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Abstract 
 
This Article applies General Relativity (GR) to energy stored in a charge configuration 
termed, “potential energy of a system of charges”, as it affects gravitation and space-time. 
All mass and energy is expressible as, and convertible to electrical energy, as grams are 
equivalent to electron volts.  
The analysis predicts gravitational radiation to be radiated and propagated as 
Electro Magnetic Radiation (EMR), therefore gravitational radiation is equivalent to  
EMR. 
 
GR Applied to a Charge Couple 
 
Consider charges ''a  and ''b  in isolation, each detectable only by relation to other 
charges, separated by a Cartesian Radius R  , assumed to be measured by a light  
signal with a constant velocity c  and assumes c  is in a perfect vacuum, conventionally 
expressed, 
 

RabMc 2 , 
 
M  is the Mass of the electrical couple.  The Cartesian R  is expressible by time, 
 

0xctR  ,                                                                                                   Equation (1), 
 
in place of R , the refinement of a physical light Signal is used, wherein the velocity of 
light is not constant but instead subject to the effect of the charges, refined to, 
 

SabMc 2                                                                                                  Equation (1a). 
 
Let G  be Newton’s gravitational constant, 4cGK  , and r , be an arbitrary radius from 
Mass M to a point in space, the time metric tensor component of a Mass is, 
 

rSabKrcGMg )(221 2
00  .                                                            Equation (2). 

 
Conventionally, the 00g  defines the “rate of time at a point”, however the 1983 
redefinition of time requires it to be measured over a length so that,  cLengthTime   
interval, with the Length and Time each being small intervals > zero.  The Time interval 
now requires two points defining the Length. 
The ‘space interval’ is conventionally written, vu

uv dxdxgds 2 , that becomes clearer 
written as, 



222 )()( spacetime dSdSds  . 

For brevity, setting timedSdS   and in view of equation (1), 
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2 dRgdxdxgdS oo   . 
 
Charge Couple Relation 
 
Consideration of a simple pair of charges gives straight forward conceptualization and  
can be summed to macroscopic bodies applications. 
Setting Sr   in equation (2), charges a  and b  relate to each as, 
 

2
00 21 SKabg  , and abKgSS 200

22  ,                                 Equation (3) 
 
Solving 00g  in terms of R  and S  provides, 00

22 gSR  , and  
 

KabRS 222  ,                                                                                    Equation (4), 
 
and  RSdSdR  . 
 
Equation (4) predicts the Signal distance depends on polarity.  For a given R , 
S (repulsion) > S (attraction), producing a greater Coulomb magnitude of attractive force  
than repulsive force though calculated at the same locations, due to the different Signal  
distance.  The speed of light propagates more slowly in a greater energy density between 
repulsive charges than attractive charges explaining gravitation as a secondary electrical 
effect in GR. 
 
GR expressed using Planck’s Constant 
 
Planck’s constant h  is expressible in terms of charge ‘ e ’ employing the von Klitzing 
constant KR  as,  2eRh K .  The product of charges ‘ a ’ and ‘ b ’ give 2eab  , 
yielding kRhab   where the sign depends on the relative polarity of ‘ a ’ and ‘ b ’. 
By expressing 00g  Equation (2), in terms of Planck’s constant, proves its general  
applicability to all ponderable matter and energy. 
The view of Equation (2), the 00g  now takes the form, 
 

)(2100 SrRKhg K . 
G-wave equivalence to EMR 
 
Expressing the Electric field of charge ‘ b ’ at location of charge ‘ a ’ as, 

2SbEb  , produces 



 
bEKag 2100   with a time derivative w.r.t. 0x , 

 
0

0,00 2 xEKag b  . 
 
The term 0xEb   is the Maxwell Equation predicting EMR, commonly written as 

tEc 1 .  For example, a wave propagating in direction x  is characterized by, 
 

0,330,22 gg   and therefore )()( ctEKctEK zy   
 
providing propagation of gravitational radiation is equivalent to and measurable to EMR. 
 
The Einstein Field Equation Applied to Generally Electric Relativity 
 
We’ll use the conventional Einstein Equation 
 

uvuv TcGG )(8 2 , (Weinberg 1972, chapter 7) 
 
Wherein uvG  is the curvature and uvT  the energy density. 
The static field component 
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00 )(8 TcGG   
 
will provide sufficient proof of General Electric Relativity as follows. 
Employing Poisson’s Equation with   the gravitational potential, 
 

OOTG   ,42  the energy density 
 
Equation (1a), sabMc 2 , gives, the gravitational potential at distance ” s ”, 
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The time metric is 2

00 21 cg   and the curvature is expressed by, 
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As was to be proven.  
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