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In this work, we forge a powerful, easy-to-visualize, flexible, consistent, and disciplined abstract
vector framework for particle and astro physics that is compliant with the holographic principle.
We demonstrate that the structural properties of the complex number and the sphere enable us
to introduce and define the triplex number—an influential information structure that is similar
to the 3D hyper-complex number by D. White and P. Nylander—which identifies a 3D analogue
of (2D) complex space. Consequently, we engage the complex and triplex numbers as abstract
vectors to systematically encode the state space of the Riemannian dual 3D and 4D space-time
topologies, where space and time are dual and interconnected; we use the triplex numbers (with
triplex multiplication) to extend 1D and 2D algebraic systems to 3D and 4D configurations. In
doing so, we equip space-time with order parameter fields for topological deformations. Finally, to
exemplify our motivation, we provide three example applications for this framework.

I. INTRODUCTION

The term “information” is notorious for having many
different forms and meanings1. So in the limited context
of this paper, what definition of information are we inter-
ested in? Here, we ascertain that information is defined
as: a sequence of symbols that can encode a message
and any type of event that affects the state of a dynam-
ical system. A complex number can be used to encode
information—it is a number that can be put in the form

x = xR + xI, (1)

where xR is the real component and xI is the imaginary
component of the complex number x2,3. Eq. (1) is impor-
tant because it stores abstract information by extending
the 1D number line to the 2D complex plane by using
the horizontal axis for xR and the vertical axis for xI.
Hence, x can be identified with the point (xR, xI) in a 2D
Cartesian coordinate system called the complex plane X,
such that x ∈ X2,3. Thus, x is a scalar that simultane-
ously encodes the magnitude and direction components
of a vector2,3. If xR = 0, then x is said to be purely
imaginary, whereas if xI = 0, then x is said to be purely
real2,3. In this way, eq. (1) comprises the familiar real
numbers and therefore equips us with the means to at-
tack problems, encode states in state space, and deal with
patterns that cannot be realized by real numbers alone.

Eq. (1) provides a wide variety of applications in sci-
ence and engineering. For example, in quantum physics
the wavefunction—with values typically stored in the
form of eq. (1)—characterizes the quantum state of a
particle and its behavior; the Schrödinger equation des-
ignates how the wavefunction evolves in space over time4.
In computer and electrical engineering, eq. (1) can be ap-
plied to represent sinusoidal oscillating voltage and cur-
rent in circuit analysis and design5. In fractal geometry,
the language of chaos theory6, information encoded us-
ing eq. (1) can represent input and output values of

iterated functions that generate fractals such as B. Man-
delbrot’s set7—self-similar patterns that are abundant in
nature8,9. Indeed, the concept put forth by eq. (1 ) is
intrinsic to encoding the abstract features of G. ’t Hooft’s
and L. Susskind’s “holographic universe”10–12 by apply-
ing the state space X.

Another familiar mathematical construct that is funda-
mental to nature is the sphere. For example, spherically-
symmetric structures are often used as the mathemati-
cal underpinnings for understanding gravity13–16, black
holes and space-time17–19, stars20–22, nuclear mass23–25,
and more. Now in terms of spontaneous symmetry break-
ing, imagine that the surface of a spherically-symmetric
structure can be equipped with abstract vectors or order
parameters26,27 to encode topological deformations28–31
as in the analytic color-anticolor confinement and baryon-
antibaryon duality proof of32. In this context, it is useful
to imagine that the “base case”, a circle (1-sphere) T ,
can be isometrically embedded in X, such that T ⊂ X,
where T can be topologically deformed to represent any
conceivable elliptical case to encode, for example, an or-
bital system of massive bodies—see Figure 1. Similarly, if
we imagine the case of T being a 2-sphere that is isomet-
rically embedded in the 3D real manifold Y , such that
X ⊂ Y and T ⊂ Y , then we see that T can be topo-
logically deformed to represent any conceivable spheroid
case to encode, for example, a planet in our solar system.
Furthermore, if the topological deformation order param-
eters along the 1-sphere or 2-sphere are used to encode
fractional statistics as in32, then encoding a fractal state
space7 becomes relatively straightforward. In this work,
we will follow32 and demonstrate that a space-time topol-
ogy equipped with an embedded 1-sphere or 2-sphere and
order parameters is an essential non-linear component of
the “holographic principle” that is axiomatic to quantum
gravity and string theories10–12.

In this paper, we combine eq. (1) with spheri-
cal concepts to establish a mathematical definition of
triplex numbers with triplex multiplication that sim-
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FIG. 1. A circle can be transformed into a non-circular ellipse by equipping it with order parameters for topological deformations.

plifies the 3D hyper-complex number and its opera-
tors by D. White and P. Nylander33–35. We engage
the complex and triplex numbers as abstract scalars
and vectors to frame the position and order parameter
states of a spherically-symmetric system that can be di-
rectly applied as information structures to encode chaotic
systems—dynamical systems that are highly sensitive to
initial conditions6,7,36,37. In general, this new and devel-
oping framework focuses on improving the Riemannian
dual (“fractional quantum Hall superfluidic”) space-time
topology and representational capability for the analytic
confinement, duality, and antisymmetry proof of32 that
is consistent with holographic models10–12.

In Section II, we fashion the Riemannian dual 3D
space-time, where the time dimension is a topological cir-
cle T that is isometrically embedded in a Riemann sur-
face X, such that T is simultaneously dual to two spatial
sub-surfaces—an improvement to32. First, we upgrade
the dual 3D space-time topology of32 by exercising the
complex numbers as “2D position vectors” to engineer
X, namely the 2D position-point state space (2D-PPSS),
with complex locations in the form of eq. (1), namely 2D
position-point states (2D-PPS), that are identified by 2D
generalized Riemannian-coordinates. Next, we refine the
simultaneous superfluidic symmetry breaking representa-
tion of32 by additionally using the complex numbers as
“2D order parameters” to install, at each 2D-PPS, a 2D
order parameter state space (2D-OPSS) with a sponta-
neous 2D order parameter state (2D-OPS).

In Section III, we devise the Riemannian dual 4D
space-time by embedding the 2D-PPSS X in a 3D man-
ifold Y , where the time dimension T becomes a topo-
logical Riemannian circle (2-sphere)38 that is isomet-
rically embedded in Y , such that T is simultaneously
dual to two spatial 3-branes—an additional improvement
to32. First, we upgrade the dual 4D space-time topol-

ogy of32 by defining the triplex numbers and applying
them as “3D position vectors” to engineer Y , namely the
3D position-point state space (3D-PPSS), with triplex lo-
cations, namely 3D position-point states (3D-PPS), that
are identified by 3D generalized Riemannian-coordinates;
this is paramount because it enables us to extend the
lower dimensional algebraic systems to 4D space-time.
Next, we enhance the simultaneous superfluidic sym-
metry breaking representation of32 by additionally us-
ing the triplex numbers as “3D order parameters” to in-
stall, at each 3D-PPS, a 3D order parameter state space
(3D-OPSS) with a spontaneous 3D order parameter state
(3D-OPS).

In Section IV, we bestow three distinct and introduc-
tory examples that apply the triplex framework of Sec-
tion III to particle physics, astro physics, and fractal
geometry. First, we begin to merge our scenario with
the “White-Nylander mythical beast” by identifying the
triplex multiplication for computer graphics and simulat-
ing 3D fractals33–35. Second, we upgrade the fractional
quantum number representations of the baryon wave-
function and antisymmetric tensor in32 from 2D-OPSs to
3D-OPSs. And third, we supply an encoding methodol-
ogy for the Schwarzschild black hole (SBH) quasi-normal
modes of39–44.

Finally, in Section V, we conclude with a brief recapitu-
lation and discussion of the paper. Here, we highlight the
importance of this framework and suggest future modes
of exploration.

II. THE COMPLEX FRAMEWORK FOR
RIEMANNIAN DUAL 3D SPACE-TIME

Here, starting with eq. (1), we assemble the complex
information structures and encoding methodology for our
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3D space-time, where the time dimension is the topolog-
ical circle T that delineates dual spatial sub-surfaces on
X; T is simultaneously dual to two spatial distance scales
as in32. This topological foundation is equipped with a
2D-PPSS and 2D-OPSS—see Table I for an introduction.

A. The 2D position-point state space

Here, we construct the 2D-PPSS and 2D generalized
Riemannian-coordinates for the dual 3D space-time.

From32, let the Riemann surface X be a 2D-PPSS.
We define a 2D-PPS ~x ∈ X in the 2D-PPSS X as a 2-
number, complex number, complex scalar, and complex
vector that encodes a location on (or within) X, where
we refine eq. (1) as

~x ≡ ~xR + ~xI, ∀~x ∈ X. (2)

Simply put, ~x is a state within the state space X.
~x is expressed in terms of 2D Riemannian-coordinates,
which are well-defined generalized coordinates that syn-
chronize 1D Complex-coordinates, 2D Polar-coordinates,
and 2D Cartesian-coordinates in a single interconnected
“Complex-Polar-Cartesian-coordinate system”, namely
the 2D Riemannian-coordinate system: we augment
eq. (2) with its corresponding 2D-PPS Riemannian-
coordinate, which identifies a

• 1D-PPS Complex-coordinate with component

1. complex-PPS, namely ~x ∈ X,

for

~x ≡ (~x) = (~xR + ~xI), ∀~x ∈ X; (3)

• 2D-PPS Polar-coordinate (or “2D-PPS Circular-
coordinate”) with components

1. amplitude-PPS (“radius” or “modulus”, previ-
ously “magnitude”), namely |~x| ∈ [0,∞R], and

2. phase-PPS (“azimuth”, previously “direc-
tion”), namely 〈~x〉 ∈ [0, 2π],

for

~x ≡ (|~x|, 〈~x〉), ∀~x ∈ X; (4)

and

• 2D-PPS Cartesian-coordinate (or “2D-PPS Box-
coordinate”) with components

1. real-PPS (“R” or “x”), namely ~xR ∈
[−∞R,∞R], and

2. imaginary-PPS (“I” or “y”), namely ~xI ∈
[−∞I,∞I],

for

~x ≡ (~xR, ~xI), ∀~x ∈ X, (5)

with the synchronizing Pythagorean and trigonometric
interconnection constraints

|~x| ≡
√
~x2R + ~x2I

~xR ≡ |~x| cos〈~x〉

~xI ≡ |~x| sin〈~x〉

(6)

that generalize eqs. (7–9) in32 to define the 2D-PPS
Riemannian-coordinate

~x ≡ (~x) = (|~x|, 〈~x〉) = (~xR, ~xI), ∀~x ∈ X, (7)

that generalizes eq. (10) in32 and can be arranged into
the row-vectors

~x ≡ [|~x|, 〈~x〉] = [~xR, ~xI] (8)

and the column-vectors

~x ≡

[
|~x|
〈~x〉

]
=

[
~xR
~xI

]
(9)

for matrix notation. Subsequently, we use eq. (7) to
define the reference frame O ∈ X as the localized origin-
point of X as

O ≡ (0) = (0, 0) = (0, 0). (10)

See Figure 2 for a straightforward depiction of this con-
struction.
So what notation do we use to represent multiple 2D-

PPSs in X? Well, for n 2D-PPSs we can use numeri-
cal characters as additional subscripts to simply extend
the notation of eq. (7). Thus, using eq. (7) we may
express the ordered set {~x1, ~x2, ..., ~xn} ⊂ X for n dis-
tinct 2D-PPSs with the corresponding 2D Riemannian-
coordinates

1 : ~x1 = (~x1) = (|~x1|, 〈~x1〉) = (~x1R , ~x1I)

2 : ~x2 = (~x2) = (|~x2|, 〈~x2〉) = (~x2R , ~x2I)

...

n : ~xn = (~xn) = (|~xn|, 〈~xn〉) = (~xnR , ~xnI).

(11)

So we’ve defined X as the 2D-PPSS, but how do we
incorporate the time dimension to construct a 3D space-
time, where space and time are dual and interconnected?
To answer this, we define the topological circle T ⊂
X as the time zone, temporal sub-surface, and “Inopin
Holographic Ring” of “amplitude-radius” or “amplitude-
modulus” ε that is isometrically embedded in X32; T is
a closed time-like curve45 and simple contour of topolog-
ical surface 2D-PPSs. Following32, we use “2D zone tri-
chotomy” to simultaneously define the micro space zone
X− and the macro space zone X+; T is dual to both X−
andX+ spatial sub-surfaces as in32. So from eqs. (12–14)

3



The Hadronic Journal • Volume 35 • Number 6 • December 2012

TABLE I. A summary of the complex framework with the 2D-PPSS (locations) and 2D-OPSS (features) for dual 3D space-time.

Complex Location Name Complex Location Value

1D-PPS Complex-coordinate (~x)

2D-PPS Cartesian-coordinate (~xR, ~xI)

2D-PPS Polar-coordinate (|~x|, 〈~x〉)
2D-PPS Riemannian-coordinate (~x) = (~xR, ~xI) = (|~x|, 〈~x〉)

Complex Feature Name Complex Feature Value

1D-OPS Complex-vector (~ψ(~x))

2D-OPS Cartesian-vector (~ψ(~x)R, ~ψ(~x)I)

2D-OPS Polar-vector (|~ψ(~x)|, 〈~ψ(~x)〉)
2D-OPS Riemannian-vector (~ψ(~x)) = (~ψ(~x)R, ~ψ(~x)I) = (|~ψ(~x)|, 〈~ψ(~x)〉)

FIG. 2. The Riemann (space-time) surface and 2D-PPSS X contains a “real-axis” and an “imaginary-axis” and is equipped with a general-
ized 2D Riemannian-coordinate system that synchronizes 1D Complex-coordinates, 2D Polar-coordinates, and 2D Cartesian-coordinates.
In this depiction, O ∈ X is X’s distinct and localized origin-point and reference frame, while ~x ∈ X is a 2D-PPS, which are both states
on (or within) X. This simple and intuitive construction encodes locations on X.

in32, we know that ∀~x ∈ X precisely one of the following
conditions must be satisfied

|~x| < ε ⇔ ~x ∈ X− ⊂ X
|~x| = ε ⇔ ~x ∈ T ⊂ X
|~x| > ε ⇔ ~x ∈ X+ ⊂ X,

(12)

where clearly X− ∩ T = T ∩ X+ = X− ∩ X+ = ∅ and
X− ∪ T ∪ X+ = X. Hence, from eq. (15) in32 T is the
multiplicative group of all non-zero 2D-PPSs, such that

T ≡ {~x ∈ X : |~x| = ε}, (13)

and from eqs. (16–17) in32 the micro and macro spatial
sub-surface zones are defined as

X− ≡ {~x ∈ X : |~x| < ε}
X+ ≡ {~x ∈ X : |~x| > ε}.

(14)

So clearly

ε ≡ |~x| =
√
x2R + ~x2I , ∀~x ∈ T, (15)

|~x| =
√
~x2R + ~x2I , ∀~x ∈ X, (16)

which generalize eqs. (18–19) in32. So T is isometrically
embedded in X with the one-to-one holographic map-
pings g : T ↪→ X and g : T → X− ∪ X+ with dual
simultaneous bijections

2Dgtime : X− ←↩ T ↪→ X+
2Dgspace : X− ↪→ T ←↩ X+

(17)

for our dual 3D space-time that generalize eqs. (20–
21) in32. Thus, the temporal sub-surface T serves as

4
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a common 1D surface boundary between the dual inter-
connected X− and X+ spatial sub-surfaces as in32; this
is consistent with the holographic principle10–12.

At this point, we’ve successfully defined the Rieman-
nian dual 3D space-time topology; this is a direct upgrade
to the topological framework of32. In Section IIIA, we
will explain how to extend X from 3D to 4D space-time.

B. The 2D order parameter state space

∀~x ∈ X, we may assign one or more 2D-OPSS layers,
where each layer corresponds to a distinct 2D-OPSS with
a spontaneously selected 2D-OPS. Following32, these
quantifiable features may represent fractional statistics
and are expressed using a notation that is virtually iden-
tical to the 2D-PPS (and 2D-PPSS) eqs. (3–9) from the
previous section. To illustrate the base case, we opt to
assign one generic 2D-OPS layer to X to encode one type
of feature. Hence, at the 2D-PPS ~x ∈ X, we have the
single generic 2D-OPS ~ψ(~x) in the 2D-OPSS Φ(~x), where
~ψ(~x) ∈ Φ(~x), such that Φ(~x) is the continuous and infi-
nite set of 2D-OPSs (with cardinality |Φ(~x)| = ∞) that
is localized at ~x ∈ X. Therefore, to generalize eq. (24)
in32 we define

~ψ(~x) ≡ ~ψ(~x)R + ~ψ(~x)I, ∀~x ∈ X, ∀~ψ(~x) ∈ Φ(~x), (18)

which is expressed in the 2D-OPS Riemannian-vector no-
tation that synchronizes and simultaneously references
three vector systems. Simply put, ~ψ(~x) is a state in the
state space Φ(~x). Thus, to augment eq. (18) we use
the 1D-PPS Complex-coordinate notation of eq. (3) to
construct the 1D-OPS Complex-vector

~ψ(~x) ≡ (~ψ(~x)) = (~ψ(~x)R + ~ψ(~x)I), ∀~ψ(~x) ∈ Φ(~x). (19)

Similarly, we use the 2D-PPS Polar-coordinate notation
of eq. (4) to construct the 2D-OPS Polar-vector (or “2D-
OPS Circular-vector”)

~ψ(~x) ≡ (|~ψ(~x)|, 〈~ψ(~x)〉), ∀~ψ(~x) ∈ Φ(~x), (20)

with components amplitude-OPS |~ψ(~x)| ∈ [0,∞R] and
phase-OPS 〈~ψ(~x)〉 ∈ [0, 2π], respectively. Subsequently,
we use the 2D-PPS Cartesian-coordinate notation of eq.
(5) to construct the 2D-OPS Cartesian-vector (or “2D-
OPS Box-vector”)

~ψ(~x) ≡ (~ψ(~x)R, ~ψ(~x)I), ∀~ψ(~x) ∈ Φ(~x), (21)

with components real-OPS ~ψ(~x)R ∈ [−∞R,∞R] and
imaginary-OPS ~ψ(~x)I ∈ [−∞I,∞I], respectively. Eqs.
(19–21) satisfy the synchronizing Pythagorean and

trigonometric interconnection constraints

|~ψ(~x)| ≡
√
~ψ2(~x)R + ~ψ2(~x)I

~ψ(~x)R ≡ |~ψ(~x)| cos〈~ψ(~x)〉

~ψ(~x)I ≡ |~ψ(~x)| sin〈~ψ(~x)〉

(22)

to define the 2D-OPS Riemannian-vector

~ψ(~x) ≡ (~ψ(~x)) = (|~ψ(~x)|, 〈~ψ(~x)〉) = (~ψ(~x)R, ~ψ(~x)I),
(23)

∀~ψ(~x) ∈ Φ(~x), which can be arranged into the row-
vectors

~ψ(~x) ≡ [|~ψ(~x)|, 〈~ψ(~x)〉] = [~ψ(~x)R, ~ψ(~x)I] (24)

and the column-vectors

~ψ(~x) ≡

[
|~ψ(~x)|
〈~ψ(~x)〉

]
=

[
~ψ(~x)R
~ψ(~x)I

]
(25)

for matrix notation.
Next, we define the various types of 2D-OPSs that give

us extreme flexibility for encoding features such as topo-
logical deformations and wavefunction components of32.
For this, we can employ 2D-OPSs to represent the spe-
cific quantum number deformation states of32 or to rep-
resent more general deformation states that may be ap-
plied to other physics models. To encode a dynamical
system state with our complex framework, we are free
to use both categories separately or in conjunction with
each other—our choice depends entirely on the represen-
tational scope of the problem domain and its inherent
complexity. For example, if we wish to specifically encode
the quantum number states of magnetic charge, electric
charge, color charge, isospin, orbital angular momentum,
spin angular momentum, and total angular momentum
for the baryon topological deformations, wavefunctions,
and tensors in32, then we can apply eq. (23) ∀~x inX to
define the respective specific 2D-OPSs (in short form) as

~ψB(~x) ≡ (~ψB(~x)), ∀~ψB(~x) ∈ ΦB(~x)
~ψE(~x) ≡ (~ψE(~x)), ∀~ψE(~x) ∈ ΦE(~x)
~ψC(~x) ≡ (~ψC(~x)), ∀~ψC(~x) ∈ ΦC(~x)
~ψI(~x) ≡ (~ψI(~x)), ∀~ψI(~x) ∈ ΦI(~x)
~ψL(~x) ≡ (~ψL(~x)), ∀~ψL(~x) ∈ ΦL(~x)
~ψS(~x) ≡ (~ψS(~x)), ∀~ψS(~x) ∈ ΦS(~x)
~ψJ(~x) ≡ (~ψJ(~x)), ∀~ψJ(~x) ∈ ΦJ(~x)

. (26)

Moreover, if we wish to encode topological deformation
states without a specific reference to quantum numbers,
then we can similarly apply eq. (23) to define the general
and “generic” 2D-OPS as

~ψ→(~x1) ≡ (~ψ→(~x1)), ∀~ψ→(~x1) ∈ Φ→(~x1), ∀~x1 ∈ X,
(27)
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such that

~x2 ≡ ~x1 + ~ψ→(~x1) (28)

is the effective 2D-PPS ~x2 ∈ X that is identified by the
deformation of ~ψ→(~x1) at ~x1. See Table II for a list of
possible 2D-OPS candidates that we may (or may not)
opt to use in the dual 3D space-time.

At this point, we’ve assembled the complex informa-
tion structures and encoding methodology for our dual
3D space-time, where each 2D-PPS in the 2D-PPSS
is equipped with a localized 2D-OPSS–recall Table I.
This is a direct refinement to the spontaneous symmetry
breaking framework of32. Now, we are ready to incorpo-
rate an additional degree of freedom into our framework.

III. THE TRIPLEX FRAMEWORK FOR
RIEMANNIAN DUAL 4D SPACE-TIME

Here, starting with the complex framework definitions
of Section II, we assemble the triplex information struc-
tures and encoding methodology for our 4D space-time,
where the time dimension is the topological Riemannian
circle T that delineates dual spatial 3-branes in Y ; T is
simultaneously dual to two distance scales as in32. This
topological foundation is equipped with a 3D-PPSS and
3D-OPSS—see Table III for an introduction.

A. The 3D position-point state space

Here, we assemble the 3D-PPSS and 3D generalized
Riemannian-coordinates for the dual 4D space-time.
So how can we extend X from 3D to 4D space-time?

Well first, we know that X, a Riemann surface and 2D-
PPSS, can be thought of as a “deformed version” of
the complex plane as in32, and furthermore, we know
that a Riemann surface can be expressed in terms of a
function46. So for this topological application X must be
deformed within, and be contained within, a higher di-
mensional information structure equipped with an addi-
tional degree of freedom. This is logical because Riemann
surfaces are generally displayed 3D depictions anyways—
i.e. see46. So we are presented with a representation
problem: how do we encode X within a 3D-PPSS? Our
selected solution is to employ the 2D-PPSs of X as
complex-valued arguments to some well-defined function
that returns a real-valued output. This output will corre-
spond to an effective PPS and serve as a third coordinate
component to represent the topological deformations of
X in a 3D-PPSS. Thus, with these tools we can define
3D-PPSs for a 4D space-time, which are expressed in
terms of well-defined generalized coordinates that syn-
chronize the 3D Gullstrand-Painlevé-coordinates for the
Schwarzschild metric, namely 3D GPS-coordinates, and
3D Cartesian-coordinates in a single interconnected sys-
tem of 3D Riemannian-coordinates. Again, recall that

all of this is designed to enhance and generalize the defi-
nitions of32.

Therefore, we let X be deformed within a 3D-PPSS
and 3D real manifold Y , where X ⊂ Y . We define a
3D-PPS ~y ∈ Y in the 3D-PPSS Y as a triplex number,
3-number, 3-scalar, and 3-vector that simultaneously en-
codes a 2D location on X and a 3D location on Y , where

~y ≡ ~yR + ~yI + ~yZ = ~x+ f(~x), ∀~x ∈ X, ∀~y ∈ Y, (29)

with the effective 3D-PPS mapping constraints

~yR ≡ ~xR
~yI ≡ ~xI
~yZ ≡ f(~x) = f(~xR + ~xI)

(30)

for the generic effective 3D-PPS function f . Simply put,
~y is a state within the state space Y . From there, f is ex-
tended to the effective 3D-PPS GPS-coordinate function
fGPS : X → [0, 2π] and the effective 3D-PPS Cartesian-
coordinate function fCART : X → [−∞Z ,∞Z ]. Hence,
we augment eq. (29) with its corresponding 3D-PPS
Riemannian-coordinate, which identifies a

• 1D-PPS Triplex-coordinate with component

1. triplex-PPS, namely ~y ∈ Y ,

for

~y ≡ (~y) = (~yR + ~yI + ~yZ), ∀~y ∈ Y ; (31)

• 3D-PPS GPS-coordinate (or “3D-PPS Spherical-
coordinate”) with components

1. amplitude-PPS (“radius” or “modulus”),
namely |~y| ∈ [0,∞R],

2. phase-PPS (“azimuth”), namely 〈~y〉, namely
〈~y〉 ∈ [0, 2π], and

3. inclination-PPS (“zenith”), namely [~y] ∈
[0, 2π], where fGPS(~x) = [~y],

for

~y ≡ (|~y|, 〈~y〉, [~y]), ∀~y ∈ Y ; (32)

and

• 3D-PPS Cartesian-coordinate (or “3D-PPS Box-
coordinate”) with components

1. real-PPS (“R” or “x”), namely ~yR, such that
~yR ∈ [−∞R,∞R],

2. imaginary-PPS (“I” or “y”), namely ~yI, such
that ~yI ∈ [−∞I,∞I], and

3. projected-PPS (“Z” or “z”), namely ~yZ , where
fCART (~x) = [~y], such that ~yZ ∈ [−∞Z ,∞Z ],

for

~y ≡ (~yR, ~yI, ~yZ), ∀~y ∈ Y, (33)

6
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TABLE II. A list of possible 2D-OPS candidates designed to encode topological deformation and wavefunction states in the
dual 3D space-time.

Name Symbol 2D Order Parameter State Application

Magnetic Charge B ~ψB(~x) ≡ ~ψB(~x)R + ~ψB(~x)I Specific
Electric Charge E ~ψE(~x) ≡ ~ψE(~x)R + ~ψE(~x)I Specific
Color Charge C ~ψC(~x) ≡ ~ψC(~x)R + ~ψC(~x)I Specific

Isospin I ~ψI(~x) ≡ ~ψI(~x)R + ~ψI(~x)I Specific
Orbital Angular Momentum L ~ψL(~x) ≡ ~ψL(~x)R + ~ψL(~x)I Specific
Spin Angular Momentum S ~ψS(~x) ≡ ~ψS(~x)R + ~ψS(~x)I Specific
Total Angular Momentum J ~ψJ (~x) ≡ ~ψJ (~x)R + ~ψJ (~x)I Specific
“Generic” Deformation → ~ψ→(~x) ≡ ~ψ→(~x)R + ~ψ→(~x)I General

TABLE III. A summary of the triplex framework with the 3D-PPSS (locations) and 3D-OPSS (features) for dual 4D space-time.

Triplex Location Name Triplex Location Value

1D-PPS Triplex-coordinate (~y)

3D-PPS Cartesian-coordinate (~yR, ~yI, ~yZ)

3D-PPS Polar-coordinate (|~y|, 〈~y〉, [~y])

3D-PPS Riemannian-coordinate (~y) = (~yR, ~yI, ~yZ) = (|~y|, 〈~y〉, [~y])

Triplex Feature Name Triplex Feature Value

1D-OPS Triplex-vector (~ψ(~y))

3D-OPS Cartesian-vector (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z)

3D-OPS Polar-vector (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)])

3D-OPS Riemannian-vector (~ψ(~y)) = (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z) = (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)])

with the synchronizing Pythagorean and trigonometric
interconnection constraints

|~y| ≡
√
~y2R + ~y2I + ~y2Z

〈~y〉 ≡ arctan
(
~yI
~yR

)
[~y] ≡ arccos

(
~yZ
|~y|

) (34)

to define the 3D-PPS Riemannian-coordinate

~y ≡ (~y) = (|~y|, 〈~y〉, [~y]) = (~yR, ~yI, ~yZ), ∀~y ∈ Y, (35)

which can be arranged into the row-vectors

~y ≡ [|~y|, 〈~y〉, [~y]] = [~yR, ~yI, ~yZ ] (36)

and the column-vectors

~y ≡

 |~y|〈~y〉
[~y]

 =

~yR~yI
~yZ

 (37)

for matrix notation.
So what notation do we use to represent multiple 3D-

PPSs in Y ? Well, for n 3D-PPSs we can use numerical
characters as additional subscripts to simply extend the
notation of eq. (35) and generalize the 2D-PPSS formula-
tion of eq. (11) to 3D-PPSS. Thus, using eq. (35) we may

express the ordered set {~y1, ~y2, ..., ~yn} ⊂ Y for n distinct
3D-PPSs with the respective 3D Riemannian-coordinates

1 : ~y1 = (~y1) = (|~y1|, 〈~y1〉, [~y1]) = (~y1R , ~y1I , ~y1Z )

2 : ~y2 = (~y2) = (|~y2|, 〈~y2〉, [~y2]) = (~y2R , ~y2I , ~y2Z )

...

n : ~yn = (~yn) = (|~yn|, 〈~yn〉, [~yn]) = (~ynR , ~ynI , ~ynZ
).
(38)

To calculate the product of two triplex numbers, say ~y1
and ~y2, see the triple multiplication definitions in the
upcoming examples of Section IVA.
So how can we adjust T so it is consistent with Y in

a 4D space-time? Well, all we need to do is extend the
T in eq. (13) from a topological circle (that is simul-
taneously dual to the interconnected X− and X+ sub-
surfaces in eq. (14)) to a topological Riemannian circle38
(that is simultaneously dual to the interconnected Y− and
Y+ 3-branes) with the amplitude-radius and amplitude-
modulus ε. To upgrade the topological definitions32, we
generalize eq. (12) to Y and use “3D zone trichotomy” to
simultaneously define the 3D micro space zone Y− and
the 3D macro space zone Y+; T is dual to both Y− and Y+
3-branes to establish a 4D space-time that generalizes32.
Thus, ∀~y ∈ Y we know that precisely one of the following
conditions must be satisfied

|~y| < ε ⇔ ~y ∈ Y− ⊂ Y
|~y| = ε ⇔ ~y ∈ T ⊂ Y
|~y| > ε ⇔ ~y ∈ Y+ ⊂ Y,

(39)

which generalizes eq. (12), where clearly Y− ∩ T = T ∩

7
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Y+ = Y− ∩ Y+ = ∅ and Y− ∪ T ∪ Y+ = Y . Hence, the T
of eq. (13) is projected to the multiplicative group of all
non-zero 3D-PPSs

T ≡ {~y ∈ Y : |~y| = ε}, (40)

while the X− and X+ of eq. (14) are respectively ex-
tended to the 3-branes

Y− ≡ {~y ∈ Y : |~y| < ε}
Y+ ≡ {~y ∈ Y : |~y| > ε}.

(41)

So clearly eqs. (15–16) are generalized to

ε ≡ |~y| =
√
y2R + ~y2I + ~y2Z , ∀~y ∈ T, (42)

|~y| =
√
~y2R + ~y2I + ~y2Z , ∀~y ∈ Y. (43)

Therefore, T is isometrically embedded in Y with the
one-to-one holographic mappings g : T ↪→ Y and g :
T → Y− ∪ Y+ with the dual simultaneous bijections

3Dgtime : Y− ←↩ T ↪→ Y+
3Dgspace : Y− ↪→ T ←↩ Y+

(44)

for our dual 4D space-time that generalize eq. (17).
Hence, T is a common 2D surface boundary47 that in-
terconnects the dual Y− and Y+ 3-branes of32. All the
3D properties of Y− ∪ Y+ are inferred directly from the
2D properties of T as in32; this is consistent with the
holographic principle in10–12.

At this point, we’ve successfully defined the Rieman-
nian dual 4D space-time topology; this is a direct upgrade
to the topological framework of32.

B. The 3D order parameter state space

∀~y ∈ Y , we may assign one or more 3D-OPSS layers,
where each layer corresponds to a distinct 3D-OPSS with
a spontaneously selected 3D-OPS. Following32, these
quantifiable features may represent fractional statistics
and are expressed using a notation that is virtually iden-
tical to the 3D-PPS (and 3D-PPSS) eqs. (31–37) from
the previous section. To illustrate the base case, we opt
to assign one generic OPS layer to Y to encode one type
of feature. Hence, at the 3D-PPS ~y ∈ Y we have the
single generic 3D-OPS ~ψ(~y) in the 3D-OPSS Φ(~y), where
~ψ(~y) ∈ Φ(~y), such that Φ(~y) is the continuous and infi-
nite set of 3D-OPSs (with cardinality |Φ(~y)| = ∞) that
is localized at ~y ∈ Y . Therefore, we define

~ψ(~y) ≡ ~ψ(~y)R + ~ψ(~y)I + ~ψ(~y)Z , ∀~y ∈ Y, ∀~ψ(~y) ∈ Φ(~y),
(45)

which is expressed in the 3D-OPS Riemannian-vector no-
tation that synchronizes and simultaneously references
three vector systems. Simply put, ~ψ(~y) is a state in the
state space Φ(~y). Thus, to augment eq. (45) we use

the 1D-PPS Triplex-coordinate notation of eq. (31) to
construct the 1D-OPS Triplex-vector

~ψ(~y) ≡ (~ψ(~y)) = (~ψ(~y)R+ ~ψ(~y)I+ ~ψ(~y)Z), ∀~ψ(~y) ∈ Φ(~y).
(46)

Similarly, we use the 3D-PPS GPS-coordinate notation
of eq. (32) to construct the 3D-OPS GPS-vector (or “3D-
OPS Spherical-vector”)

~ψ(~y) ≡ (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)]), ∀~ψ(~y) ∈ Φ(~y), (47)

with components amplitude-OPS |~ψ(~y)| ∈ [0,∞R],
phase-OPS 〈~ψ(~y)〉 ∈ [0, 2π], and inclination-OPS
[~ψ(~y)] ∈ [0, 2π], respectively. Subsequently, we use the
3D-PPS Cartesian-coordinate notation of eq. (33) to con-
struct the 3D-OPS Cartesian-vector (or “3D-OPS Box-
vector”)

~ψ(~y) ≡ (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z), ∀~ψ(~y) ∈ Φ(~y), (48)

with components real-OPS ~ψ(~y)R ∈ [−∞R,∞R],
imaginary-OPS ~ψ(~y)I ∈ [−∞I,∞I], and projected-OPS
~ψ(~y)Z ∈ [−∞Z ,∞Z ], respectively. Eqs. (46–48) satisfy
the synchronizing Pythagorean and trigonometric inter-
connection constraints

|~ψ(~y)| ≡
√
~ψ2(~y)R + ~ψ2(~y)I + ~ψ2(~y)Z

〈~ψ(~y)〉 ≡ arctan
(
~ψ(~y)I
~ψ(~y)R

)
[~ψ(~y)] ≡ arccos

(
~ψ(~y)Z

|~ψ(~y)|

)
(49)

to define the 3D-OPS Riemannian-vector

~ψ(~y) ≡ (~ψ(~y)) = (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)])

≡ (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z)

, ∀~ψ(~y) ∈ Φ(~y),

(50)
which can be arranged into the row-vectors

~ψ(~y) ≡ [|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)]] = [~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z ]
(51)

and the column-vectors

~ψ(~y) ≡

 |~ψ(~y)|
〈~ψ(~y)〉
[~ψ(~y)]

 =

 ~ψ(~y)R
~ψ(~y)I
~ψ(~y)Z

 (52)

for matrix notation.
Next, similarly to eq. (26), we define the various types

of 3D-OPSs that give us extreme flexibility for encoding
the topological deformations and wavefunctions of32 with
an additional degree of freedom. For this, we can em-
ploy 3D-OPSs to represent the specific quantum number
deformation states as in32 or to represent more general
deformation state that may be applied to other physics
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frameworks. For example, if we wish to specifically en-
code the quantum number states of magnetic charge,
electric charge, color charge, isospin, orbital angular mo-
mentum, spin angular momentum, and total angular mo-
mentum for a 3D-OPS version of the baryon topological
deformations, wavefunctions, and tensors in32, then we
can apply eq. (50) ∀~y ∈ Y to define the respective spe-
cific 3D-OPSs (in short form) as

~ψB(~y) ≡ (~ψB(~y)), ∀~ψB(~y) ∈ ΦB(~y)
~ψE(~y) ≡ (~ψE(~y)), ∀~ψE(~y) ∈ ΦE(~y)
~ψC(~y) ≡ (~ψC(~y)), ∀~ψC(~y) ∈ ΦC(~y)
~ψI(~y) ≡ (~ψI(~y)), ∀~ψI(~y) ∈ ΦI(~y)
~ψL(~y) ≡ (~ψL(~y)), ∀~ψL(~y) ∈ ΦL(~y)
~ψS(~y) ≡ (~ψS(~y)), ∀~ψS(~y) ∈ ΦS(~y)
~ψJ(~y) ≡ (~ψJ(~y)), ∀~ψJ(~y) ∈ ΦJ(~y)

. (53)

Moreover, if we wish to encode topological deformation
states without a specific reference to quantum numbers,
then we can similarly apply eq. (50) to define the general
and “generic” 3D-OPS as

~ψ→(~y1) ≡ (~ψ→(~y1)), ∀~ψ→(~y1) ∈ Φ→(~y1), ∀~y1 ∈ Y,
(54)

such that

~y2 ≡ ~y1 + ~ψ→(~y1) (55)

is the effective 3D-PPS ~y2 ∈ Y that is identified by the
deformation ~ψ→(~y1). See Table IV for a list of possible
3D-OPS candidates that we may (or may not) opt to use
in the dual 4D space-time. The triplex multiplication
definitions in the upcoming examples of Section IVA are
pertinent to this 3D-OPS implementation. Consequently,
this 3D-OPS multiplication is applied to the multiple 3D-
OPSs comprising the wavefunctions and tensors in the
upcoming examples of Section IVB.

At this point, we’ve assembled the triplex information
structures and encoding methodology for our 4D space-
time, where each 3D-PPS in the 3D-PPSS is equipped
with a localized 3D-OPSS—recall Table III. This is a
direct upgrade to the spontaneous symmetry breaking
framework of32. See Table V for a brief recapitulation of
the generic complex and triplex information structures.

IV. EXAMPLE APPLICATIONS

In this section, we provide three distinct and intro-
ductory examples that apply the encoding framework to
fractal geometry, particle physics, and astro physics.

A. A brief correspondence to White and Nylander
on triplex fractals and computer graphics

Here, the objective is to apply the triplex framework
of Section III to nullify the White-Nylander mythical

beast. This wild beast has been cornered by D. White
and P. Nylander—the pioneers that have developed a
triplex algebra to encode triplex fractals for computer
graphics33–35. A triplex algebra is an arithmetic for
3D coordinates and is a prerequisite for calculating 3D
fractals33–35. A prime expression of this chaotic beast
is the Mandelbulb33–35—a 3D equivalent of B. Mandel-
brot’s set7. D. White and P. Nylander extended complex
multiplication to define triplex multiplication (and hence
triplex exponentiation) but the beast still exists because
of two constrictions33–35:

1. the triplex polar form is not unique, and

2. the triplex algebra is not well-behaved.

Thus, in order to finish the beast and upgrade the exist-
ing triplex operators we must use the triplex framework
of Section III to identify:

1. a triplex polar form that is unique, and

2. a triplex algebra that is well-behaved.

So we use the triplex framework of Section III to ap-
proach the beast from distinct two perspectives. First,
we consider the White-Nylander approach with the for-
mer conditions, and second, we consider an alternative
approach with the latter conditions.

1. The White-Nylander approach

This first approach contains no new ideas; it simply
prepares for our second approach by putting the cap-
tivating work of D. White and P. Nylander33–35 in the
context of our encoding framework.

Our departure begins by considering two complex num-
bers in conventional polar form of33–35, namely ~x1 and
~x2, where |~x1| and |~x2| are the amplitude-PPSs while
〈~x1〉 and 〈~x2〉 are the phase-PPSs in eq. (23). Using
our 2D-PPS notation of Section II, the product of ~x1
and ~x2 is |~x1||~x2|ei(〈~x1〉+〈~x2〉)33–35—the complex multi-
plication comprises two operations33–35:

1. stretching ~x1 by the amplitude-PPS (modulus) |~x2|,
and

2. rotating ~x1 by the phase-PPS 〈~x2〉.

Now, using eq. (35) we let ~y be an arbitrary 3D-PPS
in the 3D-PPSS Y . In this initial example, the phase-
PPS 〈~x1〉 will be supplied as the angle parameter to the
rotational matrices of33–35 to swivel ~y around the three
axes of Y . So in terms of33–35 and the supplied the angle
parameter 〈~x1〉, there are three basic rotation matrices
that correspond to swivels about the R-axis, I-axis, and
Z-axis of Y , which are

RR(〈~x1〉) =

1 0 0

0 cos〈~x1〉 − sin〈~x1〉
0 sin〈~x1〉 cos〈~x1〉

 , (56)
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TABLE IV. A list of possible 3D-OPS candidates designed to encode topological deformation and wavefunction states in the
dual 4D space-time.

Name Symbol 3D Order Parameter State Application

Magnetic Charge B ~ψB(~y) ≡ ~ψB(~y)R + ~ψB(~y)I + ~ψB(~y)Z Specific
Electric Charge E ~ψE(~y) ≡ ~ψE(~y)R + ~ψE(~y)I + ~ψE(~y)Z Specific
Color Charge C ~ψC(~y) ≡ ~ψC(~y)R + ~ψC(~y)I + ~ψC(~y)Z Specific

Isospin I ~ψI(~y) ≡ ~ψI(~y)R + ~ψI(~y)I + ~ψI(~y)Z Specific
Orbital Angular Momentum L ~ψL(~y) ≡ ~ψL(~y)R + ~ψL(~y)I + ~ψL(~y)Z Specific
Spin Angular Momentum S ~ψS(~y) ≡ ~ψS(~y)R + ~ψS(~y)I + ~ψS(~y)Z Specific
Total Angular Momentum J ~ψJ (~y) ≡ ~ψJ (~y)R + ~ψJ (~y)I + ~ψJ (~y)Z Specific
“Generic” Deformation → ~ψ→(~y) ≡ ~ψ→(~y)R + ~ψ→(~y)I + ~ψ→(~y)Z General

TABLE V. A summary of the complex and triplex information structures for our dual 3D and 4D space-time topologies,
respectively.

Name Value Represents Type

2D-PPS ~x ∈ X ⊂ Y Location Coordinate
2D-PPSS X ⊂ Y Location Space Coordinate Space
2D-OPS ~ψ(~x) ∈ Φ(~x) Feature Vector
2D-OPSS Ψ(~x) Feature Space Vector Space
3D-PPS ~y ∈ Y Location Coordinate
3D-PPSS Y Location Space Coordinate Space
3D-OPS ~ψ(~y) ∈ Φ(~y) Feature Vector
3D-OPSS Ψ(~y) Feature Space Vector Space

RI(〈~x1〉) =

 cos〈~x1〉 0 sin〈~x1〉
0 1 0

− sin〈~x1〉 0 cos〈~x1〉

 , (57)

and

RZ(〈~x1〉) =

cos〈~x1〉 − sin〈~x1〉 0

sin〈~x1〉 cos〈~x1〉 0

0 0 1

 , (58)

respectively. Here, eqs. (56–58) correspond to the
rotations33–35

RR(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR, ~yI cos〈~x1〉 − ~yZ sin〈~x1〉,
~yI sin〈~x1〉+ ~yZ cos〈~x1〉),

(59)

RI(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR cos〈~x1〉+ ~yZ sin〈~x1〉, ~yI,
~yZ cos〈~x1〉 − ~yR sin〈~x1〉),

(60)
and

RZ(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR cos〈~x1〉 − ~yI sin〈~x1〉,
~yR sin〈~x1〉+ ~yI cos〈~x1〉, ~yZ),

(61)

respectively. The identified

(~yR, ~yI cos〈~x1〉 − ~yZ sin〈~x1〉, ~yI sin〈~x1〉+ ~yZ cos〈~x1〉)

(~yR cos〈~x1〉+ ~yZ sin〈~x1〉, ~yI, ~yZ cos〈~x1〉 − ~yR sin〈~x1〉)

(~yR cos〈~x1〉 − ~yI sin〈~x1〉, ~yR sin〈~x1〉+ ~yI cos〈~x1〉, ~yZ)
(62)

results of eqs. (59–61) come from the corresponding ma-
trix multiplication of RR(〈~x1〉), RI(〈~x1〉), and RZ(〈~x1〉)
by the vector (~yR, ~yI, ~yZ) interpreted as a matrix with one
vertical column33–35.

Next, we consider the secondary rotation angle 〈~x2〉.
Upon simultaneously considering the two angle parame-
ters 〈~x1〉 and 〈~x2〉 for rotation eqs. (59–61), we take into
account all pairwise products of the rotational matrices
in eqs. (56–58) to obtain the six distinct matrix terms

RR(〈~x1〉)RI(〈~x2〉)
RI(〈~x1〉)RR(〈~x2〉)
RZ(〈~x1〉)RI(〈~x2〉)
RI(〈~x1〉)RZ(〈~x2〉)
RZ(〈~x1〉)RR(〈~x2〉)
RR(〈~x1〉)RZ(〈~x2〉),

(63)

where each is interpreted as a rotation through the two
angles33–35 in Y . Applying each of the six matrix re-
sults of eq. (63) is analogous to multiplying two triplex
numbers33–35. Thus, in order to acquire the actual for-
mulas for triplex multiplication, we multiply the matrix

10
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products of eq. (63) by the vectors (1, 0, 0), (0, 1, 0), and
(0, 0, 1)33–35—the three resulting triplex numbers are the
three columns of the matrix33–35. Now in the context
of generating graphics in Y , only two of these triplex
values are of interest in each matrix product because the
ones that have zero terms are degenerate from a graphical
perspective33–35. So although these steps are relatively
intuitive thus far, this is where the beast’s expression
begins to exhibit convolution because we’ve acquired 12
relevant triplex polar forms and now we must addition-
ally attempt all combinations of minus and plus for 〈~x1〉
and 〈~x2〉 to yield a total of 48 distinct formulas for the
triplex polar form33–35. Moreover, it is suggested in35
that we interchange 〈~x1〉 and 〈~x2〉 to generate a total of
96 possibilities. Here, each variation is an effective for-
mula for the triplex polar form, which is similar to P.
Nylander’s33–35

(cos〈~x1〉 cos〈~x2〉, sin〈~x1〉 cos〈~x2〉, sin〈~x2〉). (64)

For instance, any complex number, such as ~x1, can be
raised to a real power p by employing (|~x1|ei〈~x1〉)p =
|~x1|pepi〈~x1〉33–35. By analogy, the triplex exponentiation
formulation is identified in33–35 as

(~yR, ~yI, ~yZ)p = |~y|p(cos(p〈~x1〉) cos(p〈~x2〉),
sin(p〈~x1〉) cos(p〈~x2〉), sin(p〈~x2〉)),

(65)

with the constraints

|~y| =
√
~y2R + ~y2I + ~y2Z

〈~y〉 = 〈~x1〉 = atan2(~yI, ~yR)

[~y] = 〈~x1〉 = arcsin(~yZ|~y| ).

(66)

According to33–35 p can be any real value, so in addition
to employing the natural numbers, one can also define
negative and fractional powers.

Moreover, for a two arbitrary 3D-PPSs in the 3D-PPSS
Y , namely ~y1 and ~y2, the selected triplex polar form ex-
hibits a multiplication formula similar to33–35

(~y1R , ~y1I , ~y1Z ) ×(~y2R , ~y2I , ~y2Z ) = |~y1||~y2|(
cos(〈~x1〉+ 〈~x3〉) cos(〈~x2〉+ 〈~x4〉),

sin(〈~x1〉+ 〈~x3〉) cos(〈~x2〉+ 〈~x4〉),

sin(〈~x2〉+ 〈~x4〉)
),

(67)

where

|~y1| =
√
~y21R + ~y21I + ~y21Z

〈~y1〉 = 〈~x1〉 = atan2(~y1I , ~y1R)

[~y1] = 〈~x2〉 = arcsin
(
~y1Z
|~y1|

) (68)

and

|~y2| =
√
~y22R + ~y22I + ~y22Z

〈~y2〉 = 〈~x3〉 = atan2(~y2I , ~y2R)

[~y2] = 〈~x4〉 = arcsin
(
~y2Z
|~y2|

)
,

(69)

such that ~x1, ~x2, ~x3, and ~x4 in the form eq. (7) corre-
spond to the the relevant transformations. So in terms
of33–35, the selected polar form of P. Nylander’s eq. (64)
is utilized in eqs. (65) and (67) for the sake of illustration
simplicity—each polar form variant generates a different
pair of formulas33–35. Thus, for the 48 distinct exponen-
tial combinations of these triplex numbers see the sum-
marized results of T. Boniecki35 and J. Rampe’s “Visions
of Chaos” software48.

At this point, we’ve provided the first approach with
an introductory example on how the triplex framework of
Section III can be applied to D. White and P. Nylander’s
triplex algebra for the triplex fractals33–35 in 3D-PPSS.

2. An alternative approach

This second approach aims to finish the triplex
multiplication aspect of the White-Nylander mythical
beast33–35. Here, we hypothesize that complex multi-
plication can be extended to the triplex numbers with
two conditions:

1. the triplex polar form is unique, and

2. the triplex numbers do form a well-behaved alge-
bra.

For this, we propose that the triplex multiplication for
~y1 and ~y2 comprises three operations:

1. stretching ~y1 by the amplitude-PPS |~y2|,

2. rotating ~y1 by the phase-PPS 〈~y2〉, and

3. rotating ~y1 by the inclination-PPS [~y2].

Thus, if we define the triplex product as

~y3 ≡ ~y1~y2 (70)

for ~y1, ~y2, ~y3 ∈ Y , then eq. (70) implies

|~y3| ≡ |~y1||~y2|

〈~y3〉 ≡ 〈~y1〉+ 〈~y2〉

[~y3] ≡ [~y1] + [~y2].

(71)

From here, one can venture onward and employ eqs. (70–
71) to further define the triplex exponentiation for triplex

11



The Hadronic Journal • Volume 35 • Number 6 • December 2012

fractals such as the Mandelbulb33–35. To define triplex
exponentiation, all we need to do is iterate the triplex
multiplication of eqs. (70–71).

At this point, we’ve provided the second and alterna-
tive approach for an introductory example on how the
triplex framework of Section III can be applied to D.
White and P. Nylander’s triplex algebra and fractals33–35
in 3D-PPSS.

B. Color-anticolor confinement and
baryon-antibaryon duality

Here, the triplex framework of Section III is applied
to upgrade the fractional quantum number order param-
eters of the baryon wavefunction, antibaryon wavefunc-
tion, and antisymmetric tensor in the analytic confine-
ment and duality proof of32 from 2D-OPSs to 3D-OPSs.
For this, the triplex multiplication of Section IVA is em-
ployed.

Thus, following32, for the baryon-antibaryon pairs
that are confined to T of eq. (40) on the six-coloring
kagome lattice of antiferromagnetic ordering, we define
the baryon wavefunction for the three colored quark
3D-PPSs, namely {~r,~g,~b} ⊂ T ⊂ Y , and the corre-
sponding antibaryon wavefunction for the three anticol-
ored antiquarks 3D-PPSs, namely {~̄r, ~̄g,~̄b} ⊂ T ⊂ Y , in
the upgraded Gribov QCD/QED vacuum, respectively.
For this, we “Cooper pair” the set of strongly conserved
quantum numbers, namely {~ψC , ~ψI , ~ψJ}, to construct a
strong baryon wavefunction constraint for the baryon-
antibaryon confinement, duality, and antisymmetry of
T 32, such that ~ψJ = ~ψL + ~ψS is the “BSO-vector” of49.
The qq̄ pairs confined to T on the six-coloring kagome lat-
tice manifold are located at the 3D-PPSs ~r,~g,~b, ~̄r, ~̄g, ~̄c ∈
T . First, the encoded qq̄ states adhere to the uniformly-
arranged “phase-PPS and inclination-PPS constraints”

〈~r〉 ≡ 〈~̄r〉 ± π

〈~g〉 ≡ 〈~̄g〉 ± π

〈~b〉 ≡ 〈~̄b〉 ± π

[~r] ≡ [~̄r] ± π

[~g] ≡ [~̄g] ± π

[~b] ≡ [~̄b] ± π,

(72)

which update the 2D-PPS constraints of eq. (28) in32 to
the desired 3D-PPS configuration—see the angle compo-
nents of the parity-transformation in the upcoming eq.
(85) and the time-reversal in the upcoming eq. (86) for
CPT-theorem compliance. Second, the encoded qq̄ states
adhere to the uniformly-arranged “amplitude-PPS con-
straints”

|~r| ≡ |~g| ≡ |~b| ≡ |~̄r| ≡ |~̄g| ≡ |~̄b| ≡ ε (73)

so they exist within the T defined in eq. (40)—see the
amplitude components of the parity-transformation in

the upcoming eq. (85) and the time-reversal in the up-
coming eq. (86) for CPT-theorem compliance. Third,
the encoded qq̄ states adhere to the uniformly-arranged
“phase-OPS and inclination-OPS antiferromagnetic or-
dering constraints”

〈~ψJ(~r)〉 ≡ 〈~ψJ(~̄r)〉 ± π

〈~ψJ(~g)〉 ≡ 〈~ψJ(~̄g)〉 ± π

〈~ψJ(~b)〉 ≡ 〈~ψJ(~̄b)〉 ± π

[~ψJ(~r)] ≡ [~ψJ(~̄r)] ± π

[~ψJ(~g)] ≡ [~ψJ(~̄g)] ± π

[~ψJ(~b)] ≡ [~ψJ(~̄b)] ± π,

(74)

which update the 2D-OPS constraints of eqs. (29–31)
in32 to the desired 3D-OPS configuration.

Next, by exercising eqs. (72–74) we update the full
baryon and antibaryon states of eqs. (32–33) in32 to

~Ψtotal(~r,~g,~b) ≡ ~Ψ(~r)× ~Ψ(~g)× ~Ψ(~b) (75)

~Ψtotal(~̄r, ~̄g,
~̄b) ≡ ~Ψ(~̄r)× ~Ψ(~̄g)× ~Ψ(~̄b) (76)

for a 3D-OPS version of the baryon-antibaryon confine-
ment and duality. In eq. (75), the red, green, and
blue colored wavefunctions of the baryon wavefunction
~Ψtotal(~r,~g,~b) that encode the quark features at ~r,~g,~b ∈ T
on the three-coloring triangular sub-lattice of eqs. (34–
36) in32 become

~Ψ(~r) ≡ ~ψC(~r)× ~ψJ(~r)× ~ψI(~r)× ~r, ~Ψ(~r)
def
= 〈~r|~Ψ〉,

~Ψ(~g) ≡ ~ψC(~g)× ~ψJ(~g)× ~ψI(~g)× ~g, ~Ψ(~g)
def
= 〈~g|~Ψ〉,

~Ψ(~b) ≡ ~ψC(~b)× ~ψJ(~b)× ~ψI(~b)×~b, ~Ψ(~b)
def
= 〈~b|~Ψ〉,

(77)
while in eq. (76) the antired, antigreen, and antiblue
anticolored wavefunctions of the antibaryon wavefunc-
tion ~Ψtotal(~̄r, ~̄g,

~̄b) that encode the antiquark features at
~̄r, ~̄g,~̄b ∈ T on the three-anticoloring triangular sub-lattice
of eqs. (37–39) in32 become

~Ψ(~̄r) ≡ ~ψC(~̄r)× ~ψJ(~̄r)× ~ψI(~̄r)× ~̄r, ~Ψ(~̄r)
def
= 〈~̄r|~Ψ〉,

~Ψ(~̄g) ≡ ~ψC(~̄g)× ~ψJ(~̄g)× ~ψI(~̄g)× ~̄g, ~Ψ(~̄g)
def
= 〈~̄g|~Ψ〉,

~Ψ(~̄b) ≡ ~ψC(~̄b)× ~ψJ(~̄b)× ~ψI(
~̄b)× ~̄b, ~Ψ(~̄b)

def
= 〈~̄b|~Ψ〉;

(78)
for a depiction of the three distinct qq̄ pairs that are con-
fined to T along the six-coloring kagome lattice manifold
(see Figure 3 in32). Therefore, the six-coloring antisym-
metric wavefunction components of eqs. (40–42) in32 be-
come

~Ψ(~r, ~̄r) = −~Ψ(~̄r, ~r) (79)
~Ψ(~g, ~̄g) = −~Ψ(~̄g, ~g) (80)

~Ψ(~b,~̄b) = −~Ψ(~̄b,~b) (81)

for the confined quark and antiquark (two-particle) cases
in 3D-PPSS and 3D-OPSS.
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Next, using eqs. (75–81), the antisymmetric matrix of
eq. (43) in32 is upgraded to(

0 ~Ψtotal(~r,~g,~b)
~Ψtotal(~̄r, ~̄g,

~̄b) 0

)
, (82)

where the expanded 3D antisymmetric wavefunction ma-
trix of eq. (44) in32 becomes 0 ~Ψ(~r) ~Ψ(~g)

~Ψ(~̄r) 0 ~Ψ(~b)
~Ψ(~̄g) ~Ψ(~̄b) 0

 (83)

for T in 3D-PPSS and 3D-OPSS.
Finally, the CPT-theorem implementation of32 is re-

vised, which is a fundamental property of T in eq. (40).
The 2D-OPS charge-conjugation of eq. (47) in32 is up-
graded to the 3D-OPS version

δC :



~ψcharge(~t) 7→ −~ψcharge(~t) ~ψcharge(~t)R
~ψcharge(~t)I
~ψcharge(~t)Z

 7→

−~ψcharge(~t)R−~ψcharge(~t)I
−~ψcharge(~t)Z


 |~ψcharge(~t)|〈~ψcharge(~t)〉
[~ψcharge(~t)]

 7→

 |~ψcharge(~t)|
〈~ψcharge(~t)〉 ± π
[~ψcharge(~t)]± π

 ,

(84)

where in this case the 3D-OPS ~ψcharge encodes a generic
charge state, the parity-transformation of eq. (48) in32
is upgraded to the 3D-PPS version

δP :



~yR~yI
~yZ

 7→

−~yR−~yI
−~yZ


 |~y|〈~y〉
[~y]

 7→

 |~y|
〈~y〉 ± π
[~y]± π


, (85)

where [~y] = M
|~y| , and the time-reversal of eq. (49) in32 is

upgraded to the 3D-PPS version

δT :



~t 7→ −~t~tR~tI
~tZ

 7→

−~tR−~tI
−~tZ


 |~t|〈~t〉
[~t]

 7→

 |~t|
〈~t〉 ± π
[~t]± π


, (86)

that together comprise a CPT-transformation.
Note that our triplex framework upgrades the

“superfluid-Mott insulator transition” for the sponta-
neous symmetry breaking of32,50 from 2D-OPS to 3D-
OPS—this leads to the emergence of three types of fun-
damental excitations in Y :

1. massless-phase Nambu-Goldstone modes,

2. massless-inclination Nambu-Goldstone modes, and

3. massive-amplitude “Higgs-like” modes.

At this point, we’ve provided an introductory exam-
ple on how the triplex framework of Section III can be
applied to upgrade the fractional quantum number order
parameters of the baryon wavefunction and antisymmet-
ric tensor in32 from 2D-OPSs to 3D-OPSs.

C. Quasi-normal modes for Schwarzschild black
holes

Here, the complex and triplex framework of Sections
II and III is applied to the (thermal) SBH quasi-normal
modes in39–44.

Quasi-normal modes are typically labeled as ωnl, where
l is the angular momentum quantum number39–44. For
each l (l ≥ 2 for gravitational perturbations), there exists
a second quantum number, namely the “overtone” one
n (n = 1, 2, ...), which labels the countable sequence of
quasi-normal modes39–44. Thus, for large n the quasi-
normal modes of the SBH become independent of l and
have the following structure39–44

ωn = ln 3× TH + 2πi(n+ 1
2 )× TH +O(n−

1
2 )

= ln 3
8πM + 2πi

8πM (n+ 1
2 ) +O(n−

1
2 )

(87)

for a strictly thermal approximation, where TH = 1
8πM

is the Hawking temperature for a SBH of mass M .
Immediately we see that eq. (87) contains a real term,

namely ln 3×TH = ln 3
8πM , and an imaginary term, namely

2πi(n+ 1
2 )× TH = 2πi

8πM (n+ 1
2 ). Therefore, we can start

by first applying the complex framework of Section II to
encode the 2D feature states of eq. (87). Thus, if the
SBH is centered at the 2D-PPS ~x ∈ X in dual 3D space-
time with the amplitude-radius (or amplitude-modulus)
Rhorizon = ε = 2M , then we use eq. (23) to define the
new quasi-normal mode 2D-OPS

~ψωn(~x) ≡ ~ψωn(~x)R + ~ψωn(~x)I

≡ (~ψωn
(~x)) = (|~ψωn

(~x)|, 〈~ψωn
(~x)〉)

= (~ψωn(~x)R + ~ψωn(~x)I),

(88)

that satisfies the synchronizing Pythagorean and trigono-
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metric interconnection constraints of eq. (22) to establish

|~ψωn
(~x)| ≡

√
~ψ2
ωn

(~x)R + ~ψ2
ωn

(~x)I = (ω0)n

~ψωn
(~x)R ≡ |~ψωn

(~x)| cos〈~ψωn
(~x)〉 = ln 3× TH = ln 3

8πM

~ψωn(~x)I ≡ |~ψωn(~x)| sin〈~ψωn(~x)〉 = 2πi(n+ 1
2 )× TH

= 2πi
8πM (n+ 1

2 ),
(89)

where the (ω0)n term is applied in42–44.
Moreover, we also recognize that eq. (87) comprises a

tertiary term, namely O(n−
1
2 ). Therefore, we can sub-

sequently apply the triplex framework of Section III to
encode the 3D feature states of eq. (87). Thus, if the
SBH is located at the 3D-PPS ~y ∈ Y in dual 4D space-
time, such that eq. (30) illustrates the interconnection
of X ⊂ Y , then we use eq. (50) to define the new quasi-
normal mode 3D-OPS

~ψωn
(~y) ≡ ~ψωn

(~y)R + ~ψωn
(~y)I + ~ψωn

(~y)Z

≡ (~ψωn(~y)) = (|~ψωn(~y)|, 〈~ψωn(~y)〉, [~ψωn(~y)])

≡ (~ψωn
(~y)R + ~ψωn

(~y)I + ~ψωn
(~y)Z),

(90)
with the 3D-OPS Cartesian components

~ψωn(~y)R ≡ ln 3× TH = ln 3
8πM

~ψωn
(~y)I ≡ 2πi(n+ 1

2 )× TH = 2πi
8πM (n+ 1

2 )

~ψωn(~y)Z ≡ O(n−
1
2 )

(91)

from eq. (87), that satisfy the synchronizing
Pythagorean and trigonometric interconnection con-
straints of eq. (49) to establish

|~ψωn
(~y)| ≡

√
~ψ2
ωn

(~y)R + ~ψ2
ωn

(~y)I + ~ψ2
ωn

(~y)Z

〈~ψωn(~y)〉 ≡ arctan

(
~ψωn(~y)I
~ψωn(~y)R

)

[~ψωn
(~y)] ≡ arccos

(
~ψωn(~y)Z

|~ψωn(~y)|

)
.

(92)

At this point, we’ve provided an introductory exam-
ple on how the triplex framework of Section III can be
applied to encode the SBH quasi-normal modes of39–44.

V. CONCLUSION AND DISCUSSION

In this paper, we started by considering the impor-
tance of the complex numbers and spherical structures.
It is known that complex numbers are fundamental to

science and engineering because their representational
capability supercedes that of real numbers2,3. Addi-
tionally, spherical structures and spherically-symmetric
frameworks (including circles and circularly-symmetric
frameworks) are also axiomatic in this context because
physical objects and patterns that are observed nature
(i.e. baryons, stars, black holes, etc.) frequently exhibit
spherical-like properties in a 3D space that can be in-
ferred from the Inopin Holographic Ring of32 due to the
holographic principle10–12. These notions fueled our mo-
tivation to explore such spherical relationships in chaotic
systems and thereby extend the complex numbers to in-
troduce and define triplex numbers that are consistent
with the work of D. White and P. Nylander33–35.

The fact that complex and triplex numbers can be si-
multaneously interpreted and implemented as abstract
scalars and vectors was a powerful realization in terms of
general applicability to particle and astro physics. From
this, it became clear that these constructs could be uti-
lized to define state spaces for locations in space-time
and features at such locations. Thus, our next step was
to employ the complex numbers to establish the well-
defined 2D-PPS, 2D-PPSS, 2D-OPS, and 2D-OPSS in-
formation structures to improve the topology and simul-
taneous and spontaneous superfluidic symmetry breaking
of32. Subsequently, we repeated a similar creative up-
grade to32 with the additional spatial dimension, where
we engaged the triplex numbers to assemble definitions
for the 3D-PPS, 3D-PPSS, 3D-OPS, and 3D-OPSS in-
formation structures. Afterwards, we provided three dis-
tinct and preliminary examples on how these new infor-
mation structures can be applied to encode the White-
Nylander mythical beast of33–35, the baryon-antibaryon
wavefunction of32, and the SBH quasi-normal modes
of39–44. Thus, the encoding formulations of this com-
plex and triplex framework are highly consistent and dis-
ciplined, and thereby provide an easy-to-visualize, rela-
tively simplistic, and flexible system of abstract vectors—
attributes that are, in our opinion, important from an
engineering and applicability standpoint. Moreover, we
suggest that such an encoding methodology and frame-
work with built-in (spherically-symmetric) non-linearity
that complies with three spatial dimensions and a fourth
temporal dimension, where space and time are dual and
interconnected, is crucial for attacking problems and rep-
resenting chaotic system states in physics and computer
science.

For future work, we propose that the content of this
paper should undergo additional consideration, scrutiny,
and clarification. In particular, it may be beneficial and
enlightening to apply the complex and triplex frame-
work of this paper to further analyze the baryon wave-
function and antisymmetric tensors of32, along with the
tensors of general relativity51 and the Brans-Dicke the-
ory of gravitation52. Furthermore, computer simulations
should be conducted to generate 3D fractals and the
Mandelbulb33–35 in this latest version of the Riemannian
dual space-time topology.
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