances from the loaded boundary and tends to zero as the dis-
tances tend to infinite ( connotative interpretation).

Examples cited here of the interpretations are:
Though he declares that Love’s statement is not very

clear, and suggests his statement of the principle, Mises does
not go so far as to leave the way of establishing “ produced ”
strains and stresses, which are negligible [10].

Sternberg supplies a general proof of the amended Saint-
Venant’s Principle suggested by Mises [11].

Zanaboni understands Saint-Venant’s Principle in the
way of Effect Localization, trying to formulate the principle
in terms of decay of “ work and energy ” [12-15].

Timoshenko and Goodier write that “ The expectation
that such a system, applied to a small part of the surface of
the body, would give rise to localized stress and strain on-
ly, was enunciated by Saint-Venant in 1855 and came to be
known as Saint-Venant’s principle. ” However, they take the
way of Decay of Deformation Field, by finding the eigen-
solutions of the boundary-value problem of the rectangular
region, so as to discuss the so called “ End Effects ” of the
equilibrium system of forces [16].

The terminology “ decay of Saint-Venant end effects ”
is mentioned in the research papers where deformation fields
are dealt with [17, 18].

4 Ambiguity of the Interpretations
The interpretations are ambiguous and our arguments

are :
A. If the Effect Localization is true, the equilibrium sys-

tem of forces has no effect on the deformation at the infinity,
and then the deformation at the infinite would be “ produced
” by the boundary forces on the sub-surface at the infinity,
which is also an equilibrium system though all the surface-
force components are equal to zero. However, at most, only
three , instead of six, stress components for three dimension-
al problems or two, instead of three, stress components for
two dimensional problems are determined to be zero by the

stress boundary conditions at the infinity. Therefore, the de-
formation field at the infinity is uncertain, which is in con-
tradiction with the interpretation of Decay of Deformation
Field that implies that the deformation field at the infinity is
definitely determined.

B. It is logical from A that the effects of the equilibrium
system of forces should not be localized if the deformation
field could be definitely and stably built up. Logically, the ef-
fects of the equilibrium system of forces extend to the the in-
finite, covering the entire deformation field. In fact, the stress
boundary conditions formulated on the small part of the sur-
face of the body by the equilibrium system of forces must
be satisfied by the solutions of deformation, which should be
interpreted as the effects of the equilibrium system of forces
on the deformation field as a whole, without exception of the
region at the infinity.

C. At most, only three , instead of six, stress compo-
nents for three dimensional problems or two, instead of three,
stress components for two dimensional problems are deter-
mined by the near-boundary conditions formulated by the e-
quilibrium system of forces, and the effects of the equilib-
rium system of forces are uncertain and vague even in the
closest vicinity of the loading. Then serious and difficult
questions are unavoidable :

Does the zero-force system at the infinity extend its ef-
fects to the vicinity of the near-boundary and make the stress
components otherwise uncertain there fixed ?

What effects does the equilibrium system of forces exert
over the deformation field, and what else effects does the
zero-force system apply on it ?

Is decay of deformations, if any, is manifestation of the
effects of the equilibrium system of forces alone ?

It is impossible to make any judgement whether the ef-
fects of the equilibrium system of forces decay with dis-
tances or not unless those questions are fully answered.
There exists even such a possibility that the effects at the
infinity are as active as in the vicinity of the near-boundary
though the deformations may decay, considering the argu-
ment B .

5 Rationalized Statement of Saint-Venant’s Principle of
Elasticity

We see, from the last section, that the interpretations
of the statement of Boussinesq or Love are ambiguous . Fur-
thermore, it is logical to infer that the elements of irrational-
ity of the statement of Boussinesq or Love itself are behind
the ambiguity. Therefore, it is necessary to rationalize state-
ment of Saint-Venant’s Principle and state the principle in an
unambiguous way so that its interpretation is the statement
itself other than something else. We suggest the following
rationalized statement:

“ If a properly posed boundary-value problem of elas-
ticity is defined in a body of infinite dimension and on its
boundary and the boundary condition of a small sub-surface
of the body is formulated by an equilibrium system of forces,
otherwise the body would be free, the solutions of deforma-
tion decay monotonically with the distances from the loaded



sub-surface and tend to zero as the distances tend to infinite.
”

It is extremely important that the rationalized state-
ment features “ properness ” of the boundary-value problem
of elasticity and distinguishes itself from the Decay of De-
formation Field interpretation of Boussinesq’s or Love’s S-
tatement by emphasizing “ a properly posed boundary-value
problem ”. Essentially, the issue of Saint-Venant’s Principle
is of “ properness ” of boundary-value problems posed for
elasticity. No ill-posed problem connotes solutions of Saint-
Venant’s decay.

6 Rational Saint-Venant’s Principle
Authors try to promote application of Saint-Venant’s

Principle by means of analogy widely in areas of continu-
um physics [6-9]. One of the typical examples is the Model
Problem where the “ self-equilibration ” condition is posed
on, say, the entry distribution of heat flux [6, 7]. “ End Ef-
fects ” is mentioned , for example, for the problem of Stokes
flow [19]. It is necessary and significant to develop a rational
Saint-Venant’s Principle, which fits and guides applications
of the principle to fields of continuum physics and covers the
analogical case of application as well as the non-analogical
case discovered and discussed in this paper ( See Section 7,
Section 8 and Section 9). We suggest the rational statement
as:

“ For a properly posed boundary-value problem of con-
tinuum physics, which is defined in an infinite domain and on
its boundary and whose only non-zero function of boundary
condition is defined on a small sub-boundary, the solutions
of the problem decay monotonically with the distances from
the sub-boundary and tend to zero as the distances tend to
infinite. ”

We will exemplify the Rational Saint-Venant’s Principle
in the following sections.

7 Rational Saint-Venent’s Principle concerning
Laplace Equation in Cartesian Coordinates

7.1 Application 1: Analogical Rational Saint-Venent’s
Principle concerning Laplace Equation in Cartesian
Coordinates

7.1.1 Boundary-value Problem
The boundary-value problem in Cartesian Coordinates

is:

∆u = u,αα= 0 on D (1)
D = {(x1,x2)|0 < x1 < l, −c < x2 < c },

x2 =±c : u = 0, (2)

x1 = l : u → 0 as l → ∞, (3)

x1 = 0 : u = f (x2), (4)

1
2c

∫ c

−c
f (x2)dx2 = 0 (5)

which is the constraint of the mean of the undetermined func-
tion f (x2) and is understood as the “ self-equilibration ” con-
dition of the function as well.

The field function u could have a number of physical
interpretations such as temperature field, electrical potential
of an electrostatic field, potential of electrical current and
velocity potential of fluid flow etc.

7.1.2 Solutions of the Problem
1. It is from Eq.(1), Eq.(2) and Eq.(3) that

u(x1,x2) =
N

∑
n=1

An sin(
nπ
c

x2) exp(−nπ
c

x1)+ (6)

K

∑
k=0

Bk cos((k+
1
2
)

π
c

x2) exp(−(k+
1
2
)

π
c

x1)

where

N < ∞, K < ∞,

and Bk are controlled by

K

∑
k=0

(−1)k 4c
(2k+1)π

Bk = 0 (7)

because of the constraint Eq.(5).
From Eq.(6) we have

lim
x1→∞

u(x1,x2) = 0, (8)

which is of Saint-Venant’s decay.
2. The implicit solution of f (x2) is from Eq.(4) and

Eq.(6) and given by

∫ c

−c
f (x2)sin(

nπ
c

x2)dx2 = cAn (n = 1,2, ...N), (9)∫ c

−c
f (x2)sin(

nπ
c

x2)dx2 = 0 (n > N,N < ∞),∫ c

−c
f (x2)cos((k+

1
2
)

π
c

x2)dx2 = cBk (k = 1,2, ...K),∫ c

−c
f (x2)cos((k+

1
2
)

π
c

x2)dx2 = 0 (k > K,K < ∞).



3. The explicit solution of f (x2) is identified from
Eq.(4) and Eq.(6) as

f (x2) =
N

∑
n=1

An sin(
nπ
c

x2)+
K

∑
k=0

Bk cos((k+
1
2
)

π
c

x2),(10)

(N < ∞,K < ∞),

where Bk are controlled by Eq.(7) because of the constraint
Eq.(5).

We will prove the Uniqueness of Solution of the prob-
lem in the next subsection as an argument for properness of
the posed problem.

7.1.3 Uniqueness of Solution
If u1 and u2 are two solutions of the problem , suppose

ū = u1 −u2. (11)

Then we have

∆ū = ū,αα= 0, on D (12)
D = {(x1,x2)|0 < x1 < l, −c < x2 < c },

x2 =±c : ū = 0, (13)

x1 = l : ū → 0 as l → ∞, (14)

x1 = 0 : ū = 0, (15)

1
2c

∫ c

−c
ūdx2 = 0. (16)

It is easy to find the solution

ū = 0, (17)

then

u1 = u2, (18)

and Uniqueness of Solution of the problem is proved. This
proof should be added to the argument of the properness of
the boundary-value problem posed by Equations (1) - (5).

7.1.4 Properly Posed Boundary-value Problems of
Analogical Rational Saint-Venent’s Principle con-
cerning Laplace Equation in Cartesian Coordi-
nates

Then we propose the three kinds of boundary-value
problems for the discussion of Saint-Venant’s Principle:

1. The boundary-value problem with the undetermined
boundary function f (x2). The problem, whose solutions are
Eq.(6), Eq.(8), Eq.(9) and Eq.(10), is posed by Equations (1)
- (5), as is discussed in Sec.7.1.1 and Sec.7.1.2 .

2. The boundary-value problem with the implicit
boundary condition of f (x2). The problem , whose solutions
are Eq.(6), Eq.(8) and Eq.(10) , is posed by Equations (1) -
(5) and Eq.(9) .

3. The boundary-value problem with the explicit
boundary condition of f (x2). The problem, whose solution-
s are Eq.(6) and Eq.(8), is posed by Equations (1) - (4) and
Eq.(10).

Each boundary-value problem mentioned yields Saint-
Venant’s decay of u by Eq.(6) and Eq.(8). Therefore, each of
them is a boundary-value problem properly posed for the Ra-
tional Saint-Venant’s Principle. The principle is of “ analogi-
cal type ” because Eq.(5) ( or Eq.(7)), the “ self-equilibration
” condition, is posed for the problem.

7.2 Application 2: Properly Posed Boundary-value
Problems of “ Constraint-free ” Rational Saint-
Venent’s Principle concerning Laplace Equation in
Cartesian Coordinates
In fact, the constraint Eq.(5) is not necessary for yield-

ing Saint-Venant’s decay of Eq.(6) and Eq.(8), and could be
ruled out when proposing the boundary-value problems. We
propose the three kinds of boundary-value problems for dis-
cussion of the “ Constraint-free ” Rational Saint-Venant’s
Principle or the Rational Saint-Venant’s Principle with Re-
laxed Boundary Condition:

1. The boundary-value problem with the undetermined
boundary function f (x2). The problem, whose solutions
are Eq.(6), Eq.(8), Eq.(9) and Eq.(10) excluding the control
Eq.(7), is posed by Equations (1) - (4).

2. The boundary-value problem with the implicit
boundary condition of f (x2). The problem , whose solutions
are Eq.(6), Eq.(8) and Eq.(10) excluding the control Eq.(7) ,
is posed by Equations (1) - (4) and Eq.(9).

3. The boundary-value problem with the explicit
boundary condition of f (x2). The problem , whose solu-
tions are Eq.(6) and Eq.(8) excluding the control Eq.(7) , is
posed by Equations (1) - (4) and Eq.(10) excluding the con-
trol Eq.(7).

Each boundary-value problem mentioned here yield-
s Saint-Venant’s decay of u by Eq.(6) and Eq.(8). There-
fore, each of them is a constraint-free boundary-value prob-
lem properly posed for the “ Constraint-free ” Rational Saint-
Venant’s Principle in Cartesian coordinates. The principle is
of “ non-analogical type ” because Eq.(5) ( or Eq.(7)), the “
self-equilibration ” condition, is excluded from the problem.



8 Rational Saint-Venent’s Principle concerning
Laplace Equation in Cylindrical Coordinates

8.1 Application 3: Analogical Rational Saint-Venent’s
Principle concerning Laplace Equation in Cylindri-
cal Coordinates

8.1.1 Boundary-value Problem
The axisymmetrical problem is dealt with and the

boundary-value problem in Cylindrical Coordinates is:

∆u =
1
r

∂
∂r

(r
∂u
∂r

)+
∂2u
∂z2 = 0 on R (19)

R = {(r,θ,z)|0 < r < a, 0 ≤ θ < 2π,0 < z < l },

r = 0 : u < ∞, (20)

r = a : u = 0, (21)

z = l : u → 0 as l → ∞, (22)

z = 0 : u = f (r), (23)

2
a2

∫ a

0
f (r)rdr = 0 (24)

which is the constraint of the mean of the undetermined func-
tion f (r) and is understood as the “ self-equilibration ” con-
dition of the function as well.

8.1.2 Solutions of the Problem
1. It is from Eq.(19), Eq.(20), Eq.(21) and Eq.(22) that

u =
N

∑
n=1

DnJ0(cn
r
a
)exp(−cn

a
z), (25)

where

N < ∞,

J0(cn
r
a ) is the Bessel function , cn is the nth positive zero

of J0, Dn are controlled by

N

∑
n=1

Dn

cn
J1(cn) = 0 (26)

because of the constraint Eq.(24).
From Eq.(25) we have

lim
z→∞

u(r,z) = 0, (27)

which is of Saint-Venant’s decay.
2. The implicit solution of f (r) is from Eq.(23) and

Eq.(25) and given by

∫ a

0
f (r)J0(cn

r
a
)rdr =

a2J2
1 (cn)

2
Dn (n = 1,2, ...N), (28)∫ a

0
f (r)J0(cn

r
a
)rdr = 0 (n > N,N < ∞).

3. The explicit solution of f (r) is identified from
Eq.(23) and Eq.(25) as

f (r) =
N

∑
n=1

DnJ0(cn
r
a
), (N < ∞), (29)

where Dn are controlled by Eq.(26).

8.1.3 Properly Posed Boundary-value Problems of
Analogical Rational Saint-Venent’s Principle con-
cerning Laplace Equation in Cylindrical Coordi-
nates

Then we propose the three kinds of boundary-value
problems for the discussion of Saint-Venant’s Principle of
the axisymmetrical problem in cylindrical coordinates:

1. The boundary-value problem with the undetermined
boundary function f (r). The problem , whose solutions are
Eq.(25), Eq.(27), Eq.(28), Eq.(29) and Eq.(26), is posed by
Equations (19) - (24), as is discussed in Sec. 8.1.1 and
Sec.8.1.2.

2. The boundary-value problem with the implicit
boundary condition of f (r). The problem , whose solutions
are Eq.(25), Eq.(27) , Eq.(29) and Eq.(26), is posed by Equa-
tions (19) - (24) and Eq.(28).

3. The boundary-value problem with the explicit
boundary condition of f (r). The problem, whose solutions
are Eq.(25) and Eq.(27), is posed by Equations (19) - (23) ,
Eq.(29) and Eq.(26) .

Each boundary-value problem mentioned yields Saint-
Venant’s decay of u by Eq.(25) and Eq.(27). Therefore, each



of them is an axisymmetrical boundary-value problem prop-
erly posed for the Rational Saint-Venant’s Principle in Cylin-
drical Coordinates ( the proof of Uniqueness of Solution is
omitted). The principle is of “ analogical type ” because
Eq.(24) ( or Eq.(26)), the “ self-equilibration ” condition, is
posed for the problem.

8.2 Application 4: Properly Posed Boundary-value
Problems of “ Constraint-free ” Rational Saint-
Venent’s Principle concerning Laplace Equation in
Cylindrical Coordinates
In fact, the constraint Eq.(24) is not necessary for yield-

ing Saint-Venant’s decay of Eq.(25) and Eq.(27), and could
be ruled out when proposing the boundary-value problem.
We propose the three kinds of boundary-value problems for
discussion of the “ Constraint-free ” Rational Saint-Venant’s
Principle :

1. The boundary-value problem with the undetermined
boundary function f (r). The problem, whose solutions are
Eq.(25), Eq.(27), Eq.(28)and Eq.(29) excluding the control
Eq.(26), is posed by Equations (19) - (23).

2. The boundary-value problem with the implicit
boundary condition of f (r). The problem , whose solu-
tions are Eq.(25), Eq.(27) and Eq.(29) excluding the control
Eq.(26), is posed by Equations (19) - (23) and Eq.(28).

3. The boundary-value problem with the explicit
boundary condition of f (r). The problem , whose solution-
s are Eq.(25) and Eq.(27) excluding the control Eq.(26) , is
posed by Equations (19) - (23) and Eq.(29) excluding the
control Eq.(26).

Each boundary-value problem mentioned yields Saint-
Venant’s decay of u by Eq.(25) and Eq.(27). Therefore, each
of them is a constraint-free axisymmetrical boundary-value
problem properly posed for the “ Constraint-free ” Ratio-
nal Saint-Venant’s Principle in Cylindrical Coordinates. The
principle is of “ non-analogical type ” because Eq.(24) (
or Eq.(26)), the “ self-equilibration ” condition, is excluded
from the problem.

9 Rational Saint-Venent’s Principle concerning
Laplace Equation in Spherical Coordinates

9.1 Application 5: Analogical Rational Saint-Venent’s
Principle concerning Laplace Equation in Spherical
Coordinates

9.1.1 Boundary-value Problem
The axisymmetrical problem is dealt with and the

boundary-value problem in Spherical Coordinates is:

∆u =
1

R2
∂

∂R
(R2 ∂u

∂R
)+

1
R2 sinψ

∂
∂ψ

(sinψ
∂u
∂ψ

) = 0 (30)

on D

D = {(R,ψ,θ)|a < R < b,0 ≤ ψ ≤ π,0 ≤ θ < 2π },

R = b : u → 0 as b → ∞, (31)

R = a : u = f (ψ), (32)

1
2

∫ π

0
f (ψ)sinψdψ = 0 (33)

which is the constraint of the mean of the undetermined func-
tion f (ψ) and is understood as the “ self-equilibration ” con-
dition of the function as well.

9.1.2 Solutions of the Problem
1. It is from Eq.(30) and Eq.(31) that

u =
N

∑
n=0

CnR−(n+1)Pn(cosψ), (34)

where

N < ∞,

Pn(cosψ) is the Legendre function , C0 is controlled by

C0 = 0 (35)

because of the constraint Eq.(33).
From Eq.(34) we have

lim
R→∞

u(R,ψ) = 0, (36)

which is of Saint-Venant’s decay.
2. The implicit solution of f (ψ) is from Eq.(32) and

Eq.(34) and given by

∫ π

0
f (ψ)Pn(cosψ)sinψdψ =

2
2n+1

a−(n+1)Cn (37)

(n = 0,1,2, ...N),∫ π

0
f (ψ)Pn(cosψ)sinψdψ = 0 (n > N,N < ∞).

3. The explicit solution of f (ψ) is identified from
Eq.(32) and Eq.(34) as



f (ψ) =
N

∑
n=0

Cna−(n+1)Pn(cosψ), (N < ∞), (38)

where C0 is controlled by Eq.(35).

9.1.3 Properly Posed Boundary-value Problems of
Analogical Rational Saint-Venent’s Principle con-
cerning Laplace Equation in Spherical Coordi-
nates

Then we propose the three kinds of boundary-value
problems for the discussion of Saint-Venant’s Principle of
the axisymmetrical problem in spherical coordinates:

1. The boundary-value problem with the undetermined
boundary function f (ψ). The problem , whose solutions are
Eq.(34), Eq.(36), Eq.(37) and Eq.(38), is posed by Equations
(30) - (33), as is discussed in Sec. 9.1.1 and Sec. 9.1.2.

2. The boundary-value problem with the implicit
boundary condition of f (ψ). The problem , whose solutions
are Eq.(34), Eq.(36) and Eq.(38), is posed by Equations (30)
- (33) and Eq.(37) .

3. The boundary-value problem with the explicit
boundary condition of f (ψ). The problem, whose solutions
are Eq.(34) and Eq.(36), is posed by Equations (30) - (32)
and Eq.(38) .

Each boundary-value problem mentioned yields Saint-
Venant’s decay of u by Eq.(34) and Eq.(36). Therefore, each
of them is an axisymmetrical boundary-value problem prop-
erly posed for the Rational Saint-Venant’s Principle in Spher-
ical Coordinates ( the proof of Uniqueness of Solution is
omitted). The principle is of “ analogical type ” because
Eq.(33) ( or Eq.(35)), the “ self-equilibration ” condition, is
posed for the problem.

9.2 Application 6: Properly Posed Boundary-value
Problems of “ Constraint-free ” Rational Saint-
Venent’s Principle concerning Laplace Equation in
Spherical Coordinates
In fact, the constraint Eq.(33) is not necessary for yield-

ing Saint-Venant’s decay of Eq.(34) and Eq.(36), and could
be ruled out when proposing the boundary-value problems.
We propose the three kinds of boundary-value problems for
discussion of the “Constraint-free ” Rational Saint-Venant’s
Principle :

1. The boundary-value problem with the undetermined
boundary function f (ψ). The problem , whose solutions are
Eq.(34), Eq.(36), Eq.(37) and Eq.(38) excluding the control
Eq.(35), is posed by Equations (30) - (32).

2. The boundary-value problem with the implicit
boundary condition of f (ψ). The problem , whose solu-
tions are Eq.(34), Eq.(36) and Eq.(38) excluding the control
Eq.(35), is posed by Equations (30) - (32) and Eq.(37) .

3. The boundary-value problem with the explicit
boundary condition of f (ψ). The problem, whose solution-
s are Eq.(34) and Eq.(36) excluding the control Eq.(35), is

posed by Equations (30) - (32) and Eq.(38) excluding the
control Eq.(35).

Each boundary-value problem mentioned yields Saint-
Venant’s decay of u by Eq.(34) and Eq.(36). Therefore,
each of them is a “constraint-free” axisymmetrical boundary-
value problem properly posed for the “Constraint-free ”
Rational Saint-Venant’s Principle in Spherical Coordinates.
The principle is of “ non-analogical type” because Eq.(33) (
or Eq.(35)), the “ self-equilibration ” condition, is excluded
from the problem.

10 Conclusion
A. Statement of Boussinesq or Love of Saint-Venants

Principle is ambiguous so that its interpretations are in con-
tradiction with each other. Therefore, statement of the prin-
ciple needs to be rationalized.

B. Rationalized Statement of Saint-Venant’s Principle
of elasticity , whose interpretation is itself other than some-
thing else, is suggested to rule out the ambiguity of state-
ments of Boussinesq and Love.

C. Rational Saint-Venant’s Principle is suggested to
fit and guide applications of the principle to fields of con-
tinuum physics and cover the analogical as well as the non-
analogical case of application.

D. “ Constraint-free ” problems are suggested and “
Constraint-free ” Rational Saint-Venant’s Principle or Ratio-
nal Saint-Venant’s Principle with Relaxed Boundary Condi-
tion is developed to generalize the principle and promote its
applications to fields of continuum physics.

E. Applications of Analogical Rational Saint-Venant’s
Principle and “ Constraint-free ” Rational Saint-Venant’s
Principle are exemplified , emphasizing “ properness ” of the
boundary-value problems. Three ways are suggested to pro-
pose three kinds of properly posed boundary-value problems
: the boundary-value problem with the undetermined bound-
ary function, the boundary-value problem with the implic-
it boundary condition and the boundary-value problem with
the explicit boundary condition, for both “ constrained ” and
“ constraint-free ” problems.
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