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Abstract 
 
This article applies General Relativity (GR) to energy stored in a charge configuration 
termed, “potential energy of a system of charges”, as it affects gravitation and space-time. 
All mass and energy is expressible as, and convertible to electrical energy, as grams are 
equivalent to electron-volts. 
The analysis predicts gravitational radiation to be radiated and propagated as Electro-
Magnetic Radiation (EMR), therefore gravitational radiation is equivalent to EMR. 
 
GR Applied to a Charge Couple 
Consider charges ‘ a ’ and ‘ b ’ in isolation, each detectable only by relation to other 
charges, separated by a Cartesian Radius R , assumed to be measured by a light signal 
with a constant velocity c  and assumes c  is in a perfect vacuum, conventionally 
expressed, 
 

RabMc 2 , 
 
M  is the Mass of the electrical couple. The Cartesian R  is expressible by time, 
 

0xctR  ,                                                                                                  Equation (1), 
 
in place of R , the refinement of a physical light Signal is used, wherein the velocity of 
light is not constant but instead subject to the effect of the charges, refined to, 
 

SabMc 2                                                                                                   Equation (1a). 
 
Let G  be Newton’s gravitational constant, 4cGK  , and r  be an arbitrary radius from 
mass M  to a point in space, the time metric tensor component of a Mass is, 
 

  rSabKrcGMg 2121 2
00  .                                                           Equation (2). 

 
Conventionally, the 00g  defines the “rate of time at a point”, however the 1983 
redefinition of time requires it be measured over a length so that, cLengthTime   
interval, with the Length and Time each being small intervals > zero. The Time interval 
nows requires two points defining the Length. 
 
The ‘space time interval’ is conventionally written, 
 


 dxdxgds 2 , that becomes clearer written as, 

 



   222
spacetime dSdSds  . 

 
For brevity, setting timedSdS    and in view of Equation (1),  
 

2
00

00
00

2 dRgdxdxgdS  . 
 
Charge Couple Relation 
 
Consideration of a simple pair of charges gives straight forward conceptualization and 
can be summed to macroscopic bodies applications.  
 
Setting Sr  in Equation (2), charges a  and b  relate to each as, 
 

2
00 21 SKabg  , and abKgSS 200

22  ,                                          Equation (3) 
 

Solving 00g  in terms of R  and S  provides, 00
22 gSR  , and 

 
 abKRS 222  ,                                                                                        Equation (4), 
 
and RSdSdR  . 
 
Equation (4) predicts the Signal distance depends on polarity. For a given R ,  
S (repulsion) > S (attraction), producing a greater Coulomb magnitude of attractive force 
than repulsive force though calculated at the same locations, due to the different Signal 
distance. The speed of light propagates more slowly in a greater energy density between 
repulsive charges than attractive charges explaining gravitation as a secondary electrical 
effect in GR. 
 
 
GR expressed using Planck’s constant 
 
Planck’s constant h  is expressible in terms of charge ‘ e ’ employing the von Klitzing 
constant KR   as, 2eRh K   The product of charges ‘ a ’ and ‘ b ’ give  2eab  , 
yielding kRhab   where the sign depends on the relative polarity of ‘ a ’ and ‘ b ’ 
By expressing oog  (Equation 2), in terms of Planck’s constant, proves its general 
applicability to all ponderable matter and energy. 
 
In view of Equation (2), the OOg   now takes the form, 
 

 SrRKhg KOO 21 . 
 



G- wave  equivalence to EMR 
 
Expressing the Electric field of charge b  at location of charge a  as, 
 

2SbEb  , produces, 
 

bEaKg 2100   with a time derivative w.r.t. 0x , 
 

0
0,00 2 xEKag b  . 

 
The term  0xEb   is the Maxwell Equation predicting EMR, commonly written as  

tEc 1 . For example, a wave propagating in direction x is characterized by, 
 

0,330,22 gg   and therefore,    ctEKctEK zy   
 
proving propagation of gravitational radiation is equivalent to and measurable as EMR. 
 
 The Einstein Field Equation_ Applied to Generally Electric Relativity. 
 
We’ll use the conventional Einstein Equation  

  uvuv TcGG 28 , 
 (For ref. see S. Wienberg, “Gravitation and Cosmology, chapter 7), 
Wherein uvG  is the curvature and uvT  the energy density. 
 
The static field component  

  00
2

00 8 TcGG   
will provide sufficient proof of General Electric Relativity as follows. 
 
Employing Poisson’s Equation with   the gravitational potential, 

00
2 ,4 TG     the energy density 

   
Equation(1a), sabMc 2 , gives, the gravitational potential at distance ""s , 

  22 csabG  
The time metric is 2

00 21 cg   and the curvature is expressed by, 
 

    00
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00 822 TcGcsabGcgG   
as was to be proven.                                        
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