
Enumeration of Self-Avoiding Walks in a Lattice

Tom Harvey

28th October 2011

Abstract

A self-avoiding walk (SAW) is a path on a lattice that does not pass through
the same point more than once. We develop a method for enumerating self-
avoiding walks in a lattice by decomposing them into smaller pieces called tiles,
solving particular cases on the square, triangular and cubic lattices. We also
show that enumeration of SAWs in a lattice is related to enumeration of edge-
connected shapes, for example polyominoes.

1 Introduction

A self-avoiding walk (SAW) is a path on a lattice that does not pass through the
same point more than once. This means the path may not cross the same edge
or vertex twice. The problem of enumerating self-avoiding walks (SAWs) has
applications in many fields of science, but unfortunately studying even small
cases is difficult. The methods developed here are specifically interested in
enumerating paths between two points on the boundary of a finite lattice, though
they can be extended to more general cases and to other problems.

2 Building SAWs With Tiles

Consider a SAW on a n×m square lattice going from the bottom left corner to
the top-right corner. Divide the walk into n horizontal strips of width m, with
each division including the lower horizontal line and excluding the upper one (so
the topmost horizontal edge is not contained in any strip). Each of these strips
contains a finite number of edges of the underlying lattice, which are either
included in or excluded from the walk itself, meaning the number of possible
configurations is finite. We will call these strips tiles and the underlying lattice
of a single strip the base tile.

1



(a) the base tile (b) an example tile (c) entrances and exits

Figure 1: Black edges are included in the tile, grey edges are excluded.

As illustrated in the figures above, each tile has exits at the top, and en-
trances at the base. The SAW is constructed by stacking the tiles so that the
entrances of one tile correspond exactly to the exits of the tile below.

Not all permutations of the base tile can actually be used in the construc-
tion of a valid SAW. In fact a tile is admissible only if it has an odd number of
entrances and exits, and the conditions of a SAW are not violated within the tile.

(a) (b)

Figure 2: (a) This tile contains a self-intersection and therefore cannot be used
in the construction of a self-avoiding walk. (b) This tile is invalid because it has
an even number of entrances and an even number of exits - 2 in each case.

One entrance to a tile must be used when the path first enters the tile. If
a tile has more than one entrance, the second entrance would then have to be
used to leave the tile from the direction it was entered, the pattern repeated for
each odd and even entrance. This means that if a tile has an even number of
entrances, the last one will always be used to leave the tile in the wrong direction,
meaning it cannot be a part of a SAW. A similar argument demonstrates why
tiles with an even number of exits can also not be part of a SAW.

In addition to the above restrictions, not every tile can be stacked on top of
every other tile when forming a SAW.

(a) (b)

Figure 3: (a) Tiles that fit together can be used to construct a SAW. (b) These
tiles don’t fit together, even though the lower tile has the same number of exits
as the upper tile has entrances.

2



The information on which tiles can precede each tile can be expressed as a
system of recurrence relations.

Example 2.1. Consider SAWs on the n × 3 square lattice from the lower left
corner to the top right corner. The tiles for this lattice will all be of width 3.
Figure 4 contains a list of all possible tiles, with the admissible tiles labelled for
later use.

Figure 4: Tiles on the n× 3 square lattice.

We see that, for example, tile A can be preceded by tiles A, B, E and F.

Figure 5: Predecessors of A.

3



This gives the equation:

An+1 = An + Bn + En + Fn

where An is the number of SAWs in which the nth tile from the bottom is A,
and similarly for the other tiles:

Bn+1 = Cn + Dn + Gn

Cn+1 = Cn + Dn + Gn

Dn+1 = An + Bn + En + Fn

En+1 = Jn + Kn

Fn+1 = Hn + In + Ln + Mn

Gn+1 = Hn + In + Ln + Mn

Hn+1 = Hn + In + Ln + Mn

In+1 = Jn + Nn

Jn+1 = Jn + Kn + Nn

Kn+1 = Hn + In + Ln + Mn

Ln+1 = Cn + Dn + Gn

Mn+1 = An + Bn + En + Fn

Nn+1 = An + Bn + En + Fn

or expressed in matrix form:

An+1

Bn+1

Cn+1

Dn+1

En+1

Fn+1

Gn+1

Hn+1

In+1

Jn+1

Kn+1

Ln+1

Mn+1

Nn+1



=



1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0





An

Bn

Cn

Dn

En

Fn

Gn

Hn

In
Jn

Kn

Ln

Mn

Nn



.

3 The Init and Cap Vectors

In the same way that the predecessor matrix encodes path building information,
we need two other objects. The init vector, denoted ~T , encodes information
about the starting point of the path. The cap vector, denoted ~C, encodes
information about the end point of the path.

Not all tiles can be used as the base of a SAW. Only those tiles with a single
entrance, coinciding with the desired start point of the SAW can be used as the
base. Each tile’s entry in the init vector is the number of paths from the start
point through the tile. In this case 1 if it can be used as the base, 0 if it cannot.

4



The cap vector is a row vector and is constructed in a similar fashion to
the init vector. Each entry in the vector indicates how many ways there are
of constructing a path from the tile to the end point. In this case though we
include cases where some or all of the top edge of the lattice is added back in
(recall that it is excluded from tiles). Like the init vector, not all tiles can be
used as the final tile in a SAW and the entry for these will be 0, but unlike the
init vector, the number of ways of ending a SAW is not limited to 1.

All of this information can be combined to count the total number of n-tile
SAWs P(n):

P(n) = ~CMn−1 ~T .

Example 3.1. Returning to the n × 3 square lattice example from before, the
init and cap numbers are as follows:

Tile Init Cap

A 1 1

B 0 1

C 0 1

D 1 1

E 0 1

F 0 1

G 0 1

H 0 1

I 0 1

J 0 1

K 0 0

L 0 1

M 1 1

N 1 1

(a) (b)

Figure 6: (a) The cap value for tile K is 0 since adding the top left ledge produces
a loop and adding the top right edge results in a path leaving the end point.
(b) The cap value for tile N is 1 since adding the top left edge constructs a path
from the tile’s entrance to the end point in the top right.

5



This gives:

~T =



1

0

0

1

0

0

0

0

0

0

0

0

1

1



, ~C =
[

1 1 1 1 1 1 1 1 1 1 0 1 1 1
]
.

So for the n× 3 case the general solution is

P (n) =
[
1 1 1 1 1 1 1 1 1 1 0 1 1 1

]



1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0



n−1 

1

0

0

1

0

0

0

0

0

0

0

0

1

1



.

For example,

P (2) = 12.

4 Extensions

Using the tileset method described above allows arbitrary extension in one di-
mension for no additional cost once ~C, M and ~T (essentially the information for
the other dimensions) have been calculated. This same method can be applied
for lattices of any shape and dimension.

6



Example 4.1. Consider the 2n× 1 triangular lattice:

Figure 7: 2n× 1 triangular lattice.

When building the tileset for this lattice, we need only consider triangles 2
at a time, since we are only considering the 2n× 1 case. Thus the tiles are:

Figure 8: Tileset for the 2n× 1 triangular lattice.

The relevant information for each tile is:

Tile Pred Init Cap

A ABCD 0 1

B EF 1 1

C EFG 1 1

D ABCD 0 1

E EFG 1 1

F ABCD 0 1

G ABCD 0 0

giving

7



P (2n) =
[

1 1 1 1 1 1 0
]


1 1 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 1

1 1 1 1 0 0 0

0 0 0 0 1 1 1

1 1 1 1 0 0 0

1 1 1 1 0 0 0



n−1 

0

1

1

0

1

0

0


.

We can use these calculations to generate the full n × 1 case by observing
that ~Co = ~Ce + ~J , where ~Co is the cap vector in the odd case, ~Ce is the cap
vector in the even case, and ~J is the appropriately-dimensioned vector of all 1s.
This is illustrated in figure 9.

Figure 9: With an extra triangle present, all tiles have an additional path to
the exit using the diagonal of the new triangle, as demonstrated here with tile
E.

So we simply need to substitute the cap vectors depending on the parity of n,
the number of triangles in the lattice we are studying. This gives the following
general equation for the n× 1 triangular lattice (relabelling Ce as C):

P (2n + a) = (~C + a ~J)Mn−1 ~T

where a ∈ {0,1} and P (1) = 2.

The upper bound on the total number of tiles is 2e, where e is the number
of edges in the tile, since each edge can be either included or excluded from the
tile. Of course not every combination of edges yields a valid tile for studying
SAWs.

Example 4.2. Hexagonal lattices can be built up from the base tile in figure 10.

Figure 10: The base tile for the hexagonal lattice of width 2.

8



There are 8 edges in this tile, meaning there are at most 28 = 256 tiles in
the tileset for the hexagonal lattice of width 2.

For a square lattice of dimension n, the base tile consists of a cube of dimen-
sion n, minus a cube of dimension n−1 at the top (in the 2D case, the top edge
of the square). Since the number of edges in an n-dimensional cube is n2n−1,
we have for T (n) the number of tiles in a square lattice of dimension n,

T (n) ≤ 2n2
n−1−(n−1)2n−2

Example 4.3. Consider counting SAWs on the n× 1× 1 cubic lattice from the
bottom left corner to the top right corner as shown in figure 11.

Figure 11: An example SAW on the 3× 1× 1 cubic lattice.

This has the following tileset (of 80 tiles) with init and cap values as shown:

9



Figure 12: Tileset for the n × 1 × 1 cubic lattice, with init and cap values as
indicated.

10



These tiles and the following sequence for P(n) were computer generated:

n P(n)
1 18
2 172
3 1806
4 18716
5 194418
6 2018970
7 20967460
8 217750292
9 2261373016
10 23484730792
11 243892800816
12 2532866929616
13 26304240502368
14 273173872736160
15 2836955689382080

It is apparent that P (n) ≈ 18(10.38)n−1.

5 An Alternative View

Another way of viewing the problem of SAWs in a 2D lattice is to embed it in R2.

Figure 13: An alternative way of viewing SAWs in a lattice.

11



Using the Jordan Curve Theorem we can see that any SAW through the start
and end point will separate the lattice into 2 regions. Colour one region. The
enumeration of paths then becomes equivalent to the study of arrangements of
connected, coloured shapes (squares in the case pictured) in the lattice - similar
to polyominoes but with more restrictions.

References

[1] L. K. Williams, Enumerating Up-Side Self-Avoiding Walks on Integer Lat-
tices, in Electr. J. Comb. Vol. 3, No. 1 (1996)

12


