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Summary 

 

Resting wave functions for the electron and the proton are presented. The proposed resting wave 

function of the proton is -6π
5
 multiplied by the resting wave function of the electron. Therefore, the 

hypothesis presented in Part 1 is not rejected. An unexpected consequence of this work is the ability to 

calculate the size of a proton at rest by using Equation 13.4. The resulting value for the diameter is 1.668 

x 10
-15

 meter. This is within the accepted measured range of the proton diameter at 1.755(102) x 10
-15

 

meter. Another unexpected consequence of this work is the ability to associate vacuum energy with the 

wave function of the electron by using Equation 22.2. Lastly, Equation 22.7 combines QM, SR,  and 

Conservation of Momentum. It is the most interesting result presented here. 

A function based upon the exponential of a generic quaternion is used as the basis for the solution of 

the wave equations. This produces 3 general forms of wave functions.  

The Discussion is broken into two portions. The portion subtitled General Ideas can be largely 

understood using little mathematics. The portion subtitled Rigorous Analysis will require competence 

with quaternions and with partial differential equations.  

 

 

Preface 

 

The author is educated as a chemical engineer. There is a significant amount of mathematics presented. 

The required mathematics includes quaternions and partial differential equations. The written text can 

be largely understood without the Appendices. It is rigorous but not inflexible. 
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Discussion 

 

In Part 1 of this effort
1
, the author presented evidence that our rest frame is moving with respect to a 

scalar field. As a brief restatement of what was presented, the author argued that the true ratio 

between the rest mass of the proton and the rest mass of the electron is 6π
5
 and that the observed 

deviation from this value is the result of motion of our rest frame with respect to a scalar field.  The 

value of this motion was stated to be 0.006136 c based upon the Lorentz Transform. 

An implication of this motion through the aether is that the electrons that we perceive as being in our 

frame of reference are actually stationary and simply rise up from the vacuum as required by the wave 

equation. The key to that argument is the belief that there are two solutions to the wave equation such 

that their ratio at rest is 6π
5
. It is therefore the objective of Part 2 of this work to produce these 

solutions or to show how they are related. This is not a theoretical discussion of wave mechanics. The 

objective is to produce a pair of wave functions. The author is somewhat flexible in the approach to this 

problem rather than simply following mathematical dogma. 

The author
2,3

 has previously produced vector solutions to the spherical wave equation. These were 

based upon previous work by Wolff
4
. The key to those solutions was the fact that sin(x)/x has a finite 

value at x = 0. Therefore, versions of Euler's Equation were combined in such a way as to eliminate the 

cosine terms, thereby leaving only the sine terms. This effort will follow that strategy. 

It will be shown below that possible resting wave functions for the electron and the proton are as 

follows: 

Electron: 

��� −  ���  =  ± 1� sin���� ������  
Proton: 

��� −  ��� =  ��� + � + ����� +  �� +  ��  

Where 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 



Page 3 of 42 

 

� =  2'()
* ℎ2�,  ; . =  �'()

* ℎ2�, ln � ;  �. =  2 ln����  ;  0�  =  4 ln���  =  2� �. 

The ratio between the proposed proton and electron wave functions is -6π
5
 as required by Part 1. 

It will also be shown that the size of the proton at rest can be calculated from the following: 

2 = 4√3 5 1')6 5 ℎ2�6 ln��� =  2√3� 0� 

For an object at rest in the aether, it will be shown that time can be quantized as follows: 

7 =  ℎ4'()8 9 ; 9 = 0, ±1, ±2, �7). 
And that this time quantization allows the rest mass of the electron to be defined as follows: 

'( =  ± 5126 5 ℎ2�6 51)6 =lim%→���� −  ���@ 

Lastly, it will proposed - not rigorously shown - that the following is true: 

��$�� =  A1 − B8)8   +   B) � 

 

General Ideas: 

There was a Figure 1 presented in Part 1 of this work and included here. During the discussion of that 

figure, it was noted that a necessary condition for this argument to be true is that mass must be 

proportional to vertical distance in that figure. It was also speculated that the value of the wave function 

was related to this same distance. If the speculation is true then it follows that the value of the wave 

function is related to mass. This is not a new concept since the Schrödinger Equation expresses a form of 

it. The simplest such relationship is linear. This is expressed mathematically as a differential as follows: 

Equation 1: 

2' =  C 2� 

In Equation 1, γ is a presently unknown constant of proportionality. Negative values here should not be 

interpreted as anti-matter or negative matter. Equation 1 is necessary to ensure that the ratio between 

two wave functions is equal to the ratio of their masses. The value of γ will be determined when the 

electron is discussed in the Rigorous Analysis section. 

The horizontal distance in Figure 1 could be a true physical distance although that was never explicitly 

stated. 
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The general idea here is to produce a wave function - actually two wave functions - whose ratio is 6π
5
. 

There must be some rationalization for the structure of the functions and they both must satisfy the 

wave equations. The easiest way for both to satisfy the wave equation is for both functions to be 

multiples of a single function that satisfies it. Also, the functions should have similar structures and if 

quaternions are involved then one function might be advanced by 2π with respect to the other. 

The first task is to determine a method of scaling a vector based upon its angle of rotation. Each 90 

degrees of rotation must increase the length of the vector by a factor of π. The author proposes the 

following relationship: 

Equation 2: 

D =  �8EF
 

At θ = 0, f = 1. At θ = π/2, f = π. At θ = π, f = π
2
. At θ = 3π/2, f = π

3
. At θ = 2π, f = π

4
. These are precisely 

the values needed to satisfy the quaternion multiplication proposed in Part 1. It might be possible to 

include a value "s" to represent spin and a value "n" with discrete values (n = 0, 1, 2, 3) to produce a 

generalized solution to the wave equation, but the author's objective here is limited to producing 6π
5
. 

The next task is to determine a method of producing the value 6. Euler's Equation is one of the 

foundations used to solve differential equations. It is almost magic. Euler's Equation is also a quaternion 

that performs a rotation about the axis in the exponential. The author will begin with the following 

simplified solution: 

Equation 3: 

� =  �#�FG − ���FG = 2� sin�H�� 

Here, the bold faced i indicates a vector of unit length in the direction of the i axis. The variable θi 

represents the angle of rotation around the associated axis. There are similar functions for j and k. By 

multiplying each of these three simplified solutions by Equation 2 and then adding them together, the 

following is obtained: 

Equation 4: 

� = 2 5� �8EFGsin�H�� +  � �8EFIsin�H� +  ��8EFJ sin�H��6 

The next step is to multiply Equation 4 by (i + j + k) and to substitute a generic θ for each angle of 

rotation. Doing so produces the following: 

 

Equation 5: 

� = 2�� + � + ���� + � + �� �8EFsin�H� =  −6�8EF sin�H� 
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With relatively little effort, the author has produced a factor of 6π
4
 at θ = 2π. The minus sign is an 

unexpected bonus. The remaining factor of π is more difficult to rationalize. 

The author was stumped at this point for quite some time. It was tempting to simply arbitrarily include 

the remaining factor of π but that would risk missing something fundamental. The author believes that 

the problem is that there is another version of Equation 2 that is associated with rotation in the opposite 

direction. Equation 2 creates an expanding spiral in the counter-clockwise direction. The choice of 

rotational direction was arbitrary. It is equally valid to rotate in the clock-wise direction. If CW rotation is 

subtracted from the CCW rotation, the result is a line segment with ends on the two spirals. It is then 

reasonable to multiply by π to produce a circle from the line segment. Equation 6 incorporates these 

revisions. It seems that the exponential π is operating like a quaternion. Therefore, the author included 

an i as part of the exponential. Taking the difference between the two also ensures that the result 

includes only sine functions since that is a requirement of the spherical wave solutions. 

Equation 6: 

� =  −6� 5�#�8EFG −  ���8EFG6 sin�H�� 

Equation 6 is getting pretty close to a possible solution. The sin(θi) could be the wave function for the 

electron. The exponentials need revision since there is scaling as well as rotation. This is perhaps done as 

follows by adding a θi in the exponentials: 

Equation 7: 

� =  −6� 5�8E�FG#�FG �  −  �8E�FG��FG �6 sin�H�� =  −6��8FGE 5�#�8EFG − ���8EFG6 sin�H�� 

If the sin(θi) combined with the terms in the parentheses represents the electron, then the problem is 

essentially solved at this point provided the proton wave function is 2π ahead of the electron wave 

function. Of course, it must also be confirmed that this satisfies the various wave equations.  

The author proposes that the correct generalized form of the wave function is as follows: 

Equation 8: 

� =  �� +  ��� + ��� +  ��� 

In Equation 8, Ψ is a quaternion and i, j, and k are unit vectors. A motivation for writing the wave 

function in this form is to present the scalar field as a datum. Therefore, the wave functions of various 

particles should be written as Ψ - ψ0. 

Going back to Equation 7, the next step is to substitute the wave functions for the proton and the 

electron. 
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Equation 9: 

��L − ��� =  −6��8FGE ��( −  ��� 

In Equation 9, the wave function for the electron is as follows: 

Equation 10: 

��( − ���  =  5�#�8EFG − ���8EFG6 sin�H�� 

Equation 10 is useful for the present but will likely be revised with a 1/r term when the spherical wave 

equation is solved. Also, the sin(θi) might not be needed because the complex exponentials of π will 

produce a factor of 2isin(θi), and the extra sin(θi) might prevent ψ from satisfying the wave equations. 

The ratio between these two wave functions is -6π
5
 at 2π. 

In consideration of the extra sine term in Equation 10, let us revisit the above argument. Suppose that 

we begin with the following function for i: 

Equation 11: 

M� =  � N�8E�8E#�FG� − �8E�8E��FG�O = 2��P� sin 52� H� ln���6 

In Equation 11, the author has combined all of the lessons learned from Equations 2 - 7. Next, define 

similar functions for j and k. Then add the three functions together, multiply by (i + j + k), and simplify by 

using a generic θ. Hint: regarding Eq 11, π = exp(ln(π)). 

Equation 12: 

��L −  ��� =  −6�Q sin 52� H ln �6 

Equation 13: 

��( −  ��� = sin 52� H ln���6  
If Equation 13 can be shown to satisfy the wave equations, then the author will have shown that there 

are two solutions to the wave equations such that their ratio is -6π
5
. By inference, one solution might be 

the electron while the other solution might be the proton.  

Appendix A confirms that Equation 13 satisfies both the classical wave equation and the Schrödinger 

Wave Equation. Therefore, the hypothesis presented in Part 1 is not rejected. Necessary conditions to 

satisfy both wave equations are Equations 13.1 and 13.2.  

 



Page 7 of 42 

 

Equation 13.1: 

� =  2')
* ℎ2�,  ≅  5.686  ∙   10P8 ' 5 1'�7�� ∙  VW6 

Equation 13.2: 

. =  HX  =  �')
* ℎ2�, ln �  ≅ 7.802 ∙  10P8 ' 5 �Z2[Z9'�7�� ∙  VW6 

These are thought to be fundamental properties of the wave medium. Equation 13.1 results from 

application of the separation of variables method to the Schrödinger Wave Equation. The value α is the 

separation of variables constant for the system. It has units of (length
-1

).  

There are at least two ways to express the differential equations associated with this problem. One 

method is as Equation 13. Another method is as sin(αx) for separation of variables. Equation 13.2 results 

from requiring that the values within the parentheses be equal for these two methods (i.e., αx = 

(2/π)θlnπ). The value β is simply a proportionality factor between the two methods. It has units of 

(length
-1

). In some ways, it expresses the wave nature of matter and the nature of the wave medium 

itself. 

A possible wave function for the electron is therefore: 

Equation 13.3: 

��( − ���  =  ±sin 52� H ln���6 ���$�� =  ± sin��X� ���$�� 

Equation 13.2 may be used to estimate the size of the proton by setting θ = 2π. The resulting value is 

4.815 x 10
-16

 meters. This is the distance from the center of the proton to the center of a face along one 

of the 3 axes. The diameter - actually the distance between opposite corners -  is then determined by 

multiplying by 2 x sqrt(3). The resulting value is 1.668 x 10
-15

 meters. The accepted value
5
 is 1.755(102) x 

10
-15

 meters for diameter. This is perhaps the best evidence favoring an aether. 

Equation 13.4: 

2 = 4√3 5 1')6 5 ℎ2�6 ln��� =  2√3� 0� 

 

Rigorous Analysis: 

In this section, the author will develop generic quaternion-based solutions to the wave equations. The 

author will then specify values for the elements of the quaternion to match the reasoning presented in 
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General Ideas above. The equations that must be satisfied are the classical wave equation and the 

Schrödinger Wave Equation. These are expressed as follows: 

Classical
6
: 

∇8� =  1)8 ]8�]78  

Schrödinger
7
: 

− * ℎ2�,8
2' ∇8� = � 5 ℎ2�6 ]�]7  

Appendix B presents a simple introduction to quaternions and vector rotation. Quaternions were 

developed by Sir William Rowan Hamilton
8
 in the mid 1800's as a method to determine the ratio 

between non-collinear vectors. Quaternions are used to rotate and scale vectors. 

Euler's Equation
9
 is typically written as follows: 

��^ =  cos X +  � sin X 

or as 

���^ = cos X −  � sin X 

Comparison of Euler's Equation with the results from Appendix B leads to the conclusion that Euler's 

Equation is actually a quaternion that performs rotation. As such, the value x is actually an angle rather 

than a linear distance. So, when Euler's Equation is used as a basis to solve a differential equation such 

as the wave equation, it is necessary to provide a means to convert between angular rotation and linear 

distance. Therefore, a constant of proportionality is required to make this conversion. When separation 

of variables is used, the separation constant α serves this purpose.  

In the General Ideas section above, several equations are presented that have an exponential term of 

the form (1 + ix). This is an exponential of a quaternion. Suppose that a quaternion Q is defined as 

follows: 

a =  0� +  0�� + 0�� +  0�� =  0� +  b 

Capitalized bold text is used to designate a quaternion. 

Next, define a function X as follows: 

Equation 14: 

c =  �!"#b^ =  �!"dcos�0�X� + � sin�0�X�efcos�0�X + � sin�0�X gdcos�0�X� + � sin�0�X�e 
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In this section, the author has switched from ψ to X (or R) in anticipation of using the separation of 

variables method. In the above X, the vector portion q is multiplied by x but the scalar portion q0 is not. 

The wave function ψ will then be written X(x)T(t) or R(r)T(t). 

The 1st and 2nd derivatives of Equation 14 are: 

1st Derivative: 

2c2X = b�!"#b^ = bc 

2nd Derivative: 

28c2X8 = b8�!"#b^ =  b8c =  −� 0�8  +  0�8  +  0�8 c 

This illustrates the power and convenience of quaternions. Would the reader prefer to take the 

derivatives of the various sines and cosines of Equation 14, or of the complex exponential instead? The 

complex exponential is certainly easier and more compact. 

Separation of variables is a standard method of solving partial differential equations. Essentially, the 

solution is assumed to be the result of multiplying several functions together. Each of these functions is 

a function of one of the independent variables. So, for a problem such as this one, the wave function 

would be assumed to have a form as follows: 

h = i�X�j�7� k� h = l���j�7� 

The various derivatives are determined for this and then substituted into the equation to be solved. The 

most important feature is that the cross derivatives are zero because each function is a function of only 

one independent variable. 

When separation of variables is used to solve a partial differential equation, a separation constant is 

produced. For a 2nd order problem, this is typically designated as -α
2
. The negative sign is typically used 

to invoke complex solutions but is not essential.  A requirement of satisfying the classical wave equation 

is the following: 

1c 28c2X8 =  −�8 =  1)8 1j 28j278  

b8 =  −�8 

There are an unlimited number of ways to satisfy this. A simple solution is to set qi = ±α and qj = qk = 0. 

The value of q0 is not a factor here. It is easier to produce a quaternion solution than non-quaternion 

one since the user has some degree of freedom. 

Next, consider the conjugate of the above quaternion Q. Define Q* as follows: 
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a∗ =  0� − 0�� −  0�� − 0�� = 0� −  b =  a − 2�0�� +  0�� +  0�� = a − 2b 

It is easy to show the following quaternion identities: 

a + a∗ = 20� 

a − a∗ = 2b 

a8 =  �a∗�8 =  0�8 −  0�8 − 0�8 − 0�8 

aa∗ =  0�8 + 0�8 + 0�8 +  0�8 

and 

12 �a +  a∗�  =  0�  =  a −  b 

Next, define a function similar to Equation 14 except use both Q and its conjugate Q*. 

Equation 15: 

n =  ��!"#b^ −  �!"�b^� 

Equation 15 will also satisfy the classical wave equation. In addition, it will satisfy the spherical version of 

the classical wave equation when multiplied by 1/x.  

It would be valid to pre-multiply the exponential terms of Equation 15 by -1. At first glimpse this appears 

to produce two solutions. What it actually does is swap the positions of Q and Q*. Whether or not those 

are unique or redundant is another question. The author believes they are redundant. 

Now consider the form of T. It must be a complex exponential in order to satisfy Schrödinger. By solving 

both the Schrödinger Equation and the classical wave equation for the Laplacian, and then setting the 

two equations equal to each other, the following is obtained: 

Equation 16: 

1)8 ]8�]78 =  −� 2'
* ℎ2�,

]�]7  

Define T(t) as follows: 

Equation 17: 

j�7� =  ���$�� 
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1st Derivative: 

]j]7 =  −��)���$�� =  −��)j 

2nd Derivative: 

]8j]78 =  [8�8)8���$�� =  −�8)8j 

Substitution of the 1st and 2nd derivatives into Equation 17 produces the following: 

− 1)8 �8)8j =  �8 2'
* ℎ2�, �)j 

This simplifies to: 

Equation 18: 

� =  + 2')
* ℎ2�, 

If the exponential uses +iαct instead of -iαct, then the following result is obtained: 

Equation 19: 

j�7� =  �#�$�� 

Equation 20: 

� =  − 2')
* ℎ2�, 

It is noteworthy that the time exponentials of +iαct and -iαct produce valid solutions when taken 

individually but not when taken together as a sum or difference. When taken together as a sum or 

difference, they will satisfy the classical wave equation but not the Schrödinger Wave Equation. In fact, 

only the -iαct form will satisfy Schrödinger for positive values of α and m because of the -i in 

Schrödinger. 

It would be equally valid to define Equation 17 and Equation 19 as the negative of the exponential. 

Therefore, there are four forms of T that will satisfy the wave equations. These may be compactly 

written as follows: 

Equation 21: 

o�7� =  ± =1 00 1@ Nopo8O 
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Where 

op =  �#�$�� 

and 

o8 =  ���$�� 

In principle, the form of T results in 4 solutions when multiplied by R. In practice, the +iαct form is not a 

solution. Therefore, there are only two valid solutions. 

As was mentioned previously, it is possible to satisfy the wave equations using a quaternion exponential 

in an unlimited number of ways. Appendix C confirms that the above generic quaternion wave function 

satisfies the wave equations. Appendix C also presents 3 general solutions. These solutions are 1-D, 2-D, 

and 3-D. The value of q0 can be any real number. Below, the author briefly discusses each. The objective 

is to determine which solutions best match the electron and proton with the requirement that the 

proton must be 6π
5
 more massive at rest than the electron. The task for each problem will be to 

determine the values for the coefficients of the quaternion and the resulting wave function. All of the 

coefficients have ± values. The author's preference is to use positive values for Q and negative values for 

Q*. The values for α and β are based upon Equations 13.1 and 13.2 from the General Ideas section. The 

values for α and β are the same for all of the following wave functions. In these formulations, Q and Q* 

have been replaced by (q0 + qα) and (q0 - qα) respectively.  

 

� =  2')
* ℎ2�, ; . =  �')

* ℎ2�, ln � ;  �. =  2 ln����  

 

 

Case qi qj qk 

1 ±1 0 0 

2 0 ±A12 ±A12 

3 ±A13 ±A13 ±A13 

Table 1 - Example Solutions 
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Case 1: 

�� −  ��� =  ± 1� ��!"#�$% −  �!"��$% ������  
Case 2: 

�� −  ��� =  ± 1� q�!"#�±�±�� $√8% − �!"��±�±�� $√8%r ������   
Case 3: 

�� −  ��� =  ± 1� q�!"#�±�±�±�� $√s% − �!"��±�±�±�� $√s%r ������  
 

1-D Solution: 

This is a typical solution presented for this type of differential equation. There are two wave functions 

represented here. These are designated by the ± sign in front of the 1/r. Wolff
4
 presents a real solution 

very similar to this and states his belief that it represents the electron / positron. Wolff's solution 

satisfies the classical wave equation but not the Schrödinger Wave Equation.  

 

2-D Solution: 

The next wave function presented is a 2-D vibration. There is a trap here. Take another look at Equation 

14. For the purpose of the definition of Q, the order of addition for i, j, and k makes no difference. But in 

Equation 14, the order of addition equates with the order of multiplication of the various Euler's 

Equations. Basically, the trap is as follows: 

�#��#��^  ≠  �#��#��^ ; ����#��^  ≠  ����#��^ 

See Appendix D for further details. What is most noteworthy from Appendix D is that it is possible to 

combine the above four relations to selectively eliminate groups of terms. It also allows for the use of 

the double angle or half angle identities from trigonometry. This may be of use later. 

There are four wave functions presented here. One of the ± symbols in the exponential is redundant if 

the ± in front of the 1/r is kept. 

 

3-D Solution: 

The same type of transposition trap exists here. For this solution there are 8 wave functions. One of the 

± symbols in the exponential is redundant if the ± in front of the 1/r is kept. 
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The Electron: 

From the General Ideas section, the electron is a 1-D solution with no scalar term (i.e., case 1 with q0 = 

0). Therefore, it could be of the form: 

�� −  ��� =  ± 1� ��#�$% −  ���$% ������  
or it could simply be: 

�� −  ���  =  ± 1� sin���� ������  
Both of the above were shown to be valid solutions in Appendix A and C. 

The difference between the complex exponentials can be simplified as follows: 

�� −  ���  =  ± 2�� sin���� ������  
So, the only question regarding the electron is whether or not to include the 2i term. To meet the 6π

5
 

requirement, it is easier not to use the 2i. The proposed resting wave function for the electron is 

therefore: 

Equation 22: 

��� −  ���  =  ± 1� sin���� ������  
Now consider the limit of Equation 22 as r tends to zero. 

lim%→���� − ��� =  lim%→� N± 1� sin����O ������  =  ±�������  =  ± 2'()
* ℎ2�, ������ 

This can be rearranged as follows: 

Equation 22.1: 

± 5126 5 ℎ2�6 51)6 =lim%→���� − ���@ �#����  =  '(  

Now compare the above with Equation 1. It appears to be reasonable to infer the following: 

Equation 22.2: 

C =  12 ℎ2� 1) 
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This is very similar to the vacuum energy and links the wave function of the electron to vacuum energy. 

Viewed in this way, it seems obvious that the vacuum is a wave medium that is waiting to vibrate as an 

electron. This is consistent with the argument presented in Part 1.  This interpretation is a direct assault 

upon both the Copenhagen Interpretation and the Uncertainty Principle and it adds a new twist to the 

Casimir Effect. The author's best guess is that the amplitude of ψ is determined by mass and the wave 

length of ψ is determined by momentum.  

Since the units of "h" are (length
2
 x mass / time) and the units of "c" are (length / time), the units of γ 

must be (length x mass). Since γψ = m, the units of ψ must be (length
-1

). This is consistent with Equation 

22. The author had believed that ψ was a scalar field, but this does not appear to be true. Therefore, the 

scalar field hypothesized in Part 1 has not been identified. It is possible that ψ is the gradient of the 

scalar field. If this is true, then there might not be an exact solution since it would involve the integral of 

(1/x)sin(x) and that is not solvable exactly by any generally known method although numerical methods 

work. 

Equation 22.1 has at least two potential problems. Firstly, it is not explicit in terms of mE because the α 

term in the complex exponential contains an mE term. Secondly, since the complex exponential can be 

expressed as [cos(αct) + isin(αct)], it follows that the left hand side of Equation 22.1 has a scalar term 

plus a vector term whereas the right hand side has only a scalar term. The author will present two 

methods of resolving this. 

The simpler of the two methods is simply to require that the sin(αct) term be zero. This is done as 

follows and implies that time is quantized: 

Equation 22.3: 

�)7 =  2'()8
* ℎ2�, 7 = ±�9 ; 9 = 0, 1, 2, �7). 

This allows values for sin = 0 at 0 and at π. Solving for time produces the following: 

Equation 22.4: 

7 =  *ℎ2,2'()8 9 =  ℎ4'()8 9 ; 9 = 0, ±1, ±2, �7). 
Substituting in values for the physical constants and setting n = 1 gives a time value t = 2.023 x 10

-21
 

seconds for a particle at rest. Now, the complex time exponential in Equation 22.1 has values of ±1 only. 

This leads to the following description for the rest mass of the electron: 

Equation 22.5: 

'( =  ± 5126 5 ℎ2�6 51)6 =lim%→���� −  ���@ 
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The rest mass of the electron is determined by the properties of the vacuum and the wave function of 

the electron! In some sense, the electron is an infinitesimal piece of the aether. If this equation is then 

used as the basis for momentum (by multiplying both sides by a velocity), the portion associated with 

the vacuum will automatically be in a form v/c as is needed for Special Relativity! In this sense, it can be 

argued that the vacuum is ideally suited to carry momentum. 

For reference purposes, the distance that light will travel in one time increment is 6.065 x 10
-13

 meter. 

This is approximately 364 times larger than the estimated diameter of the proton. It can reasonably be 

argued that any predictions made by a wave equation - either classical or Schrödinger - involving 

distances that are less than this amount are simply invalid. Viewed in this way, the Uncertainty Principle 

is an expression of the limitations of the wave equation rather than a limitation on what is knowable. 

The other possible method of resolving Equation 22.1 is based upon Figure 2. This is not a rigorous 

derivation by the author. Instead, it is noted by the author that this is a necessary condition for the 

argument presented in Part 1 to be true. It allows for the following substitutions: 

Equation 22.6.1: 

sin��)7� =  B)  

Equation 22.6.2: 

cos��)7� =  A1 −  B8)8  

The complex time exponential is then represented as follows: 

�#���� =  A1 −  B8)8 +  � B) 

Substituting these into Equation 22.1 produces the following: 

Equation 22.7: 

'( =  ± 5126 5 ℎ2�6 51)6 =lim%→���� −  ���@ uA1 − B8)8   +   B) �v  
The problem associated with there being a vector portion on only one side of this equation is resolved 

by mandating conservation of momentum in the rest frame. Equation 22.7 encompasses Quantum 

Mechanics, Special Relativity, and Conservation of Momentum. It even hints at Maxwell due to the 

factor 4π. The velocity v presented in Equation 22.7 is the velocity with respect to the wave medium. 

The form of the Lorentz Transform is precisely the form that is needed to make true the argument 

presented by the author in Part 1 of this work. This form has the benefit of making the term e
+iαct

 into 
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something with a tangible physical meaning (i.e., a velocity). It also has the benefit of making the 

expression explicit by eliminating the α term. Viewed in this way, what we perceive as matter is simply a 

carrier of momentum through the wave media with Special Relativity as a bonus. 

Equation 22.7 can easily be quantized. Define a phase angle ɸ as follows: 

Equation 22.8: 

ɸ =  sin�p *B), 

The system is then quantized by requiring the following: 

Equation 22.9: 

�)7 = ɸ ± 2�9 ;  9 = 0, 1, 2, �7). 
For small values of the phase angle, sin(ɸ) is approximately equal to ɸ. Therefore, for velocities through 

the wave medium at which Special Relativity is negligible, the following is true: 

Equation 22.10: 

�)7 =  2'()87
* ℎ2�,  ≅  B)  

Equation 22.7 can also be used to define a Lorentz Transform as follows: 

Equation 22.11: 

x =  1
y1 − B8)8  + B) � 

The ratio of the Lorentz Transforms of two reference frames moving in the same direction is as follows: 

Equation 22.12: 

xzx{ =   y1 − B{8)8  +  B{) �
y1 −  Bz8)8  + Bz) � 

Equation 22.12 can also be written as follows: 
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Equation 22.13: 

l{→z =  xzx{  =  Aq1 −  B{8)8r q1 −  Bz8)8 r +  B{Bz)8  +  |B{) A1 −  Bz8)8   −  Bz) A1 −  B{8)8} � 
This is presented in Appendix E. This is consistent with the argument presented in Part 1. The reader is 

strongly encouraged to read and study Appendix E to the very end. The author believes that Equation 

22.13 contains the explanation for all of the SR related paradoxes. The Lorentz Transform of our 

reference frame is hidden in our measurement of proton mass. 

 

The Proton: 

From the General Ideas section, the proton must have a scalar term in the exponential. Also, three 

different functions are to be added together to make the proton. That excludes case 3 since there is only 

one way to express it. That leaves case 1 and case 2 as possibilities. 

The author will guess that the electron and proton should be synchronized. Therefore, the vector 

coefficients of the quaternions should be equal. That rejects case 2 and makes case 1 the best 

candidate. Making them synchronized probably gives  the simplest solution. 

The next question then is what is the value of q0? It must scale the solution by a factor of π
4
. Since it is in 

the exponential, it must be 4ln(π). If Equation 13.1 is combined with Equation 13.2, it is simple to show 

that: 

�. =  2 ln����  

Therefore,  

0�  =  4 ln���  =  2� �. 

The three wave functions are then: 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 

�� =  ± 1� ��!"#�$% −  �!"��$% ������ =  ± 2�� �!" sin���� ���$�� 

The resting wave function for the proton is then: 
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Equation 23: 

��� −  ��� =  ��� + � + ����� +  �� +  ��  

There is at least one possible problem with this definition of the proton. That is the de Broglie 

wavelength. Equation 23 uses the same value for α as the electron. Therefore, it would be expected to 

have the same de Broglie wavelength as the electron. But that is a contradiction of the conventional 

understanding from Schrödinger. It would be interesting to conduct the 2-slit experiment using protons 

rather than electrons - assuming that it is possible using protons. Perhaps the value of α can have both 

positive and negative values. If so, then this might be the source of electrical charge. 

 

 

Conclusion 

 

Two wave functions are presented to represent the electron and proton at rest. The ratio between these 

functions is 6π
5
 as required by Part 1. Therefore, the hypothesis from Part 1 concerning movement 

through an aether is not rejected. An unforeseen result of this work is the ability to calculate the size of 

the proton by using Equation 13.4. The predicted value is within the accepted measured range for the 

size of the proton. Another unforeseen result is the ability to link vacuum energy with the wave function 

and mass of the electron. Also, a method is presented that incorporates Special Relativity into the wave 

function. The author believes that taken together, mp/me = 6π
5
 combined with the other results 

constitute good circumstantial evidence in support of an aether.  
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Appendix A 

 

The objective of this Appendix is to confirm that Equation 13 of General Ideas in the main text satisfies 

the classical wave equation and the Schrödinger Wave Equation. Begin by restating Equation 13: 

Equation A.1: 

��( −  ��� = sin 52� H ln���6 

The wave equations to be satisfied are the classical wave equation and the Schrödinger Wave Equation. 

These are as follows: 

Classical
5
: 

∇8� =  1)8 ]8�]78  

Schrödinger
6
: 

− * ℎ2�,8
2' ∇8� = � 5 ℎ2�6 ]�]7  

∇8� = −� 2'
* ℎ2�,

]�]7  

In the main text up to the point of Equation 13, there had been no mention or consideration of time. All 

that is considered is angle of rotation (θ). This is equated with space (i.e., x or r). The standard method 

of solving partial differential equations is separation of variables. Therefore, Equation A.1 is actually the 

X or R function used by that method. Since Equation A.1 uses θ, it will be re-written as follows for use by 

the separation of variables method: 

Equation A.2: 

~ =  sin��X� 

Separation of variables is then written as follows: 

Equation A.3: 

� = ~�X�j�7� 
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The 1st and 2nd derivatives with respect to x are as follows: 

1st derivative: 

2�2X =  2~2X j 

2nd derivative: 

28�2X8 =  28~2X8 j 

The 1st and 2nd derivatives with respect to t are as follows: 

1st derivative: 

2�27 = ~ 2j27  

2nd derivative: 

28�278 = ~ 28j278  

Classical Wave Equation: 

Substitution of the two 2nd derivatives into the classical wave equation produces the following: 

j 28~2X8 =  1)8 ~ 28j278  

Equation A.4 

1~ 28~2X8 =  1)8 1j 28j278 =  −�8 

Now it is simply a question of finding X and T to satisfy the above. The usual solutions here are sin(αx), 

cos(αx), and e
±iαx

 for space and sin(αct), cos(αct), and e
±iαct

 for time. For both time and space, it is also 

possible to use the sum or the difference of the complex exponentials. Since Equation 13 from the main 

text uses the sine, it will also be used for X here. 

~ =  sin��X� 

2~2X =  � cos��X� 

28~2X8 =  −�8 sin��X� =  −�8~ 
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Application of Equation A.4 produces the following: 

1~ 28~2X8 =  1sin��X� d−�8 sin��X�e =  −�8 

It is also possible to use the difference between the complex exponentials as follows: 

~ =  �#�$^ −  ���$^ = 2� sin��X� 

2~2X = ���#�$^ +  �����$^ 

28~2X8 =  �8�8�#�$^ − �8�8���$^ =  �8�8��#�$^ −  ���$^ =  −�8~ 

Application of Equation A.4 produces the following: 

1~ 28~2X8 = 1~ �−�8~� =  −�8 

This form can be used in conjunction with a complex form of T such that the i in the 2isin(αx) combines 

with the i in complex T to produce a real solution. This form can also be used with the spherical form of 

the wave equation. Both forms for X will satisfy the Laplacian part of the classical wave equation. 

The time function T is considered next. It must be a complex exponential in order to satisfy Schrödinger. 

Use both +iαct and -iαct. 

Use +iαct. 

j =  �#�$�� 

2j27 = ��)�#�$�� = ��)j 

28j278 =  �8�8)8�#�$�� =  −�8)8j 

Application of Equation A.4 produces the following: 

1)8 1j 28j278 =  1)8 1j �−�8)8j� =  −�8 

Use -iαct. 

j =  ���$�� 

2j27 = −��)���$�� = −��)j 
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28j278 =  �8�8)8���$�� =  −�8)8j 

Application of Equation A.4 produces the following: 

1)8 1j 28j278 =  1)8 1j �−�8)8j� =  −�8 

Therefore, both ±iαct forms will satisfy the classical wave equation. It is also possible to use the 

difference between the complex exponentials since it simplifies to 2isin(αct). 

j =  �#�$�� −  ���$�� = 2� sin��)7� 

2j27 =  +��)�#�$�� +  ��)���$�� = 2��) cos��)7� 

28j278 =  +�8�8)8�#�$�� −  �8�8)8���$�� =  −2��8)8 sin��)7� =  −�8)8j 

Application of Equation A.4 produces the following: 

1)8 1j 28j278 =  1)8 1j �−�8)8j� =  −�8 

Therefore, the difference between the complex exponentials also will satisfy the classical wave 

equation. 

Therefore, a wave function ψ that satisfies the classical wave equation can be produced from any 

combination of the following: 

��X, 7� = ~�X�j�7� 

~�X� =  ± sin��X� ; ~�X� =  ±��#�$^ − ���$^ =  ±2� sin��X� 

j�7� =  ±�#�$��; j�7� =  ±���$��; j�7� =  ±��#�$�� − ���$�� =  ±2� sin��)7� 

 

The next task is to apply separation of variables to the Schrödinger Wave Equation. 

Schrödinger Wave Equation: 

∇8� = −� 2'
* ℎ2�,

]�]7  

Application of separation of variables to the Schrödinger Wave Equation produces the following: 
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28~2X8 j =  −� 2'
* ℎ2�, ~ 2j27  

Equation A.5: 

1~ 28~2X8 =  −� 2'
* ℎ2�,

1j 2j27  =  −�8 

Define T as follows: 

j =  ���$�� 

2j27 =  −��)���$�� =  −��)j 

Application of Equation A.5 produces the following: 

−� 2'
* ℎ2�,

1j 2j27 = −� 2'
* ℎ2�,

1j �−��)j� =  −�8  
− 2'

* ℎ2�, ) =  −� 

Equation A.6: 

2')
* ℎ2�, =  � 

Since the units for Planck's Constant h are (length
2
 x mass / time), the resulting units for α are (length

-1
). 

This is consistent with α being in the exponential of both X and T as follows: 

~ =  �±�$^ 

and 

j =  �±�$�� 

Next, compare Equations A.1, A.2, and A.6. For all of these relations to be true, the following must be 

true: 

�X =  2')
* ℎ2�, X =  2� H ln � 

Therefore, the following must be true: 
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Equation A.7: 

. =  HX  =  �')
* ℎ2�, ln � 

The author believes that Equation A.7 describes a fundamental property of space that is necessary for 

the classical wave equation and the Schrödinger Wave Equation to both be true at the same time.  

Next, define T using the positive complex exponential. 

j =  �#�$�� 

2j27 =  +��)�#�$�� =  +��)j 

Application of Equation A.5 produces the following: 

−� 2'
* ℎ2�,

1j 2j27 = −� 2'
* ℎ2�,

1j �+��)j� =  −�8  
+ 2'

* ℎ2�, ) =  −� 

Therefore, for the +iαct form of T to be valid, α must be negative. This is redundant to simply using the 

negative iαct form of T. Therefore, only the -iαct form of T will be used.  

Lastly, a wave function ψ that satisfies both the classical wave equation and Schrödinger can be 

produced from any combination of the following: 

��X, 7� = ~�X�j�7� 

~�X� =  ± sin��X� ; ~�X� =  ±��#�$^ − ���$^ =  ±2� sin��X� 

j�7� =  ±���$�� 
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Appendix B 

 

Quaternions: 

A quaternion Q is defined by Hamilton
5
 as follows: 

Equation B.1 

a =  0� +  0�� +  0�� +  0�� 

Hamilton
5
 further made the following definitions: 

Equation B.2 

�8 =  �8 =  �8 = ��� =  −1 

It is essential to understand that within Hamilton’s system, the sequence of multiplication is important. 

Therefore, ij ≠ ji but rather ij = -ji. The identities within equation B.2 allow the following statements: 

Equation B.3 

������ =  −� 7ℎ���Dk�� �� = � 
Equation B.4 

������ =  −� 7ℎ���Dk�� �� = � 

Equation B.5 

������� =  −�� 7ℎ���Dk�� � =  −�� 

Next, consider a vector r0i in the i-j plane. It is desired to rotate this vector counter-clockwise about the 

k axis to form a new vector of length r0. The problem is constructed as follows: 

���a = ��� cos H� + ��� sin H� 

����0� +  0��� = ��� cos�H�� + ��� sin�H�� 

In the quaternion above, q1 and q2 are zero because the rotation is only about the k axis. The r0 term can 

be eliminated by dividing both sides of the equation by r. This gives the following: 

0�� +  0��� = � cos�H�� +  � sin�H�� 

Since ik = -j, it follows that: 

0�� −  0�� = � cos�H�� +  � sin�H�� 
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By inspection, q0 = cos(Ѳk) and qk = -sin(Ѳk). Substituting these values back into the rotation yields: 

Equation B.6 

��cos�H�� −  � sin�H��� = � cos�H�� +  � sin�H�� 

If these steps are repeated for a clock-wise rotation about k, the result is as follows: 

Equation B.7 

��cos�H�� +  � sin�H��� = � cos�H�� −  � sin�H�� 

Next, consider clockwise rotation of the vector r0i in the i-k plane about the j axis. The problem is stated 

as follows: 

���a = ��� cos�H� +  ��� sin�H�  

����0� +  0�� = ��� cos�H� + ��� sin�H�  

Repeating the process described above produces: 

0�� + 0��� = � cos�H� +  � sin�H�  

By inspection, q0 = cos(Ѳj) and since ij = k, qj = sin(Ѳj). Substitution into the rotation yields: 

Equation B.8 

��cos�H� +  � sin�H�  = � cos�H� +  � sin�H�  

Repeating this exercise for a counter-clockwise rotation produces: 

Equation B.9 

��cos�H� −  � sin�H�  = � cos�H� −  � sin�H�  

The four rotations presented above change the orientation of the starting vector r0i but not its length. 

The quaternion problem for scaling is stated as follows: 

����0� +  0��� = �� cos�H�� +  �� sin�H�� 

The length r0 on the right hand side has simply been replaced with a more general length r. Dividing 

both sides by r0 produces: 

��0� +  0��� = ��� d� cos�H�� +  � sin�H��e 

So, the resulting coefficients in the quaternion are simply multiplied by the ratio r/r0. This is simple 

enough, provided that r0 does not equal zero. Unfortunately, for the method described in the main text, 

r0 does equal zero. Beware of division by zero. For the scaling function proposed in the main text, it 
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appears that the r/r0 ratio has a finite limit (possibly equal to one) as r0 goes to zero. What is needed 

then is something akin to sin(x)/x since it has a limit at x = 0. 

The scaling factor can be incorporated into the exponential of the rotation as follows: Let f = r/r0. Write 

the ratio as the exponential of the natural log (the two operations cancel each other). 

D =  ��� 

D =  ��� � 

Then multiply the exponential of Euler's Equation by the exponential form of f. 

��� ���FG =  ��� �# �FG  
It should be noted that the scaling portion of the exponential is not multiplied by the unit vector. This is 

an exponential of a quaternion! 
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Appendix C 

 

This Appendix will work through the math to demonstrate that the equation provided for the generic 

quaternion based wave function satisfies both the classical wave equation and the Schrödinger Wave 

Equation. 

Begin with the (+) version of the -iαct time form of the wave function: 

Equation C.1 

�� − ���  =  + 1� ��!"#b$% −  �!"�b$%����$�� 

The wave equations to be satisfied are as follows: 

Classical Wave Equation: 

1�8 ]]� 5�8 ]�]� 6 =  1)8 ]8�]78  

Schrödinger Wave Equation: 

− * ℎ2�,8
2' 1�8 ]]� 5�8 ]�]� 6 = � 5 ℎ2�6 ]�]7  

The spherical form
10

 of the Laplacian is used in both wave equations. 

The required differentials are the 1st and 2nd time derivatives and the 1st and 2nd derivatives with 

respect to r. 

Begin with r. Take the 1st derivative of Equation C.1 

]�]� =  1� �b��!"#b$% +  b��!"�b$%����$�� −  1�8 ��!"#b$% −  �!"�b$%����$�� 

]�]� =  1� �b��!"#b$% + b��!"�b$%����$�� −  1� � 

Equation C.1.r.1 

]�]� =  1� f�b��!"#b$% + b��!"�b$%����$�� −  �g 
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Now take the 2nd derivative. 

]8�]�8 =  1� N ]]� �b��!"#b$% +  b��!"�b$%����$�� −  ]�]� O − 1�8 f�b��!"#b$% + b��!"�b$%����$�� −  �g 

]8�]�8 =  1� N�b��8�!"#b$% −  b��8�!"�b$% ���$�� −  ]�]� O −  1� ]�]�  

]8�]�8 =  1� Nb��8��!"#b$% − �!"�b$%����$�� − ]�]� O − 1� ]�]�  

Equation C.1.r.2 

]8�]�8 =  b��8� −  2� ]�]�  

 

First, demonstrate that the classical wave equation is satisfied. 

1�8 ]]� 5�8 ]�]� 6 =  1)8 ]8�]78  

1�8 q2� ]�]�  + �8 ]8�]�8 r =  1)8 ]8�]78  

q2� ]�]�  +  ]8�]�8 r =  1)8 ]8�]78  

52� ]�]�  +  b��8� −  2� ]�]� 6 =  1)8 ]8�]78  

�b��8�  =  1)8 ]8�]78  

b��8� =  1)8 ]8�]78  

b��8� =  1)8 �−�8)8�� ; ���� 7['� 2��[BZ7[B�� ���k�� 

b��8� =  −�8� 

b� =  −1 

Therefore, the classical wave equation is satisfied provided the terms within the vector portion q satisfy 

the following: 

− �0�8  + 0�8  + 0�8 =  −1 
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qi qj qk 

±1 0 0 

0 ±A12 ±A12 

±A13 ±A13 ±A13 

Table C-1 

 

Table C-1 presents a few simple ways to specify q that satisfy the classical wave equation. The solutions 

are 1-D, 2-D, and 3-D. 

The time derivatives are more simple. Take the 1st time derivative. 

]�]7 =  1� ��a$% −  �a∗$% �−��)���$��  

Equation C.1.t.1 

]�]7 =  −��)� 

Take the 2nd derivative. 

]8�]78 =  −��) ]�]7 =  +���8)8� 

Equation C.1.t.2 

]8�]78 =  −�8)8� 

 

Repeat this exercise for the Schrödinger Wave Equation. The Laplacian portion is not changed from the 

classical version. 

− * ℎ2�,8
2' 1�8 ]]� 5�8 ]�]� 6 = � 5 ℎ2�6 ]�]7  

− * ℎ2�,8
2' �b��8�  = � 5 ℎ2�6 �−��)�� 
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* ℎ2�,2' �b��8  = ����)� 

�b��8  � = − 2')
* ℎ2�, 

To satisfy the classical wave equation, q
2
 = -1. 

�−�8 �� = − 2')
* ℎ2�, 

Equation C.1.1 

� = 2')
* ℎ2�, 

Therefore, the Schrödinger Wave Equation and the classical wave equation will be satisfied for Equation 

C.1 provided α satisfies the above equation. 

 

Now repeat the above for the +iαct time form. The r derivatives will be the same. Only the t derivatives 

will change. 

Equation C.2 

�� − ��� =  1� ��a$% −  �a∗$% �#���� 

Take the 1st time derivative. 

]�]7 =  1� ��a$% −  �a∗$% �+��)�#�$��  

Equation C.2.t.1 

]�]7 =  +��)� 

Take the 2nd derivative. 

]8�]78 =  +��) ]�]7 =  +���8)8� 
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Equation C.2.t.2 

]8�]78 =  −�8)8� 

Regarding Schrödinger, repeating the above exercise produces the following: 

Equation C.2.1 

� = − 2')
* ℎ2�, 

The thing to recognize regarding the time derivatives of the functions T1 = +iαct and T2 = -iαct is that the 

2nd derivatives are the same. Therefore, the classical wave equation is satisfied by either one. However, 

the 1st derivatives are opposite to each other. Since Schrödinger uses the 1st time derivative, only one 

of these time functions can be true for a given value of α unless m is allowed to have both positive and 

negative values. Since Schrödinger uses -i, only the -iαct exponential produces a valid solution. 

It is also possible to satisfy both wave equations using the following: 

Equation C.3: 

�� −  ���  =  + 1� ��a$% −  �a∗$% ���$�� 

The difference between this generic solution and what results from Equation C.1 is that it is necessary 

for Q
2
 = -1 instead of q

2
 = -1. Therefore, q0 must be considered as follows: 

0�8 −  0�8 −  0�8 −  0�8 =  −1 

The author believes that Equation C.1 is the better solution because it maintains q0 as a constant scalar. 

The reader may be skeptical regarding how or why a term such as 4 ln(π) would so conveniently appear 

as part of a solution to a differential equation. The author will admit to sharing that skepticism. The 

most likely explanation to come to mind thus far is that the true form of the solution is something 

similar to the following: 

� − ψ�  =  ���^������������ 

When this is converted into exponentials of e, each term has a ln(π) term and those four terms can then 

be added together into a single value of 4 ln(π) in the exponential. 
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Appendix D 

 

Consider the following: 

Part 1: 

�#��#��^ =  fcos�0�X + � sin�0�X gdcos�0�X� + � sin�0�X�e 

�#��#��^ =  cos�0�X cos�0�X� +  � sin�0�X cos�0�X� +  � cos�0�X sin�0�X� +  �� sin�0�X sin�0�X� 

�#��#��^ =  cos�0�X cos�0�X� +  � sin�0�X cos�0�X� +  � cos�0�X sin�0�X� +  � sin�0�X sin�0�X� 

 

Now transpose j and k in the exponential. 

Part 2: 

�#��#��^ =  dcos�0�X� + � sin�0�X�efcos�0�X + � sin�0�X g 

�#��#��^ =  cos�0�X� cos�0�X +  � sin�0�X� cos�0�X +  � cos�0�X� sin�0�X +  �� sin�0�X� sin�0�X  

�#��#��^ =  cos�0�X� cos�0�X +  � sin�0�X� cos�0�X +  � cos�0�X� sin�0�X −  � sin�0�X� sin�0�X  

The only difference between the two exponentials due to transposition is that +isin(qjx)sin(qkx) in one 

becomes -isin(qjx)sin(qkx) in the other.  

 

The same holds true for the conjugates as follows: 

Part 3: 

����#��^ =  fcos�0�X − � sin�0�X gdcos�0�X� − � sin�0�X�e 

����#��^ =  cos�0�X cos�0�X� −  � sin�0�X cos�0�X� −  � cos�0�X sin�0�X� +  �� sin�0�X sin�0�X� 

����#��^ =  cos�0�X cos�0�X� −  � sin�0�X cos�0�X� −  � cos�0�X sin�0�X� +  � sin�0�X sin�0�X� 

 

Now transpose j and k in the exponential. 

Part 4: 

����#��^ =  dcos�0�X� − � sin�0�X�efcos�0�X − � sin�0�X g 
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����#��^ =  cos�0�X� cos�0�X −  � sin�0�X� cos�0�X −  � cos�0�X� sin�0�X +  �� sin�0�X� sin�0�X  

����#��^ =  cos�0�X� cos�0�X −  � sin�0�X� cos�0�X −  � cos�0�X� sin�0�X −  � sin�0�X� sin�0�X  

The difference between the conjugates pairs is that the sign of the cross terms changes. So, 

+jsin(qjx)cos(qkx) becomes -jsin(qjx)cos(qkx) and +kcos(qjx)sin(qkx) becomes -kcos(qjx)sin(qkx). 

 

Next, combine the various forms to eliminate groups of terms.  

 

Taking the sum of the four forms produces the following: 

Equation D.1: 

f�#��#��^  +  ����#��^g  +  f�#��#��^  + ����#��^g = 4 cos�0�X cos�0�X� 

 

Taking the sum of conjugate pairs produces the following: 

Equation D.2: 

�#��#��^  +  ����#��^ =  2 cos�0�X cos�0�X� +  2� sin�0�X sin�0�X� 

Equation D.3: 

�#��#��^  + ����#��^ =  2cos�0�X� cos�0�X  −  2� sin�0�X� sin�0�X  

 

Taking the difference between conjugate pairs produces the following: 

Equation D.4: 

�#��#��^  − ����#��^ =  2� sin�0�X cos�0�X� +  2� cos�0�X sin�0�X� 

Equation D.5: 

�#��#��^  − ����#��^ =  2� sin�0�X� cos�0�X  +  2� cos�0�X� sin�0�X  

Equation D.6: 

�#��#��^  − ����#��^ =  �#��#��^  − ����#��^ 
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A form composed of sines only can be produced from Equation D.2 and Equation D.3 as follows: 

Equation D.7: 

f�#��#��^  + ����#��^g −  f�#��#��^  + ����#��^g = 4� sin�0�X sin�0�X� 

There are many trigonometric identities
11

 that might be useful here. The two that seem most promising 

relate to Equation D.1 and Equation D.7. These are as follows: 

�[98��� =  1 −  cos�2��2  

)k�8��� =  1 +  cos�2��2  

There is also a double angle identity as follows: 

sin�2�� =  2 sin��� cos��� 

The citation for these identities is http://sosmath.com/trig/Trig5/trig5/trig5.html. 
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Appendix E 

 

 

The objective of this Appendix is to state the ratio of the Lorentz Transforms of two moving reference 

frames as a single quaternion. Begin with the following definition for the Lorentz Transform: 

Equation E.1: 

x =  1
y1 − B8)8 + B) � 

This is the standard definition with a vector component added to produce a quaternion. 

Next, define the quaternion ratio between two Lorentz Transforms as follows: 

Equation E.2: 

l{→z =  xzx{  =  y1 −  B{8)8 +  B{) �
y1 − Bz8)8 + Bz) � =  �� +  ��� + ��� + ��� 

l{→z |A1 −  Bz8)8 +  Bz) �} = A1 −  B{8)8 +  B{) �  
The objective is to find values for r0, ri, rj, and rk. 

��� +  ��� +  ��� + ��� |A1 −  Bz8)8 +  Bz) �} = A1 −  B{8)8 +  B{) �  

|��A1 −  Bz8)8  + ���A1 −  Bz8)8  +  ���A1 −  Bz8)8 + ���A1 −  Bz8)8}
+ *�� Bz) � +  ��� Bz) � +  ��� Bz) � +  ��� Bz) �,  = A1 − B{8)8 + B{) �  
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Equation E.3: 

|��A1 −  Bz8)8  − �� Bz)  +  ���A1 − Bz8)8 + �� Bz) � + ���A1 − Bz8)8 + �� Bz) � +  ���A1 −  Bz8)8 −  �� Bz) �}  
= A1 − B{8)8 + B{) �  

The scalar portion must be equal on the left hand side and the right hand side of Equation E.3. The i 

portion must be equal on the two sides. The j and k portions must respectively be equal on the two 

sides. Therefore, the following four equations must be true: 

Equation E.3.1 (scalar): 

��A1 − Bz8)8  −  �� Bz)  = A1 −  B{8)8  

Equation E.3.2 (i): 

�� Bz)  +  ��A1 −  Bz8)8  =  B{)   
Equation E.3.3 (j): 

��A1 −  Bz8)8  + �� Bz)  =  0 

Equation E.3.4 (k): 

−�� Bz)  + ��A1 − Bz8)8  =  0 

Equations E.3.1 and E.3.2 can both be solved for r0 as follows: 

�� =  y1 −  B{8)8 +  �� Bz)
y1 − Bz8)8

 Z92 �� =  B{) −  ��y1 −  Bz8)8Bz)  �����)7[B��� 

Setting r0 = r0 and solving for ri produces the following: 

�� =  B{) A1 −  Bz8)8   −  Bz) A1 −  B{8)8  
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Substituting this value back into either expression for r0 and solving for r0 produces the following: 

��  =   Aq1 −  B{8)8 r q1 −  Bz8)8r +  B{Bz)8  

Repeating this procedure for Equations E.3.3 and E.3.4 produces the following: 

�� =  −��
Bz)y1 −  Bz8)8

 Z92 �� =  +��
y1 −  Bz8)8Bz)  

For the present, the author will be content to interpret this to mean that rj = rk = 0. 

Therefore, the following is true: 

Equation E.4: 

l{→z =  xzx{  =  Aq1 −  B{8)8r q1 −  Bz8)8 r +  B{Bz)8  +  |B{) A1 −  Bz8)8   −  Bz) A1 −  B{8)8} � 
At this point, it is interesting as an exercise to consider several special cases. 

For vA = c, Equation E.4 becomes the following: 

l{→z =  Bz)  + |A1 −  Bz8)8} � 
For vB = c, Equation E.4 becomes the following: 

l{→z =  B{)  −  |A1 −  B{8)8 } � 
For vA = 0, Equation E.4 becomes the following: 

l{→z =   A1 −  Bz8)8 −  * Bz) , � 
For vB = 0, Equation E.4 becomes the following: 

l{→z =   A1 − B{8)8  + * B{) , � 
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Lastly, setting vA = vB produces the following: 

l{→z =   1 

While this last case may seem trivial, it must also be true. 

For each of the above special cases, the square root term can also be considered to be a cosine term as 

described in the main text. The two cases where one of the reference frames is considered to be at rest 

correspond with Einstein's Special Relativity. The problem that the master faced was that you cannot 

measure movement with respect to empty space because empty space is empty. It contains no 

reference points with which to infer movement. It should be noted that for one of these cases the 

vector portion is positive whereas for the other case it is negative. In the author's opinion, this is the 

root cause of all the various SR related paradoxes. Einstein did not consider the possibility that both 

reference frames could be moving with respect to a stationary reference frame because there was no 

way to define what it meant for a reference frame to be stationary. Quantum Mechanics is required to 

define a stationary reference frame and QM was not conceived until the 1920's whereas SR dates to 

1905.  

 

 


