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Abstract

The association of integers, conjugate pairs and tightness with the eigenvalues of
graphs provide the motivation for the following definitions. A class of graphs, with
the property, that for each graph (member) of the class, there exists a pair a,b of
non-zero, distinct, eigenvalues, whose sum (or product) yields the same integer,
either as a fixed constant, or a function of an inherent aspect of the graph (such
as its size), is said to be sum-eigen*(atb)*pair balanced (or product-
eigen*(a.b)*pair balanced, respectively). For example, complete graphs on n
vertices, are eigen-bi-balanced with sum-eigen*(n-2)*pair balanced and product-
eigen*(1-n)*pair balanced, and since a,b are non-zero their reciprocals (which
affect the tightness of a graph ) are defined, so that this class has the eigen-
balanced ratio of 1/a+1/b=(at+b)/(a.b)= (n-2)/(1-n) =f(n) which is asymptotic to
the constant value of -1. The absolute value of the integral of f(n) multiplied by
the average degree yields the area (n-1)(n-In(n-1)) — we show that this is the
maximum area for most known classes of eigen-bi-balanced graphs. We
investigate the effect of this asymptotic ratio on the energy of the molecular
representation of graphs. Cycles are generally neither sum-eigen-pair, nor
product-eigen-pair balanced, while paths are only sum- eigen-pair balanced. In
this paper, we introduce a class of graphs, involving q cliques each of size g, and
show that this class is eigen-bi-balanced with respect to the sum -1 and product
1-q so that it has ratio  1/(g-1) asymptotic to O, and has area q(29+2In(g-1)),
and discuss its eigen-bi-balanced criticality.



1. Introduction
All graphs which we shall consider will be finite, simple, loopless and undirected.

1.1 Integers, conjugate pairs and the eigenvalues of a graph

Summing of the eigenvalues of the adjacency matrix graph is connected to the
energy of physical structures (See [1]). There has been interest in classes of
graphs whose pairs of eigenvalues satisfy certain conditions. In [13], graphs are
considered with reciprocal pairs of eigenvalues:

(/1,%) whose product is the integer 1. Pairs of eigenvalues (1,-1), summing to 0,

and whose product is -1, are considered in [7]. Ervin Van Dam’s paper on regular
graphs [5] with 4 eigenvalues considers the eigenvalue pair of real conjugates:

a++b
2

a++b
2

and shows that if a matrix has an eigenvalues

Then it has an eigenvalues

a-+b
2

of the same multiplicity, and visa-versa.



Adding the pair of conjugates we obtain the integer “a”. Their

a+vb a-+b
2 2

2

product is 2 which is integral provided the numerator is a multiple of 4. The

paper shows that there are graph whose matrices have conjugate pairs of
eigenvalues whose sum does not necessarily sum to the same integer a. In [3]
integral trees, where the eigenvalues of trees being integral are investigated.

The importance of pairs of numbers, whose sum and product produce the same
integral constant exists outside the linear algebra of matrices (see, for example,
“Proof of Lyapunov exponent pairing for systems of constant kinetic energy” by C
P Dettmann and G P Morris [7]). The cryptography article by M Hamada [9]
considers conjugate code pair consisting of linear codes [n,k’] and [n,k”’] satisfying
the constant (integral) sum term k’+k”’=n+k, where n is the dimension of the
vector space involved and k is the k-digit secret information sent. The paper by A
M Kadin [11] “Spatial structures of the Cooper pair” investigates the Cooper pair
of opposite wavevectors k and —k which balance by summing to 0 and whose

product is — kz, while in “Note on the rheology of dilute suspension of dipolar

spheres with weak Brownian couples” by E J Hinch and L G Leal [10] the notion of
an isolated particle in the absence of rotary Brownian motion is considered under
the condition that the hydrodynamic and external field couples exactly balance
one another.

In [2] the importance of the quadratic part of a characteristic equation which has
the form:

X> —TX+6
This quadratic gives rise to the two eigenvalues:

:ri\/12—45

a,b
2




With the sum and product being 7, & respectively — this is refer to as the
eigenpair, but we shall focus on the pair of eigenvalues a,b (or eigen-pair). The
above provides the motivation for the following definitions.

Generally, there exists two eigenvalues (associated with the adjacency martix of a
graph) whose sum or product is integral, or a function of its number of vertices v.
Is it possible to get the same integer, when adding or multiplying two distinct,
non-zero, eigenvalues, which is either a fixed constant, or a function of an
inherent property of the graph, for all graphs belonging to a certain class of
graphs?

For example, complete graphs K_on n vertices have pair eigenvalue sum
balancing to f(n)=n-2, and product g(n)=1-n for each n>2 and the complete bi-

partite graphs K,,.,on n vertices have pair sums (of non-zero eigenvalues)

balancing to 0, and product balancing to— n*/4,

1.1.1 Definition of a function of a member of a class of graphs

We define a function of a member belonging to a class of graphs, as a real
function f(p) of an inherent property p of the member in the class, such as the
number of vertices or the cligue number of a graph etc.

In this paper we combine the two ideas of a pair of eigenvalues and their
balanced integral sum and product with respect to a class of graphs, to introduce
a definition which is a form of integral-eigenvalue balance associated with classes
of graphs. We investigate classes of graphs on v vertices with pairs (a,b) of distinct
non-zero eigenvalues such that a+b=s or a.b=t where s,t are the same integer
(respectively) for each graph in the class or the same function of each graph in
the class.

Main definitions

1.2 Integral sum eigen-pair balanced classes of graphs



Classes 3 of graphs on v elements are said to be sum*(s)*eigen-pair (integral)
balanced if there exists a pair of a,b of distinct non-zero eigenvalues (eigenvalues
considered once so we ignore multiplicities) of the matrices associated with each
class of the structures such that atb=s = same integer as a fixed constant for
each member in the class, or s is the same integer as a function of each member
in the class. The sum balance is exact, if s is the same integer as a fixed constant
for each member in the class, or non-exact .

We provide a few examples:

1. The class of complete graphs K _ is non-exact sum*(n-2)*eigen-pair
balanced for n > 3, since the eigenvalues of the associated matrices are -1
and n-1.

2. The class of complete bipartite graphs K__on n=2p vertices has as its

associated eigenvalues p,-p and 0 so that they are exact sum*(0)*eigen-pair
balanced.
3. The class of complete bipartite graphs K_,on p+k vertices, p and k

different, have eigenvalues — \/ﬁ ;\/ﬁ ;(0)™"* so that they are exact
sum*(0)*eigen-pair balanced (this includes the star graphs with radius 1).
4. Wheels with p spokes are sum*(2)*eigen-pair balanced (see theorem 10 in
[12]). They have conjugate pairs:
2+ J4+4p
2
5. The path P, on n>2 vertices and n-1 edges has eigenvalues (see[3])

2COS(A); j=12,...,n
n+1
Note that:
cos(n—ﬂ) =cos(x — L) =COS7 COS(L) +5sin nsin(L) = —COS(L)
n+1 n+1 n+1 n+1 n+1
So that the non-zero pair :

2 cos(n—ﬂ); 2 cos(L)
n+1 n+1



has the sum 0 so that paths are exact sum*(0)*eigen-pair balanced

. The cycle C, on n veritices and edges has eigenvalues (see [3]):
2COS(ZT7Z]); j=012,..,n-1

The 3-cylce (complete graph on 3 vertices) has eigenvalues (Ignoring
multiplicities):-1 and 2. This cycle is sum*(1)*eigen-pair balanced.

The 4-cycle has eigenvalues:

2; 0; -2, which is sum*(0)*eigen-pair balanced

The 5-cycle has eigenvalues:

(2f;(‘1;J§Y;(‘1;“gY

Adding the 2 distinct irrational eigenvalues we get the integer -1 so this
graph is sum*(-1)*eigen-pair balanced (of the exact kind).

The 6-cycle has eigenvalues (2)';(1)%;(-1)?;(-2)* so that adding 2 and -1
makes it sum*(1)*eigen-pair balanced which is the same as the 3-cycle and
4-cycle.

However the 7-cycle does not contain two distinct eigenvalues whose sum
is 1: (2);(1,247)%;(-0,445)%; (-1,82)*.

Thus the class of cycles is not sum*(1)*eigen-pair balanced.

Even cycles are sum*(0)*eigen-pair balanced, since if n=2k

Zcos(%); j=012,..2k -1

then j= 0 and j=k yields eigenvalues of 2 and -2 respectively.

. Strongly regular graph of degree k have exactly three distinct eigenvalues:
k, whose multiplicity is 1 (See [8]).

S| =+ VO = Atk - u)]



whose multiplicity is

1 [(U_ RO Gl V ), ]

2 \ (A—p)?2+4(k—p)

and

1T, . - .
5 lt\/\ —p) = (A= p)* +4(k - u)]

whose multiplicity is

}2 [(l‘_ RS Ul V) ]

VO = 1)? +4(k - p)

Strongly regular graphs for which:

2k+(v—1)(A—p)=0

are called conference graphs because of their connection with symmetric
conference matrices.

Their parameters reduce to

' ( v—1 v-95 u—l)
srg | v, 5 1 1 |

Strongly regular graphs for which

2k+ (v —1)(A—=pn)#0

have integer eigenvalues with unequal multiplicities.

The complement of an srg(v,k,A, ) is also strongly regular. It is an
srg(v, v-k-1, v—2-2k+p, v-2K+A).

Note that if we ignore the largest eigenvalue of strongly regular graphs,
adding the remaining 2 yields the integer:

A-p

so that they are sum*( A-p)*eigen-pair balanced (non-exact)

. The eigenvalues of DDG are provided in [8] — they have 5 distinct
eignvalues. Two of the eigenvalues are:

+ k=2,




So that divisible design graphs are sum*(0)*eigen-pair balanced (exact).
Examples of bipartite graphs with four distinct eigenvalues are the
incidence graphs of symmetric 2-(v, k, |) designs. It is proven in [4] by
Cvetkovic’, Doob and Sachs [6, p. 166] that these are the only examples, i.e.
a connected bipartite regular graph with four distinct eigenvalues must be
the incidence graph of a symmetric 2-(v, k, |) design. Moreover its spectrum

is
(k) (VK= A4) 5 (k= 2)" 7 (k)
Note that these graphs are sum*(0)*eigen-pair balanced (exact).

9. The p-regular hypercube on 2P vertices and p2p_1edges has eigenvalues
(see [3)):

(p—zk)@; k=012,..,p

These graphs are also Cayley graphs generated by zg

Using the largest eigenvalues p and p-2k, for p,2k different, k not 0, this
class of graphs wlll be sum*(2p-2k)*eigen-pair balanced.

10.The class of g-cliqued graphs on g.g+1 vertices:
We show in section 3 that the class of g-cliqued graphs (which are g-
regular) are exact sum*(-1)*eigen-pair balanced and that q is embedded in
Its conjugate eigenvalues:

~1+ 1+ 4(q-1)

> :

We also show that the product of these conjugate eigenvalues is an integral
function of g =f(g) = —(g-1) where g-1is: the degree of the vertices in a complete
graph of size g. The value q is also a function of the size of the graph. This
motivates the next definition:

1.3 Integral product eigen-pair balanced classes of graphs.

Classes 3 of graphs on v elements are said to be product*(t)*eigen-pair (integral)
balanced if there exists a pair of a,b of distinct non-zero eigenvalues (counting



eigenvalues only once and ignoring multiplicities) of the matrices associated with
each class of the structures such that a.b=t = same integer as a fixed constant for
each member in the class, or t is the same integer as a function of each member
in the class. The product balance is exact, if t is the same integer as a fixed
constant for each member in the class, otherwise non-exact.

For example:

1. Complete graphs on n vertices are non-exact product*(1-n)*eigen-pair
balanced.
2. Complete bipartite graphs K on 2p vertices are non-exact

product*(— p*)*eigen-pair balanced.

3. Complete bipartite graphs on K, p = k on p+k vertices are non-exact

K
product*(-pk)*eigen-pair balanced.
4. Paths on n vertices have eigenvalues:

2c0s(-3-); j=12...n
n+1

And
Zcos(ﬂ) =— ZCOS(L)
n+1 n+1
So that their product is :
—2(1+ cos(z—ﬂ))
n+1
which is a function of n but is not generally integral.

5. Cycles on n vertices have associated eigenvalues:

2COS(ZT7Z]); j=012,..,n-1

Are they product*(t)*eigen-pair balanced?
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C, on 3 vertices, has eigenvalues 2 and -1 so that the graph has eigen-pair
product -2.

C, on 4 vertices, has eigenvalues 2, 0 and -2 so that the eigen-pair product is
-4,

-14+5 -1-5

C, on 5 vertices, has eigenvalues 2, and with eigen-pair

product -1.

C, on 6 vertices, has eigenvalues 2, 1, -1 and -2.

Possible products are -1, -2, 2 and -4.

The 7-cycle has eigenvalues: (2)*; (1,247)%; (-0,445)*; (-1,82)°
No product yields an integer?

Even cycles are product-eigen-(4)-pair balanced, since if n=2k then:

2c05(2M): j=012....2k -1
2k

So that for j=0 we get 2 and j=k we get -2 with product -4.

. Wheels on p spokes are product *(-p)*eigen-pair balanced (see [12]).

If we multiply the two conjugate pairs of strongly regular graphs we obtain
the integer:

u-k

so that strongly regular graphs are product*( p-k)*eigen-pair balanced
(non-exact).

8. DDG are product*( 4, -k)*balanced (non-exact).

9. Incidence graphs of symmetric

2-(v, k, 1) designs are product *t*eigen-pair balanced for:
t=—k?and 1 —k

of the non-exact kind.
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10. The class of p-regular hypercubes on 2P vertices and p2p_1edges has
eigenvalues:

(£).
(p-2k)\"/;k=012,...,p
These graphs are also Cayley graphs generated by zg
Using the larges eigenvalues p and p-2k, for p,2k different, k not 0, this
class of graphs will be product* (p? — 2 pk) *eigen-pair balanced.

11.We show in section 3 below that the g-cligued graphs are non-exact
product*(1-g)*eigen-pair balanced with eigen-pair;

~1+ . 1+4(q-1)

2

Graphs which are both sum and product eigen-pair balanced are said to be eign-
bi-balanced with respect to the pair a,b.

Note that the largest eigenvalues occurs in the eigen-pair associated with some
classes of graphs discussed above. Also, the only regular eigen-pair balanced
graphs on 2 and 3 vertices are

K2 Ks
Respectively.
The 4-cycle is the same as the complete bipartite graph

K2,2

Which is sum and product eigen-pair balanced, while the only other regular graph
on 4 vertices is:

Ky

The 5-cycle has eigenvalues:
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1 _ _1_
@ iﬁ)% ( 126)2

Which is not eigen-pair sum or product balanced when the largest eigenvalue is
included in the eigen pair. The only other regular graph on 5 vertices is:

Ks

Thus we have the following theorem:

THEOREM 1
The only regular graphs on n vertices, where
2<n<5

Belonging to eigen-pair balanced classes of graphs, where the eigen pair contains
the largest eigenvalue, are:

K,; Ks K, Kg and K,

1.4 Eigen-bi-balanced graphs - criticality, ratios, asymptotes,
density, areas and energy

If a class of graphs I are both sum and product eigen-pair balanced with respect
to the eigen-pair a,b , have been defined above as eigen-bi-balanced with
respect to a,b.

Complete graphs G are eigen-bi-balanced with the property that the removal of
any vertex G from G results in another class of eigen-bi-balanced graphs. The
same holds for completer bi-partite graphs except for star graphs. Such graphs



13

are said to be stable eigen-bi-balanced. If G belongs to a class I of eigen-bi-
balanced graphs, and there exists a vertex v of G, such that G-v belongs to
another class3 of graphs which is not eigen-bi-balanced, we say that J is
critically eigen-bi-balanced with respect to v. Wheels on p spokes are eigen-bi-
balanced and the removal of their center results in p-cycles, which are not eigen-
bi-balanced, so that they are critically eigen-bi-balanced with respect to their
centre — revealing that this vertex is essential to the eign-bi-balanced
characteristic of wheels.

The reciprocals of eigenvalues are connected to the idea of robustness or
tightness of graphs (see [30).

Since a and b are non zero, the sum of their reciprocals is defined, and we define
the eigen-balanced ratio of the structure (with respect to the eigen-pairs) as:
1 1 a+b_

__|__

r(a3b
b a ab (a3b)

(The product is never zero).

If this ratio is a function f(n) of the size n of the graph, and has an asymptote, we
call this asymptote the asymptotoic eigen-balanced ratio with respect to the
eigen-pair a,b and denoted by:

r(asb)* or asymp(r)

This asymptote can be seen as the behavior of the ratio as the size of the graph
becomes increasingly large.

Eigenvalues have been associated with the expansion of graphs (see [3]) which
motivates the idea of areas associated with the ratio of eigen-bi-balanced graphs.
Since we can integrate this ratio, if it is a function of n, the size of a graph, on m
edges, we defne the eigen-balanced ratio area of the class with respect to the
pair a,b:
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2m

a+b
!

ab

A(3)?P = dn| for a+b=0

or

b
jdn‘ = ZTm\Zb\ for a=-b

a

2m

n

Where A=0 when n=0, 1 or 2.

If there is more than one pair giving rise such area, then the area of the the class
IS:

max A(3)% for all pairs a,,b,

If there is only one eigen-pair associated with the class of graphs that gives rise to
the ratio, then the ratio is unique.

1. For example, the complete graph on n vertices has the unique eigen-
balanced ratio of:

r(n-DK, () =12

Which depends on the size of the graph and has the unique asymptotic

eigen- balanced ratio:

r(n-DK, ()" =-1

And eigen-balanced ratio area:
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2m

dpa_2Mn-=2 4 e 2 N
AK)* =5 jl_ndn (n 1)‘j[n_1 n_l]dn‘

2 _n-t 1 |dn=n—|n\n—u+c
n-1 n-1 n-1

=(n-1)B; B=|

When n=0 we have A=0 so ¢=0 so that its area is:
(n=-D(n-In(n-1))=(n-1)B

Note that the length of the longest path for the complete graph is n-1, so that
B in the above expression can be regarded as the height of the graph. Also, the
term log(n-1) occurs as part of the upper bound of the diameter of a graph
involving the second largest eigenvalue (see[3]). Is this area the maximum for
all classes of eigen-bi-balanced graphs?

2. The complete bipartite graph

K

p.k
on p+k vertices has the unique eigen-balanced ratio of

NN

—Pq

Which is independent of the size of the graph. Its area is:

N w

2pq (pa)
2\/pg =4
P+(q \/7 P+(q

It attains its maximum when:

Pp=Q= g then the graph (the split complete bi-partite graph on n vertices)

Is p-regular and:
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The area is:

2

_n

nfdn

-n/2

-n/2,n/2 N
/\(I<:p,q) ' - EE

3. Wheels on p spokes have eigen-balance ratio of
2
- P
Which depends on the size of the graph so that they have an asymptotic
eigen-balanced ratio of 0 and eigen-balanced area of:

2m j%dn‘ = IC?—El(log\n ~1+c)= 4(nn—1) (logn -1 +c)

A=0 when n=2 so that c=0.

4. Star graphs with p rays of length 2 have eigenvalues see [spectra]:

0-11+/p+1

Using the pair -1,1 we obtain the ratio 0/-1, while using the pair:

a=\p+1b=—pi1

We have the ratio 0/-(p+1) so that such a class of graphs do not have a
unique eigen-balanced ratio- although the asymptotic eigen-balanced ratio
can be taken as 0.

Their area with respect to the pair -1,1 is:

With respect to the second pair is:
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Where p=(n-1)/2, so that areas are, respectively:

-0 g 2ﬁ(n—1)m
n

n

The bigger of the two give the area of the class of graphs.

5. The p-regular hypercube has ratio (k fixed, n varying, p different from 2k; k

not 0):
inn_
2p -2k _, In2 92 Inn-klIn2
p® —2pk Inzn_2klnn Inn—2kIn2Inn
In?2 In2
p=Inn/In2
Which has asymptote 0.

Its area using pair p and p-2 (k=1) involves the integral of this ratio
(multiplied by p):

2p—2 Inn—1In2
d(2’ =2|n2J' dn (*
jp2—2p %) IN“n—2In2Inn )

2Inn_2|n2
n n

]dn

u=In’n-2In2Inn=du =

= E[In n—In2]dn
n

+ 2
In2n—2ln2Inn—u:o:>|nn:2|n2—\/(22|n2) +4u

2
=Inn=In2+ |n22+u:>n:eln2+\/m




So that (*) becomes:

n n eIn 2+\/In22+u
In2j[—]du:ln2j—du:ln2j du

In 2+coshtIn2

u=In?2sinh?t; t>O:>In2I 7 2sinhtcoshtdt =

coshtIn?2

cosh tdt

21n 2e'”2J'e _
sinht

put v=In2cosht;= v >In2; dtzd—\_/:>
In 2sinht
Vv dv

[2In2]e"? | — :
(sinht) (In2) (In2sinht)

1++1+In%2

=wjeV%22dv; it (%) v> S ~L1 () then v: —In? 2>y

ve —In

:>WJ-eV dv<WJ-

v —In?2
2
_[2|n2]eln2 In2cosht+C:[2|n2]eane In“2+u +c

=(2In2)n+c'= with:average deg=p :::—2

= area<2ninn+c

Provided:

In“n—2In2Inn=u=v?-In*2 >0.73 subject to (*) =>n>8=2°

18
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6. The g-cliqued graphs discussed below have the (unique) eigen-balanced
ratio of

1-q

Which depends on q (its size is n=g.g+1 ), and hence the size of the graph,
and which tends to 0 as the size of the structure becomes increasingly
large so that its asymptotic ratio is 0 and its eigen-balanced area is:

1 2udu
-U r_—4d”\ - qU u-1”
j[2—+—]du —Jn-1@Vn-1+2In-1-1+c)

AG) 9 =q¢

When n=1 we have A=0 so that c=0.

CONJECTURE 1

The only class of regular graphs which are neither sum nor product eigen-pair
balanced are cycles.

THEOREM 2

If a class of graphs are eigen-bi-balanced with respect to the pair a,b, which are
conjugate pairs arising from the quadratic:

A2+ s+t
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with at least one of a,b positive and of the form n+c (and integer with ¢ negative),
and the ratio r is a function of n, then t’ is negative and the eigen-pair asymptote

lies on the interval [-1,0].
Proof
Let the pair a,b arise from the quadratic:

s ++/s% — 4t

A2 +si+t: t'>0=roots:a,b=_— C s> 20t =1'.s>0

= a,b both <0:; contrad. lett'=-t :t>0=>
a,b<n-lLa+b=-sab=-t=> rz%

If a=-b then the ratio a+b/ab is 0. If a and b are both fixed constants then the ratio
Is not a function of n. From above, the ratio is s/t. If t =f(n) =O(n), and s is a fixed

constant, then the asymptote is 0. Since s =a+b is a function of n so will t be a
function of n. If both a and b are functions of n then a+b has

O(n?) and ab has O(n%):q > p = asymp (r)=0
Thus a=n+c>0 and b =k, k negative. Then:

If s=n+c'; t=kn+c"; (k<0); c',c" are const.= asymp (r):%<0

Since a is an integer, b=k must be an integer too so that:

k <-1= asymp(r) > -1= asymp(r) e[-1,0] = |
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We have equality at the end the left hand end point of the interval for the
complete graph (-1) since the quadratic for the complete graph is (see theorem
5):

(N—2)++/(n—2)% +4(n-1)
2

P—-n-DA-(n-D)=> A=
The interval [-1,0] is more convenient if it is a positive interval: we define the

eigen-pair density of a class of eigen-bi-balanced graphs with asymptote r as:

Q(3) =|asymp(r)

So that the complete graph has eigen-pair density 1, which we propose is the
largest density of all possible eigen-bi-balanced graphs (the maximum denity of a
class of graphs will be the largest of its densities over all its possible ratios) :

CONJECTURE 2

The density of eigen-bi-balanced classes of graphs lie on the interval [0,1] with the
largest density that of complete graphs, which equals 1.

THEOREM 3

The eigen-balanced ratio areas of complete bipartite graphs, wheel graphs, the
star graph with rays of length 2, are each bounded above by the area of the
complete graph.

Proof

For the complete graph and the split complete bipartite graph, the areas are,
respectively:



2

(n=1)(n - In(n—1)); ”?
Replacing n with:
e’ +1=n for some s

In the former yields:
(e )e —(s-1))=e*-¢e’(s-1)

Now:

(e ) —(s-1)=e*—e’(s-1)>e*

Which proves our result.

If the eigenvectors:
Vi, Vs
associated with the eigen-pair:

a,b

e . 1
—(——-e*"=-2) =
(2 2)

22

2s

(e° +1)°
2

giving rise to the sum and product eigen-balanced ratios, have unit length then
we have the matrix eigen-balanced ratio equation:

vi'Av, +V,'Av, a+b
v Ay, Av,  ab
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Note that cycles are neither sum nor product eigen-pair balanced, while the class
of dumbbell graphs consisting of two copies of n-cylces joined by a single edge,

fall into this same category.

THEOREM 4
If a class of graphs has eigen-balanced ratio

a+b _a3b) = rthen
ab

ar #1 and br #1

So that if r is non-zero, the elements of the eigen pair a, b cannot both be 1/r.

Proof.

Let:

a+b _ r(asb)=r
ab

—=a+b=rab

If we let ab=y we get:

a+b=rab=ry and

a+§:ry:>a2+y:ray

2

=b=
ar-1

Thus ar = 1; swopping the roles of a and be we get the desired result.
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Taking the join of the complement of the complete graph on 2 vertices and the
complete graph on n vertices, we see from [I[12]] that this resulting graph has the
conjugate pair of eigenvalues:

(n—1)++/(n—1)% +8n
2

So that their eigen-balanced ratio is

n-1
-2n

Which tends to -1/2.

The following theorem can be derived from [12]:

THEOREM 5

Define the class of graphs:

I=K, DK,
Where m is fixed, and n, which varies and is greater than 1. Then this class has
(n—1) +/(n—1)% + 4nk

eigen-pair > with asymptotic eigen-balanced ratio:
-1
? and area:
n(n-1)+2kn,n 1
———In(n+1
( "~ )(k ” (n+1))
Proof

The eigenvalue conjugate pair associated with this join is:
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(N—1) +/(n—1)% + 4nk
2

The sum is (n-1) and product is —kn which vyields the result as n becomes
increasingly large. Their eigen-balanced area is (with average degree D):

n(n—-1)+ 2kn
U—d( ‘ n+Kk

11 n o1
j[E—Ed(n)]‘z D(F ~+ Inn-+c)

With k=1, the area must be that of the complete graph on n+1 vertices which is
(n)((n+1)-In(n)) so that c=1- hence its area is:

n(n—1)+ 2kn

(nk

)(———(I n)+1)

Alternatively, we could have formed the join (with n vertices):

S:K_k@Kn—k

n—k—1+(n—k—1)2+4k(n—k)

which has conjugate pairs: >

k+l-n_ —-(n-k)+1

with ratio: =
k(n—k) k(n—k)

which has asymptote as before: —%

1dn D(E—%In(n—k)+c)

The area is: D‘j[—%dn+ K —K)

((n— k)(n—k —-1) + 2k(n— k))(ﬂ

—%In(n—k)+c)

When k=1 we must get area of complete graph so that c=0.

CONJECTURE 3
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The maximum eigen-balanced ratio area of classes of graphs on at least 6 vertices
is that of the complete graph: n-In(n-1)

Note that for wheels with n spokes, the eigen-pair is:

a_2+«/4+4n_b_2—«/4+4n
T 2

so that;
2

a+b|+[ab/=n+2

For the join of two cycles of length n, there exist the pair of eigenvalues: (see [12])
2 £ n so that:

la+b|+|ab| = n

Also, for g-cliqued graphs discussed below with eigen-pair :

L ~lEy1rd@-D) | -1-\1+4(-D).

2 2 ’

a+b|+[abl=q

This suggests the following:

CONJECTURE 4

If a class of non-complete graphs, is eigen-bi-balanced with associated eigen-pair
a,b of a member of the class, the member having maximum(minimum) degree
m(n) respetively, then

(i) if a+b=0 then
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a+b|+[ab/<mn
(ii) if a+b=0then

M£m+1
n

There is much research on the energy of a graph -it is related to the total -
electron energy in a molecule represented by a (molecular) graph.
The energy of a graph with adjacency matrix A  with eigenvalues

VI ISP I .

=Y
i=1

How does the energy of a graph behave with respect to the asymptote associated
with eigen-pair a,b ?

The r-asymptotic eigen-balanced matrix C.° = (cij ) ,associated with the adjacency
matrix A= (a;)of G on n vertices with an asmptotoic eigen-balanced ratio r, is
defined as:

Q31 # |
C.
U \deg(a;)+r;i=j
If G is k-regular and A has eigenvalues: k=4, >4, >..> 4,

then the eigenvalues of C” are:

2k+r=4 24, +k+r>...2 4, +k+r

In particular, if r=0 the C; is the Signless Laplacian matrix (see [spectral).



28

The energy of the r-asymptotic eigen-balanced matrix C.” = C, associated with
the graph G on n vertices and m edges, with eigenvalues:

Af Zig 2...21ﬁ is (see[14]) is:

n

ECT =Z

i=1

2m
-
n

If r=0 then we get the energy of the Signless Laplacian matrix.

If r is not zero, such as the complete graph G on n vertices and

edges,

n(n-1)
2

then its (-1)-asymptotic eigen-balanced energy is found as follows: the
eigenvalues of G are:

(n =1 (-=1)"* so that the eigenvalues of C”] are:
(n-1+(n-)-D% (-1+(n-1)-"*

(2n-3)';(n=23))"" so that the r-asymptotic eigen-balanced energy of G (with
eigen pair a,b) is:

n

EC‘?:Z

i=1

2m
I
n

In-2/+(n-1)-2/=3n-4

This energy is greater than the normal energy 2n-2 of a complete graph on a
large number of vertices. This asymptotic energy can be regarded as the eigen-
pair balanced energy associated with the graph G as its size becomes increasingly
large.
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2.THE CONSRTUCTION OF Q-CLIQUED GRAPHS

Construction of Adjacency matrix for g-clique design graphs, GKq*, forq>2:

For g=2, take 2 copies of K,, namely (K,)'; i=12. together with a single vertex v.
Joinvto v); i=12, so that v has degree 2.

Generally:

Label the vertices of each copy of (K,)" as Vi, V,...,V

Joinvto v{; 1=1,2,...9. so that v has degree q generally.

=
N

V.

fily
<
fily




i.e. join vertices v; and v5 of (K,)'and (K,)’ to form a 5-cycle.

v, A
C\;/(P
V
(Ky)' (Ky)?
5-cycle
G O
Vs %

Label vertex v as vertex v,, and then for each sub-clique, label the vertices starting
from v{ = v,, v = v;, and v = v, v2 = s,

\)
C\%P Vg4
V
(Ky)' (Ky)?
5-cycle
G O
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V3

Then the 5x5 adjacency matrix of GK2 where the rows are v; ... Vg and the

columns are vy ... Vg is:

0101
1010
10 1
1 01
110

The polynomial of GK2 IS

245235142
_1_\/§)2

The eigenvalues of this adjacency matrix are: 2 once; ( 5

(

—1+\/§)2.
> ;

For g=3, GK3 . we take 3 copies of K, , namely (K,)! , (K,)? ,and (K,)*together

with a single centre vertex v. Join vto v; i=12,3.:
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Join the remaining vertices of the 3 copies of K, to form 3 5-cycles. i.e. v3 and v5

- vz and v3; v3and v}
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Label vertex v as vertex v,, and then for each sub-clique, label the vertices starting
from v = v,, v} = v3,v3 = v,and v{ = v, v = Vg vE = v, and vi = vg,v; =

Vo V3 = V.

Vg

Then the 10x10 adjacency matrix of Gxs; where the rows are v; ... vy, and the

columns are vy ... Vqq IS:
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O B+ O

1
1
1101

1 1 0]
The characteristic equation of the adjacency matrix for =3 is:
20 1528 — 64" +752° + 482° —1442* —11443 + 7522 + 681 +12
The eigenvalues of this adjacency matrix are:
3,1,-2,-2,1.879, 1.879, -0.347, -0.347, -1.532, -1.532

~1+49.,. ~1-49,,
( 5 )% ( 5 )

The graph GK4 : For g=4, take 4 copies ofK,, namely (K,)', (K,)*, (K,)® ,and

(K,)“together with a single centre vertex v. Join v to v;; i=1,234. Label each of
the vertices within each copy of K,anti-clockwise, starting with

ViVhivevy i =1,2,34,



(K,)*

(K,)*

(K,)*

35



Join vertices v;* to v7 ; for 1<i<n, where v2,; = vZ, to form 4 5-cycles.

Join vertex v} to v, ; for 1<i<n, where i is odd.

(Ko)* (K,)?

36



Label vertex v as vertex vy, and then for each sub-clique, label the vertices

clockwise for each sub-clique, starting from v{ = vy, v = v3, v} = v,, v} =
vs and v = vg, V3 = v, V5 = Vg, Vi = Vg and v; = vy, V3 = V1, V5 = V1, U

4 _ 4 _ 4 _ 4 _
Vi3 AN V] = V4, V) = Vis V3 = Vi Vs = Vyg,

37
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Then the 17x17 adjacency matrix of Gk, where the rows are v; ... vy, and the

columns are vy ... V5 Is:

01 1 1 1
10111
1 011 1
1101 1
1110 1
1 0111
11011
1 1101
1110 1
1 0111
11011
1101 1
1110 1
1 0111
11011
1 1101
1 1110

All blank entries are zero. The eigenvalues for this adjacency matrix are:

-2.303, 1.303, 4 , 3.403, 2.935, 2.303, -0.463, -0.684, -1.303, -1.719, -1.473, -2, -
2,-2,0,0,0

13, 113,

2 2
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Label vertex v as vertex v4, and then for each sub-clique, label the vertices
clockwise starting from vjl, 1 < j < 5. The resultant 26x26 adjacency matrix of

Ggs Where the rows are v; ... v, and the columns are v; ... Vo is:

0 1 1 1 1 1 ]
101111
10111 1
11011 1
11101 1
11110 1
1 01111
110111
1 11011
11101 1
11110 1
1 01111
110111
1 11011
11101 1
11110 1
1 01111
110111
1 11011
11101 1
11110 1
1 01111
110111
1 11011
1 11101
I 1 1111 0]
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All blank entries are zero.

Eigenvalues g=5: -2,562;1,562;5,00;4,381;4,381;3,447;3,447-1,662;-1,662;-1,272;-
1,272;-0,719;-0,719;-0,174:-0,174:;0:0:0;0:0;-2;-2;-2:-2; -2.

CLHT . (117

2 2

The general construction of the (1 + n?) x (1 + n?) adjacency matrix of Gy,

where the rows are v; ... V;,,2 and the columns are v, ... vy, 2 is as follows:
a;; =0, 1<i<(n®+1)

Joinv to v}:

a114m+1= 1, 0<A<n-1

A1+an+11= 1, 0<A<n-1

Sub-cliques:

Ayt an+k1+an+i= 0, 0<A<n-1,k=1,2,...,n,1=1.2,....n, k=l

Ay antk1ean+i= 1, 0<A<n-1,k=1,2,....,n,1=1,2,....n, k#l

v? joins to vZ, ,:

A1t antni+@+)nr2= 1, 0 <A<n-1

A14+(A+D)n+214an+n= 1, 0<A<n-1

v} joins to v/ 11 4<j<n-1, j even:
A1t an+ji+ A+ )ns(-1= 1, 0=<A<n-1, 4<j<n-1, j even
A1+ (+Dn+(j-1)14an+j= 1, 0=A<n-1, 4<j<n-1, j even

v{.' joins to v{.'ﬂ: J=n-1, neven, iis odd:
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A1 4an+j1+@+)n+j= L, 0 <A< n-1, j=n-1, neven, A even
A1+ A+ )n+j1+an+= L, 0 <A<n-1, j=n-1, neven, A even
If for a; ; i>(n* + 1), then i=i-n?, and if for a; ; j>(n* + 1), then j=j-n?

a; ; =0, 1<i< (n? + 1), 1<j<(n? + 1), otherwise.

3.THE CONJUGATE EIGEN-PAIR OF Q-CLIQUED GRAPHS

In this section we show that the cubic:

—2%(q-1) -qgA+9(q—1)— A(q—1) Is a factor of the characteristic equation
determined by Ax = Axwhere A is the adjacency matrix of a g-cliqued graph
constructed in section 2.

The conjugate pairs arise out if the “tightness” of the connection between two
adjacent cligues — for convention we chose the first and last clique:

3.1 Vertex notation convention:

First vertex (central vertex), second vertex, anchor vertex (vertex of last clique
joined to first), {generating vertices on second last clique=vertices of second last
clique adjacent to vertices in the last clique}, last vertex, ,third vertex and
switching vertices (third and second last vertices whose sum is 0) = (respectively):

g

X Xp0 Xy X3 X rees X (U= —— qodd ort=— ;q even)}, X, X, X, X'

AR IEACY]

Generating set =

_9-4 q

S=TUT ={X, X3 U{X i Xy X5 (L= 1;q odd ortzg;q even)}
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If S ={x,X,,..., X }; we define: ZS = in

1

3.2 The two main equations that generate the conjugate eigen-pairs

We use the relationship Ax = AXto create the two equations:

AZS - (q —1)25 +(q-D)x,

(q 1)XI *
=2.5- G-@-)""

Z S = AZX, —qx, (**) which yield the following:

(a-DAx,
A-(q-1)

So that:

= 22x,—qx; A=q-1

(@-DA=2*(A-(q-D)-q(A-(q-1)
=2 -2@-)-gi+aq(g-)-A(q-1)=0
= A-q)(F +1-(q-1))=0

This gives us 3 eigenvalues: g and our conjugate pair:

—1+./1+4(q-1)

2

With sum -1 and product 1-q.
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3.3 The case g=2

01 01 0f|x X,
1 01 0 0}]x, X,
0 1 0 0 1| x|=4X
1 0 0 0 1}|x, X,
00 1 1 OJ|x ] [X%]
X, + X, = AX;
X, + X, = AX,
X, + X, = AX,
X, + X, = AX,
X, + X, = AX;

X, + X, = A(X,)

Taking the neighbours of x;and x,, we get
(X, + %)+ (X, +X)=A(X, +X,)

(X, +X,)+2Xx, = A(2AX,)

(X +X,) = AX, — 2%, (**)

Taking the neighbours of x;and x,, we get

44



(X, + %)+ (X + %) =A(X +X,)
(X, +%,) + (X, +X,) = A(X, + X,
(X, +%,) + A%, = A(X +X,)

(A =2)(x +x,) = 2x,

i *
(X %) =——7% ()

Substitute (*) into (**) to get

AX,

= A'X, —2x; A #1

A=2V(A-1)-2(1-1)
AN =2-31+2=0
(A-2)(A*+1-1)
Eigenvalue of 2 (degree of graph) and our conjugate pairs!

~1++1+4
2

45
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=3

3.4The case g

SHECHECHRC NN N S IR
L |
O O d O O o0 o d - o
O O OO O O dA A O d
- O O O O OO0 O A -
O O OO ddH O O «H O
O OO +d d O d O o o
- O O O O +d +d 0O o o
O 4 4 O O d 0O O o o
O 4 O 40 O O o o d
— O 4 4 O O O O o o
O 4 OO d O O +HA O o

o
X' X X 2 o
|

~<

I
1
©c @9« 89 oo @~ 9~ o 9 92 o
X X X X X X X s ¥ X
+ + + + 4+ + + 4+ 4+ +
X5X3X4X3X6X5X6X9X8X8
+ + 4+ + + + + + 4+ +
X2X1X2X2X1X4X5X1X7X3




X, + X, + X, = AX,,

(X, + X, + X, )+ (X + X, + X, )+ (X, + X, +X,) =A(A(X,)
X + X, + X, + X + (X +X%)=Ax%, —3x, (**)

Set X, =—Xg; %X =0

Let S =(x.,X,,and x,)

Then the neighbor set S’ of S is a subset of the |hs of (**)

(X, + X +X)+ (X +X +X)+(X +X +X)=A(X +X,+X,)

Set x, =—Xg,Xy =0 (from above) and set
Xg = X3 Xy = 0; Xg = 2X7; X5 = AXyg

2(X, + X, + X, )+ 2%, = A(X, + X, + X,)

X, + X, + X, :%(*)
A=2

Substitute (*) into (**) to get

2o _ ey 3w A%l
A—2

47
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20 =2 (L-2)-3(1-2)
=27 -5)+6=0
(A=3) (L +1-2)

Two eigenvalues 3 and

~1+1+24 -1+-9
2 2

Eigenvector is:

X, + X+ X, ] Xy AXqo + Xg Xy 1
X, + X, + X, Xy 2X; — Xg 0 2

X, + X, + X, X3 — Xg + X0 X 3

X, + X, + X, X4 X, + 2%, -Xg| 4

[ XXX 1 Xs N X1+3X%; _2 AXq0 _ 3)
X, + X + X, Xg — Xg + AXjp + X7 2%, 6

Xs + X, + X, X7 2% + AXyg X7 7

X, + X, + X, Xg X, + X10 Xg 8

X, + X, + X, Xq X7 + Xg + X0 0 9
X, F X X X10 X, + Xg |1 | %0 | 10

we use the generating set S'={X,, X,, X;}with their sum =G which we found
from using equation 10. Now:

A(X, + X, + X;) = using equations 1,2 and 7, noting that the variable X, is 0:

_ 2MXyg
A— 2( )
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We used AX, even thoughitis O.

Now we get the next equation (this should be first in construction above). Using
equation 10:

AAXyg = AX{ + AXg using 3 (not 1!!1) and 8 in RHS:

— Xg + Xy0 + X, + X9 (11) we need an X, so we use equation 9 which gives us:
—Xg = X7 + X;o (12) substituting (12) into (11) gives us:

X + X7 4+ 3%g = A7 Xgp = Xq + Xy + X7 4+ 3% = 47Xy = G = 27Xy — 3% (**)

We take X, =0 here as we do not need AX, .

3.5 The Case g=4

For g=4:

X3 + Xpq + X5 + X5 = AXyy

(X, + X, + X+ X, )+ (X, + X, + X, + X, )+ (X, + X, + X, + X,

+ (X12 + Xl4 + X15 + Xl7 = A(XB + Xl4 + X15 + X16) (#)

X, + X, + X, + X +2(X, + X +X,)+ X, + X, +4%X, =A(AX,)

We take thesetS ={x,X,, X, X,} which is a subset of the Ihs of (#) and the

neighbours of S’ to be S””. Then S’ is a subset of S”.

2 .
X, + X, + X, + X, +4X, =AX,;

= X+ X, + X, + X5, :/lzxn _4X17 (*)
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Main: X; + X, + Xy, + X;5- neighbors yield:
(X, + X, + X, +X,)+ (X +X +X, +X)+
(X + Xy + Xy + X0 ) + (Xg + Xg1 + Xgo + Xg5) = (X + X5 + Xgp + Xg3)

From above, X, = X5 = X4 = 0; X5 = — X4
XZ+X6+X10+X1+X3+X10+X11+X13+X10+X11+X12:O

Set X3 =2x
Set xj; =X,
X =0

Set 2X;3 = X;

Xp + Xy 42X + 3AX7 + 2Xy + 3Xgp +3%3 = A(X + Xp + Xgp + Xy3)

(X, + X, + X, +X,) +3AX, = (X + X, + X, + X,

><1+><2+><12+x13=‘?—xlé (**)

(**) substitute in (*)

3AXy7
A-3

A (A =3)x, —4(A-3)x, = 31X,

2
= A" %7 — 44Xy

X, —31X%, —4AX, +12x., —3Ax, =0



XX, —3AX, —T2X, +12%x, =0 = (A —4) (A" + 1 -3)x, =0=> A =4;

. ~1+.1-(4.-3) -1++13

2 2

The eigenvector is:

[ X+ Xg+ X+ Xy | [ X | [[ X +2%a+ A%, +0] [ x ] [1]
Xg + Xy + X5 + X Xs 2%, +0+0+ X Xs 2
Xo + X4 + Xs + X7 X3 Xy +0+0+ X7 2X, 3
X3 + Xs + X5 + Xg Xy 2% + 0+ X, + Xg 0 4
Xy + X3 + X4 + X5 Xg Xo + 2% +0+ X, 0 5
X, + X7 + Xg + Xg Xg X, + X7 + Xg + Xq 2Xq5 6
Xs + X5 + Xg + Xg X7 0+ 2Xy3 + Xg + Xg X7 7
Xy + Xg + X7 + Xg Xg 0+ 2X;53 + X7 + Xg Xg 8
Xe + X7 +Xg+ X1 |=A| Xg [=|]| 2X3+ X, +Xg+ X, [=A4] X9 ||=]| 9
Xg + Xpq + X + X3 X10 X; + Xy + X3 AXq7 10
Xg + X9 + X1 + X3 Xq1 Xg + AXy7 + Xq3 X, 11
X1 + Xqq + Xg3 + X35 X17 AX7 + Xy + X3 + X 0 12
X10 + %11 + X2 + X5 Xi3 AXy7 + X +0— X X13 13
Xp + X5 + X6 + Xq7 X14 X +0+ X7 0 14
Xi3 + X4 + Xi + Xg7 X5 X3+ 0+ X6 + Xg7 — X6 15
X1p + X4 + Xi5 + Xg7 Xi6 — X6t Xy7 X6 16

| Xg+ X+ X5+ %6 | [ X7 ] | L 2%, +0+0 1 X J] [17]

Equations 1,2,12 and 13 yield:

3X; +3X, + 3+ 3%y, +3X3 + AX7 +
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= 3(Xy + X, + Xgp + Xg3) +3A%7 = A(X + X, + X, + X;3) our first equation.

Next: equation 17 and 3 gives:

AdXy7 = A(2%) = X, + X7 + 0+ 0+ 0+ 0 equation 14 gives:

So that: A°X;; = X, + X, + X + X3 + 4%

3.6 The Case g=5

Step 1 — write down first equation using last vertex:

Xg + Xpp + Xog + Xog + Xos = AXog

Expand left hand side with their neighbors has vertices belonging to set S:

Xo 4+ Xg + X 4+ Xg + Xog + X + Xog + Xy + Xop + Xog + Xpg + Xop 4+ Xog + Xos + Xog



[ X, + X+ Xpp + Xg7 + Xoo
X+ X3+ X4 + Xg + Xg
Xy + Xy + Xg + Xg + Xog
Xy + X3 + Xg + Xg + Xog
Xy + X3 + Xy + Xg + Xg
Xy + X3+ X,y + Xg + Xg
Xp + Xg + Xg + X9 + Xq1
Xg + X7 + Xg + Xi9 + X1
X5 + X7 + Xg + X9 + X131
X7 + Xg + Xg + X171 + Xq4
X7 + Xg + Xg + Xig + X3
X1+ X3 + Xq + X5 + X6

Xp1 T X2 + Xq + X35 + Xg6

Xj0 + X2 + X13 + X5 + X4

Xip T X3 + X1y + X6 T Xg9

Xio T X3 + %14 + X5 + Xgg

Xp + Xig + Xig + Xyp + Xoq

Xig + X7 T %19 T X0 + X1

Xi5 + %17 + X1g + X0 T X1

Xp7 T X1g + %19 T Xp1 + Xpy

Xp7 + X1g + X9 T Xg0 + X3

X1 + Xog + Xog + Xog + Xog

B X3 + XZZ + X23 + X24 + X25

Xo1 + Xop + Xpg + Xo5 + Xpg
Xo0 1 Xgp + Xp3 + Xo5 + Xog
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Step 2: put Xo5 = X4 (second and third largest have opposite signs) — this
guarantees no 24 and 25 not in S- called switching pair.

Xp + Xy 4+ 2%, + Xs + Xg + Xog + Xpq + 3Xy0 +3Xy3 + 5%, (R)
Step 3: put X4 = X5 = 0 Xg = —3Xpp; X3 =0
R will become (**) after we have generating set.

Step 4: select generating set S’ as (n= total number vertices): . Put all vertices in S’
that belong to the second last clique and are neighbors of the last clique—- in this
case

X201 X21
Add the first 2:
Xy X
So with g=5, generating set s:
S'={Xy, Xz, X0, Xp1}
Write down neighbors of S’
Xy + X + Xpp + Xg7 + Xop + Xg + X3 + X, + Xg + Xg
T X7 + Xig + X9 T Xp1 + Xpg + X7 + Xg + X9 + Xp0 + X3
= (X + X5 + Xo0 + X31)

Xpq = —Xp5 SWitching pair



X; + Xy +X5+X, + Xg + X5 + X7 + Xgp +3Xy7 + 2Xg + 2X9 + Xy

+ Xp1 + X0 — Xo5 + Xp3

Xg + Xy +Xg3+Xg + X7 + Xgp +3X7 + 2Xg + 2% + Xy

From R:

Xg = —3Xgp; Xo5 = —2Xpp = Xy

Must watch 2 switching pair equations so that last vertex %26 is not 0:

put: X1 = X7; Xqp = 44Xz
X3 = 3X,
X18 =5 %20, X109 = & X21
2 2
Xg=X5=X%7=0
We have from R:
Xp3 = 0; Xy = —X,5 SWitching pair
Now get (*)

A(X, 4+ Xy + Xop + Xo1) + 4%
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The eigenvector is:

Xy 43X + 44X, + Xop

0 3

3
2

3 2
~ X20 +§X21 + Xy1 —£Xp)

§x +§x + X5+ 0
2 20 2 21 20
X, + 0+ Xy
Xo1 + Xpo + 0+ Xog
Xog + Xop 4+ 2Xop + Xog
0+ Xop — 2Xyp + Xy

X3+ X +04+0+0

20
21
22
23
24
25
26
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Adding equations 1,2,20 and 21 yield

A(Xy + Xy + X + Xop) + 44X = A(Xy + X5 4+ Xog + Xp1)
24 +25 yield Xoq +2Xy9 + 2%, =0 (27)

22 and 3 from 26 yield:

X + 0+ Xog + Xy — 3Ky + Xog = A%, (28)

And 23 gives: Xy, + X + 0+ X, =0 (29)

27,28 and 29 yield:

2
(X + Xo + Xog + Xpq) = A" Xp6 — 5Xpg

3.7 General Construction.
Vertex notation convention reminder:

First vertex, second vertex, anchor vertex (vertex of last clique joined to first),
{generating vertices on second last clique}, last vertex, ,third vertex and switching
vertices (third and second last vertices whose sum is 0) = (respectively):

X Xp0 Xy X3 X rees X (U= —— qodd ort—ﬂ geven)}, x, X, X, X'

AR IEACY]

Generating set =

S=TUT ={X,%3U{X i Xy kt'(tqu_l;q odd ortzg;q even)}
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neighbors x, : X, + X, + X, + X,., +..X_, + X+ X';

all vertices inQ ={X,.1, X, 2,---» X|_3} :which give “0” equations
(x;;x; x" all #0)

neighbors X, : X, + X+ X'+X, all others 0 from Q

AX,

= A(Ax,)

=X F X, X X X X

(q_Z)Xa +(q_2)xa+l’(q_2)xa+2 ++(q_2)xa+t+’+(q_2)xl—3
+(q=2)X+(q = 2)X+0xX, + (X, + X+t X )+ (X +X +..+X )

Put Xg =Xg =... = Xq :O’ Q :{0,0,...,O}; Xq+1 :—(q—Z)Xa;X':—X,

AX =X+X+0+0+..+40-(g—-2)x, +
(g-2)x, +0+0+...+40+0
+(q-2)X—(q-2)x+gx + (X, +X, +..+X )+(0+0+...+0)

2

X =X+ X+ 0%+ (X + X, +ot X, )
2

X =0X =X + X, + (X, + X, +o+ X,

This gives equation (**)
Now we look at the neighbors of the generating set S:

q-1
2

q.

S=TUT ={X, X3 U{X i Xy X5 (L= ;¢ odd ort =5

g even)}

Xi 2 X321 X21q1 X212q 00 X21q(g-1) = Xa

X o X, Xgy Xg 1o X1
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Neighboursof T =(t-DT +t(P)+Q’

where

- P=tvertices from 2" last clique, other than T’, excluding , Xzraa-)
- Q’isasubset of Q, whose vertices join backwards to vertices of T’

Let the sum of the elements of S be Z:

Therefore the sum of the neighbors of the elements of S:
AL

= (X, + X, + X, 0t + X =X+ (X +X +X, +..+ X +X

2+q(g-1) )+
+({t-DT +t(P)+Q'

q+l

From before:

Put X,=%=..=X%,=0; Q ={0,0,...,0}; X =—(q-2)x,; X'= =X,
A =

(x, + Xyog T Xpigg oot X 1))+(x1 +X,+0+..+40-(q-2)x) +
+({t-DT +t(P)+x_,

=X X, X = (A= 2)X, + X, + Xyt F Xy +

+({t-DT +t(P)+ X,

Set

X3 = (0 —2)X,;

Xo1q = (d-2)%

X212q = (g _1)AXI

Xa_q = X2+q(q-2) =0
X =(@—3)X ==X



A
=X +X+(0-2)X,-(q-2)X, + (- 2)x, + (—DAX, +....+ 0+ X_ +
+ (=T +t(P)+(q-3)x,

=(@-Dx +(q-1x, +(q-DAx + ({t -1T +t(P)

Set

q-t .
Xp1 = t Xkl’

= A
=(q-Dx, +(q-Dx, +(q-DAx +

—t
(t=D)(X, + Xy, +.ot xkt)+t[qT(xkl + X+t xkt)}

=(@-Dx +(q-Dx, +(q-DAX, + (g -D)(X, +X_ +...+X)

=(q-D(x +x, + X, + X, +..t xkl)+ (g —-1)Ax,
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3.8 General Eigenvector

For (**) last equation |2 X5+ X,
Second last equation: I -1:x, —(q—-3)X, + X
Third last equation: |-2=a+t:—(1-1):x_ +(q—-3)X, + X, +X

where x, € T' and is connected to switching vertex x,_,

Will have g-4-(t-1) equations equal to 0 which have
X, + X +X+X

Zero equations (obtained from all vertices in the last clique, who connect
backwards to the (g-1) clique, ie to the vertices of T"\{x_} (t-1) of these such
equations

X, E X, (X, X))+ X =X, +X +0+X (t-1) such quations
wherel< g <tand x,_ #X,

Anchor vertex
-(q-D=a: X +X  +X ,+oet X+t X, +X, +X =X +X

Sum of generating set T" without X, : X, (t—=2)T\{X }+(t-1)P+(t-1)x

Equation for X_in generation set: X, - TX,}+P+X_, +X.,;

Third vertex: 31Xy + X4+ X + Xg +oo+ Xgup T X

61
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Second vertex: 20X+ X3+ Xg o Xgin

First vertex: 11Xy + Xguq + Xoioq oot Xaq + Xq

3.9 The Final General Equations

We need to create the two equations:

AZS - (q —1)25 +(q-D)x,

(q 1)XI *
=2.5- G-@-)""

Z S = AZX, —ax, (**) which yield the following:

The last vertex equation for X, yields using equations for X, X;:

Xg + Xau1 + Xgro Foot Xapp Fot Xig H Xy F X+ Xp + X+ Xg + Xg Hot Xgug + X

yields: 22X, = X, + X, + X1 +2X,

Switching vertices yields: 2X, +2X, + X,_; =0

Adding the 0 equations yields:: (t —1)X, +(t —1)X + X3 + Xa 2 + .-+ Xa_(tq)
Other 0 equations yield g-4-(t-1) of X, + X,

All yields :
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ApXp =X+ Xg + Xguq +2X) +2X, +2X
+ X F(E=DX +E=DX + X g+ X+ Xy gy H(A—4-(-D)[X, +X]
=sum of elements from generating set = (q — 2) X, + QX

Xq.1 = —(d — 2)X, yields our equation (**).

Using equations from S we get equation (*) by assigning each vertex, respectively,
in P the value: ttilxk where X, € T", and 0 to each vertex X4, Xs,..., Xq and each
vertex adjacent to the first except X, Xp, 4, X2, 24, @nd making

Xg = (A =D)X5; %o, q = (A=1)X5 Xo1 59 = A(A=D)X;, Xqi =—(0 = 2)X,.

Xi—p = (4 —3)Xs ==X ;.

We have now proved the first part of the following theorem. The second and
third part are proved in section 1 above and the last part is easily verifiable.

THEOREM 6
The class of g-cliqued graphs :

(a) Is sum*(-1)* eigen-pair and product*(1-q) eigen-pair balanced with respect
to the eigen-pair:

—1+./1+4(q-1)

2

(b) Has ratio: it , asymptote 0 and density 0.

(c) Has area: v/n—1(2+/n —1+3In‘\/n —1—1‘)

(d) Is critically eigen-bi-balanced with respect to the central vertex.
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