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Abstract. Here we present discussion for the utility of resonant interference in Calabi-Yau mirror symmetry as a 
putative empirical test of the existence of virtual tachyon / tardon interactions in a covariant Dirac polarized vacuum 

 
 

INTRODUCTION - MULTIDIMENSIONAL GEOMETRY  
AND CLOSED TIME-LIKE LOOPS 

 
 
It appears that a resolution of the problem of closed time-like loops (CTL) lies in developing a model in 
terms of a space of higher dimensionality, HD. What appears to be a closed loop in 4D spacetime may in 
fact not have an intersection in an HD space [1].. Normal macroscopic causality demands that no point in the 
forward lightcone is connected to another point outside the forward lightcone; that is, all signals are time-
like [2]. Real events involve simultaneity which is defined by signals that do not exceed the velocity of light, 
v c≤  where v is the velocity of propagation and c is the velocituy of light. Causality conditions for 
superliminal signals in constructing a Lorentz invariant quantum field theory are given in [3,4]. Tipler 
examines the problem of CTLs in general relativity for a rapidly rotating gravitational field [5]. The 
relationship of causality and locality conditions is dicussed in [6].  
 
• First, the case in which there is no connection of past and future is represented, i.e., there is no causal 

connection.  
• Second, the usual Minkowski diagram for a single valued present. In quantum mechanical terms, the 

collapse of the wave function describing the system under consideration allows only one world line. 
• Third, the present or ‘now’ condition is not single valued. The event wave function no longer collapses 

to a point, localized region of spacetime, and more than one world line can represent the present.  
 
 In fact, for point-like events, one could conceivably have an infinite number of world lines passing 
through the present. Everett, Graham and Wheeler have examined the quantum mechanical implications of a 
multi-valued universe theory [7]. More detail is presented in [6]. Information about a future event may then 
be traced back to the present via another world line and that actual time sequencing experienced is 
associated with the first world line or possibly a third world line. Of course one of the major problems of a 
theory containing multivalue solutions is the difficulty in defining a reasonable and useful causal 
relationship. The 4-space description gives us CTL which yield difficulties in describing prior and post event 
occurrences [5].. 
 Intuitively, considering HD geometric models appears to reconcile the problem of CTL. For example, a 



helical world line in a 3-space would be single valued but would appear to contain multiple intersections if 
viewed at a 45° angle to the vertical helical axis as represented in a 2D space. This representation would 
contain multiple intersections even with a large pitch to the perpendicular to axis radius and hence act like a 
CTL [8]. 
A number of HD geometries (Fig. 1) have been examined, in terms of reconciling complex anticipation and 
precognition-like signaling and causality as well as their possible relationship to superluminal signals [9,10]. 
In particular we have examined some 5D and 6D geometries where the additional dimensions, XD are 
space-like and time -like. In [11], instead of hypothesizing a model which involves energy transmission and 
associated problems of energy conservation, we chose to develop a model in which remote information is 
accessed in 4-space as though it was not remote in a HD geometry. The relativity theory formally describes 
the relationship of macroscopic events in spacetime and, in particular, their causal connection is well 
specified. HD geometries appear to reconcile anticipation or precognition and causality and define a 
formalism in which the spatial and temporal separation of events in 4-space appear to be in juxtaposition in 
the HD geometry. This model can well accommodate information and perhaps energy transmission cond-
itions as we will discuss in more detail in this volume. 

There appears to be a reasonable relationship between these complex spaces and real 4, 5 and 6D spaces. 
The generalized causal relations in the complex space are consistent with the usual causality conditions, and 
exclude the CTL paradox. Multidimensional models appear to reconcile Maxwell's equations with the 
structure of general relativity in the weak gravitational field limit having some quantum mechanical features 
such as quantum nonlocality. 

We introduce a complex 8D matrix in which the real components comprise the usual 4-space of three 
real space components and a real time component and four imaginary components composed of three 
imaginary space components and one imaginary time component [6,11]. 

Hansen and Newman [12] and Rauscher [6,11,13,14] developed the properties of a complex Minkowski 
space and explored the properties of this geometry in detail. The formalism involves defining a complex 

space Re ImZ X iXµ µ µ= +  where the metric of the space is obtained for the line element 
2 *ds g dZ dZµ ν

µν=  where indices µ  and ν  run 1 to 4. 

In defining conditions of causality for ds2 = 0 for the metrical form we have the usual 4-space 
Minkowski metric with signature (+++-) 

            
2ds g dx dxµ ν

µν=                    (1a)  

 
using units c  =  1 and 1 2 3, ,dx dx dx dy dx dz= = =  and 4dx cdt=  where the indices µ  and ν  run 1 

to 4; where also  

           

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

gµν

 
 
 =
 
 − 

            (1b) 

 
which is a sixteen element mattrix where the trace, tr = 2.  

In complex 8D space, we have for our differential line element with coordinates labeled 

Re ImdZ dX idXµ µ µ= +  (in which dZ is complex and RedX  and ImdX are themselves real), with a complex 

matric where ινη is analogous to gµν such that 

    
2 *ds dZ dZµ µ

µνη=              (.2) 

 



so that, for example, * 2 2
Re Im( ) ( )dZ dZ dX dXµ µ µ µ= + . We can write in general for real and imaginary 

space and time components: 

         
( ) ( )
( ) ( )

2 2 2 2 2
Re Im Re Im

2 2 2 2 2
Re Im Re Im

ds dx dx dy dy

dz dz c dt dt

= + + +

+ + − +
         (3) 

 

In [11] we represent the three real spacial components, Re,dx  Re ,dy
 Re ,dz  as dX and the three 

imaginary spacial components, Im ,dx  Im ,dy Imdz as ImdX  and similarly for the real time component 

Redt dt≡  and Im .dt dτ=  We then introduce complex spacetime -like coordinates as a space-like part 

Imx χ=  and a time-like part Imt τ=  as imaginary parts of X and t.  

Now we have the invariant line elements as  
 

   
2 2 2 22 ' ' ' 's x c t x t= − = −           (4) 

 

again where we choose units where  2 1c c= =  and 
 

    Re Im'x X iX= +            (5) 

and 

    Re Im't t it= +             (6) 

as our complex dimensional component [15]. We use 
 

  
22 2 2

Re Im' 'x x X X= = +            (7) 

and 

   
22 2 2

Re Im' 't t t t= = + .           (8) 

 
Recalling that the square of a complex number is given as the modulus 
 

         ( ) ( )Re Im Re Im' ' '*x x x X iX X iX= = + −        (9) 

 

for ReX  and ImX  real. The fundamental key to this set of calculations is that the modulus of the product of 

complex numbers is real. Therefore, we have the 8-space line element. 

 

  

2 2 2 2 2 2 2
Re Re Im Im

2 2 2 2
Re Re Im Im

s x c t x c t

x t x t

= − + −

= − + −
             (10) 

 
Causality is defined by remaining on the right cone, in real spacetime, as  

  
2 2 2 2 2 2

Re Re Re Res x c t x t= − = −              (11) 

 
using the condition c = 1. Then generalized causality in complex spacetime is defined by 

   
2 2 2 2 2

Re Re Im Ims x t x t= − + −          (12) 

 



in the Re Re Im Im, , ,x t x t generalized light cone 8D space. 

Let us calculate the interval separation between two events or occurrences Z1 and Z2 with real separation 

Re 2Re 1Rex x x∆ = −  and imaginary separation Im 2Im 1Imx x x∆ = − . Then the distance along the line 

element is 2 2 2 2 2
Re Im Re Im( )s x x t t∆ = ∆ + − − and it must be true that the line interval is a real separation. 

Then  

          

2 2 2
2,Re 1,Re 2,Im 1,Im

2 2
2,Re 1,Re 2,Im 1,Im

( ) ( )

( ) ( )

s x x x x

t t t t

∆ = − + −

− − − −
        (13) 

or 

                  (14) 
 

Because of the relative signs of the real and imaginary space and time components and in order to 

achieve the causality connectedness condition between the two events, or 
2s∆ , we must "mix" space and 

time. That is, we use the imaginary time component to effect a zero space separation. We 
identify 1,Re 1,Re( , )x t  with one spacetime event causally correlated with another spacetime event, 

2,Re 2,Re( , )x t  [16]. 

By introducing the imaginary time component, one can achieve a conditon in which the apparent 
separation in the real physical plane defined by xRe, tRe is zero, given access to the imaginary time, tim, or the 
xRe , tim plane yielding spatial nonlocality. 
 The lightcone metric representation may imply superluminal signal propagation between an event A 
transmitter and even in the four real subset space by the event B (receiver) or two simultaneously remotely 
connected events. Separation will not appear superluminal in the 8-space representation. The causality 
conditions, which do not contain closed time-like loops, are for the complex 8-space geometry, where 4-
space is a cut through the 8-space [11]. Newton examines causality conditions in 4-space with superluminal 
signals  [4] and the problem of closed time-like loops posed by Feinberg's  classic "Tachyon" paper [3]. These 
problems appear to be resolved by considering spaces of higher (>4D) dimensions and are consistent with 
subliminal and superliminal signals [9]. 

 In a later section we will discuss the relationship between subliminal, time-like, and superliminal, space-
like, interpretation of the remote connectedness phenomena, such as the nonlocality test of Bell's theorem. 
 
 

LORENTZ CONDITION IN COMPLEX 8-SPACE  
AND TACHYONIC SIGNALING 

 
In order to examine as the consequences of the relativity hypothesis that time is the fourth dimension of 
space, and that we have a particular form of transformation called the Lorentz transformation, we must 
define velocity in the comple space. That is, the Lorentz transformation and its consequences, the Lorentz 
contradiction and mass dielation, etc., are a consequence of time as the fourth dimension of space and are 
observed in three spaces [17,18]. These attributes of 4-space in 3-space are expressed in terms of velocity, as 

in the form ( ) 1/221γ β
−

= −  for Re /v cβ ≡  where c is always taken as real. 

 If complex 8-space can be projected into 4-space, what are the con-sequences? We can also consider a 



4D slice through the complex 8D space. Each approach has its advantages and disadvantages. In projective 
geometries information about the space is lost. What is the comparison of a subset geometry formed from a 
projected geometry or a subspace formed as a slice through an XD geometry? What does a generalized 
Lorentz transformation "look like"? We will define complex derivatives and therefore we can define 
velocity in a complex plane [11]. 
 Consider the generalized Lorentz transformation in the system of xRe and tIm for the real time remote 
connectedness case in the Re Im,x t  plane. We define our substitutions from 4-to 8-space before us, 

           
Re

Re

'
'

im

im

x x x ix
t t t it

→ = +
→ = +

                (15) 

and we represented the case for no imaginary component of Rex  or Im 0x =  where the Re Re,x t  plane 

comprises the ordinary 4-space plane. 
 Let us recall that the usual Lorentz transformation conditions defined in four real space. Consider two 
frames of reference, Σ , at rest and 'Σ  moving at relative uniform velocity v. We call v the velocity of the 
origin of 'Σ  moving relative to Σ . A light signal along the x direction is transmitted by x = ct or x - ct = 0 
and also in 'Σ as x' = ct' or x'-ct' = 0, since the velocity of light in vacuo is constant in any frame of 
reference in 4-space. For the usual 4D Lorentz transformation, we have as shown in Eq. (2.16), 

Re Re Re Re Re, and /x x t t v x t= = = .  

 

          

( )

( )

2 2

2

22 2

'
1 /

'
'

/
'

1 /

x vt
x x vt

v c
y y
z z

t v c x v
t t x

cv c

γ

γ

−
= = −

−
=
=

−   = = −   
  −

        (16) 

 

for 2 1/2(1 )γ β −= −     and   / .v cβ =  Here x and t stand for xRe and tRe and v is the real velocity. 

 We consider the Re Im,x t  plane and write the expression for the Lorentz conditions for this plane (Fig. 

2.1). Since again Imt  like Ret  is orthogonal to  Imx and '
Imt  is orthogonal to '

Imx we can write 

          

( )

( )

Im
Im2 2

2

22 2

'
1 /

'
'

/
'

1 /

v

v

x ivt
x x vt

v c
y y
z z

t v c x v
t t x

cv c

γ

γ

−
= = −

−
=
=

−   = = −   
  −

        (17) 

where vγ  represents the definition of γ  in terms of the velocity v; also Im Im /v v cβ ≡  where c is always 

taken as real [19] where v  can be real or imaginary. 

 In Eq. 2.17 for simplicity we let ', , ' andx x t t  denote ' '
Re Re Re Re, , andx x t t  and we denote script 

Imasv v . For velocity, Re Re Reis /v v x t=  and Im Im Im/ ;v v i it= =  where the i drops out so that 



Im Im Im/v v x t= =  is  a real value function. In all cases the velocity of light c is c. We use this alternative 

notation here for simplicity in the complex Lorentz transformation. 
 The symmetry properties of the topology of the complex 8-space gives us the properties that allow 
Lorentz sonditions in 4D, 8D ans ultimately 12D space. The example we consider here is a subspace of the 
8-space of Re Re Im Im, , and .x t x t  In some cases we let Im 0x =  and just consider temporal remote 

connectedness; but likewise we can follow the anticipatory calculation and formulate remote, nonlocal 

solutions for Im 0x ≠  and Im Im0 or 0.t t= ≠  The anticipatory case for Im 0x =  is a 5D space as the 

space for Im Im0 0x and t≠ =  is a 7D space and for Im 0t ≠ as well as the other real and imaginary 

spacetime dimensions, we have our complex 8D space. 
 It is important to define the complex derivative so that we may define velocity, vIm. In the xRetIm plane 
then, we define a velocity of vIm = dx/ditIm. In the next section we detail the velocity expression for vIm and 
define the derivative of a comple x function in detail [3]. 
 For Im Im Im Re/ /v dx idt idx dt iv= = − = −  for Rev  as a real quantity, we substitute into our Re Im,x t  

plane Lorentz transformation conditions as  
 

            

Re Re Im

2 2
Re

' Re Re Re
Im 2 2

Re

'
1 /

'
'

1 /

x v t
x

v c

y y
z z

t v x
t

v c

−
=

+

=
=

−
=

+

                (18) 

 
These conditions will be valid for any velocity, vRe = - v. 
 

 
Figure 1. We illustrate an example in which a real space-like separation of events P1 and P2 appears to be contiguous by 

the introduction of the complex time, Re Imx xt it+  such that from the point of view of event P3, the time-like separation 

between 2 2 1 1( ( ) ( ))x P x P−  appears to be zero. 
 
 Let us examine the way this form of the Lorentz transformation relates to the properties of mass dilation. 
We will compare this case to the ordinary mass dilation formula and the tachyonic mass formula of Feinberg 
[3] which nicely results from the complex 8-space. See Fig. 1. 
 In the ordinary xRe tRe plane then, we have the usual Einstein mass relationship of 



          0

2 2
Re1 /

m
m

v c
=

−
   for  Rev c≤              (19) 

and we can compare this to the tachyonic mass relationship in the xt plane 

       
*
0 0 0
2 2 2 2 2 2
Re Re Re1 / 1 / / 1

m im m
m

v c v c v c
= = =

− − −
         (20) 

 
for Re Renowv v c≥  and where m* or mIm stands for m* = im and we define m as mRe, 

               0

2 21 /

m
m

v c
=

+
               (21) 

For m real (mRe), we can examine two cases on v as v < c or v > c, so we will let v be any value from 

,v− ∞ < < ∞  where the velocity, v, is taken as real, or Re.v  

 Consider the case of v as imaginary (or vIm) and examine the consequences of this assumption. Also we 
examine the consequences for both v and m imaginary and compare to the above cases. If we choose v 

imaginary or v* = iv (which we can term vIm) the *2 2 2 2/ /v c v c= −  and
*2 21 /v c+  becomes 

*2 21 /v c−  or 

           0

2 2
Re1 /

m
m

v c
=

−
              (22) 

 

We get the form of this normal Lorentz transformation if v is imaginary Im( * )v v=  

 If both v and m are imaginary, as v* = iv  and m* = im, then we have 

       
*
0 0 0

*2 2 2 2 2 21 / 1 / / 1

m im m
m

v c v c v c
= = =

+ − −
          (23) 

 
or the tachyonic condition. 
 If' we go "off" into xRe  tRe  tim planes, then we have to define a velocity "cutting across" these planes, and 
it is much more complicated to define the complex derivative for the velocities. For subliminal relative 

systems Σ  and 'Σ  we can use vector addition such as Re ImW v iv= +  for Re ,v x<  Imv c<  and W < c. 

In general there will be four comp lex velocities. The relationship of these four velocities is given by the 
Cauchy-Riemann relations in the next section. 

 These two are equivalent. The actual magnitude of v may be expressed as 
1
2 ˆ[ *]v vv v=  (where v̂  is the 

unit vector velocity) which can be formed using either of the Cauchy-Riemann equations. It is important that 
a detailed analysis not predict any extraneous consequences of the theory. Any possibly new phenomenon 
that is hypothesized should be formulated in such a manner as to be easily experimentally testable. 
 Feinberg suggests several experiments to test for the existence of tachyons [20]. He describes the 
following experiment – consider in the laboratory, atom A, at time, t0 is in an excited state at rest at x1 and 
atom B is in its ground state at x2. At time t1 atom A descends to the ground state and emits a tachyon in the 
direction of B. Let E1 be this event at t1, x1. Subsequently, at 2 1t t>  atom B absorbs the tachyon and ascends 

to an excited state; this is event E2, at t2, x2. Then at 3 2t t>  atom B is excited and A is in its ground state. For 

an observer traveling at an appropriate velocity, v < c relative to the laboratory frame, the events E1 and E2 



appear ro occur in the opposite order in time. Feinberg describes the experiment by stating that at '
2t  atom B 

spontaneously ascends from the ground state to an excited state, emitting a tachyon which travels toward A. 

Subsequently, at '
1,t  atom A absorbs the tachyon and drops to the ground state.  

 
 

 
 

Figure 2 Transactional model. a) Offer-wave, b) confirmation-wave combin-ed into the resultant transaction c) which 
takes the form of an HD future-past advanced-retarded standing or stationary wave. Figs. Adapted from Cramer [21]. 
 
 It is clear from this that what is absorption for one observer is spontaneous emission for another. But if 
quantum mechanics is to remain intact so that we are able to detect such particles, then there must be an 
observable difference between them: The first depends on a controllable density of tachyons, the second 
does not. In order to elucidate this point, we should repeat the above experiment many times over. The 
possibility of reversing the temporal order of causality, sometimes termed ‘sending a signal backwards in 
time’ must be addresses [22]. Is this cause-effect statistical in nature? In the case of Bell’s Theorem, these 
correlations are extremely strong whether explained by v > c or v  = c  signaling.  
 In [23], Bilaniuk, et al formulated the interpretation of the assocition of negative energy states with 
tachyonic signaling. From the different frames of reference, thus to one observer absorption is observed and 
to another emission is observed. These states do not violate special relativity. Acausal experiments in 
particle physics have been suggested by a number of researchers [24,25]. Another approach is through the 
detection of Cerenkov radiation, which is emitted by charged particles moving through a substance traveling 
at a velocity, v > c. For a tachyon traveling in free space with velocity, v > c Cerenkov radiation may occur 
in a vacuum cause the tachyon to lose energy and become a tardon [26]. 
 In a prior joint volumes [27,28] in discussions on the arrow of time we have developed an extended 
model of a polarized Dirac vacuum in complex form that makes correspondence to both Calabi-Yau mirror 
symmetry conditions which extends Cramer’s Transactional Interpretation [21] of quantum theory to 
cosmology. Simplistically Cramer models a transaction as a standing wave of the future-past. 
 However in the broader context of the new paradigm of Holographic Anthropic Multiverse (HAM) 
cosmology it appears theoretically straight forward to ‘program the vacuum’ The coherent control of a 
Cramer transaction can be resonantly programmed with alternating nodes of constructive and destructive 
interference of the standing-wave present. It should be noted that in HAM cosmology the de Broglie-Bohm 
quantum potential becomes an eternity-wave, ℵ  or super pilot wave or force of coherence associted with 
the unified field ordering the reality of the observer or the locus of the spacetime arrow of time.  



 
 
Figure 3 Basic mathematical components of the applied harmonic oscillator: classical, quantum, relativistic, 
transactional and incursive are required in order to achieve coherent control of the cumulative resonance coupling 
hierarchy in order to produce harmonic nodes of destructive and constructive interference in the spacetime backcloth.   
 
 To perform a simple experiment to test for the existence of Tachyons and Tardons and atom would be 
placed in a QED cavity or photonic crystal. Utilizing the resonant hierarchy illustrated in Fig. 2.18, through 
interference the reduced eternity wave, ℵ  is focused constructively or destructively as the experimental 
mode may be and acording to the paramters illustrated by Feinberg above temporal measurements of 
emission are taken. 
 
 

VELEOCITY OF PROPAGATION IN COMPLEX 8-SPACE 
 
In this section we utilize the Cauchy-Riemann relations to formulate the hyperdimensional velocities of 
propagation in the complex plane in various slices through the hyperdimensional complex 8-space. In this 
model finite limit velocities, v > c can be considered. In some Lorentz frames of reference, instantaneous 
signalling can be considered. In Fig. 1 is displayed the velocity connection between remote nonlocal events, 
and temporal separated events or anticipatory and real time event relations.  

 It is important to define the complex derivative so that we can define the velocity, Imvy . In the xit plane 

then, we define a velocity of / ( ).v dx d iτ=  We now examine in some detail the velocity of this 
expression. In defining the derivative of a complex function we have two cases in terms of a choice in terms 
of the differential increment considered. Consider the orthogonal coordinates x and Imit ; then we have the 

generalized function, Im( , ) ( )f x t f z=  for Imz x it= +  and f(z) = Im Im( , ) ( , )u x t iv x t+  where 

Im( , )u x t  and Im Im( , )v x t  are real functions of the rectangular coordinates x and Imt  of a point in space, 

Im( , )P x t . Cooose a case such as the origin 0 0 0Imz x it= +  and consider two cases, one for real 

increments h x= ∆  and imaginary increments Imh i t= ∆ . For the real increments Imh t= ∆  we form the 

derivative 
00'( ) ( ) / zf z df z dz≡  which is evaluated at z0 as 



     

( ) ( )

( ) ( )

0 0Im 0 0Im

0 0Im 0 0Im

, ,
' lim 0

, ,

u x x t u x t
f x

x

v x x t v x t
i

x

 + ∆ −
= ∆ → +

∆
+ ∆ −


∆ 

       (2.24a) 

 

or         

( ) ( ) ( )0 0 0Im 0 0Im' , , for

and .

x x

x x

f z u x t iv x t

u v
u v

x x

= +

∂ ∂
≡ ≡

∂ ∂

      (2.24b) 

Again Re 0 0Re Re, and .x xx x x x v v= = =  

 Now for the purely imaginary increment, Imh i t= ∆  we have 

    

( ) ( ) ( )

( ) ( )

0 0Im Im 0 0Im
0 Im

Im

0 0Im Im 0 0Im

Im

, ,1
' lim 0

, ,

u x t t u x t
f z t

i t

v x t t v x t
t

 + ∆ −
= ∆ → +

∆
+ ∆ −


∆ 

      (2.25a) 

 

and       ( ) ( ) ( )0 Im 0 0Im Im 0 0Im' , ,t tf z iu x t v x t= − +        (2.25b) 

for Im Im Im Imandt tu u v v= =  then 

         Im Im
Im Im

and .t t

u v
u v

t t
∂ ∂

≡ ≡
∂ ∂

          (2.25c) 

 Using the Cauchy-Reimann equations  

        
Im Im

and
u v u v
x t t x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
           (2.26) 

and assuming all principle derivations are definable on the manifold and letting Imh x i t= ∆ + ∆  we can use  

       ( ) ( ) ( ) ( )
0

0 0
0' lim 0 z

f z h f z df z
f z h

h dz

+ −
= → =         (2.27a) 

and      ( ) ( ) ( ) ( )0 0Im
0 0Im 0 0Im 0 0Im

,
, , ,x x

u x t v
u x t iv x t i x t

x x

∂ ∂
+ − +

∂ ∂
      (2.27b) 

with Re Re Refor and that is ,x xv x t u u=  with the derivative form of the charge of the real space 

increment with complex time, we can define a complex velocity as,  

        ( ) ( )0
Im Im

1
'

dx dx
f z

d it i dt
= =             (2.28a) 

we can have Im( )x t  where xRe is a function of tIm and f(z) and using Imh i t= ∆ , then 

       ( ) ( )0 Im
Im

' '
dx dx

f z x t
dh idt

= = = .            (2.28b) 



Then we can define a velocity where the differential incrrement is in terms of Imh i t= ∆ . Using the first 

case as 0 0Im( , )u x t  as  and obtaining 0Im /dt x∆  (with i’s) we take the inverse. If ux which is vx in the 

Imh i t→ ∆  case have both ux  and vx , one can be zero.  

 In the next section, we present a brief discussion of n > 4D geometries. Like the complex 8D space, the 
5D Kaluza-Klein geometries are subsets of the supersymmetry models. The complex 8-space deals in 
extended dimensions, but like the TOE models, Kaluza -Klein models also treat n > 4D as compactified on 
the scale of the Planck length, 10-33 cm [27].  
 In 4D space (Fig. 1) event point, P1 and P2 are spatially separated on the real space axis as x0Re at point P1 
and x1Re at point P2 with separation Re 1Re 0Re.x x x∆ = −  From the event point P3 on the tIm axis we move in 

complex space from event P1 to event P3. From the origin, t0Im we move to an imaginary temporal separation 
of tIm to t2Im of Im 2Im 0Im .t t t∆ = −  The distance in real space and imaginary time can be set so that 

measurement along the tIm axis yields an imaginary temporal separation Imt∆  subtracts out, from the 

spacetime metric, the temporal separation Re .x∆  In this case occurrence of events P1 and P2 can occur 

simultaneous, that is, the apparent velocity of propagation is instantaneous.  
 For the example of Bell’s Theorem, the two photons leave a source nearly simultaneously at time, t0Re 
and their spin states are correlated at two real spatially separated locations, x1Re and x2Re separated by 

Re 2Re 1Re.x x x∆ = −  This separation is a space-like separation, which is forbidden by special relativity; 

however, in the complex space, the points x1Re and x2Re appear to be be contiguous for the proper path 
‘traveled’ to the point.  
 We design our tachyon measurement experiment by initially considereing Bohr's starting point for the 
development of quantum theory, i.e. the emission of photons by atoms from quantum jumps between stable 
Bohr orbits. We do this from the point of view of the de Broglie -Bohm causal stochastic interpretation in 
order to take into consideration new laser experimental results described by Kowalski [29]. As one knows 
light emitted from atoms during transitons of electrons from higher to lower energy states takes the form of 
photon quanta carrying energy and angular momentum. Any causal description of such a process implies 
that one adds to the restoring force of the harmonic oscillator an additonal radiation (decelerating) resistance 
associated (derived from) with the electromagnetic (force) field of the emitted photon by the action equal 
reaction law. Any new causal condition thus implies that one must add a new force to the Coulomb force 
acting at random and which we suggest is related to ZPF vacuum resonant coupling and motions of the 
polarized Dirac aether. We assume that the wave and particle aspects of electrons and photons are built with 
real extended spacetime structures containing internal oscillations of point-like electromagnetic topological 

charges, e±  within an extended form of the causal stochastic interpretation of quantum mechanics. 
Kowalski's interpretation drawn from recent laser experiments [29] showing that emission and absorbtion 
between Bohr atomic states take place within a time interval equal to one period of the emitted-absorbed 
photon wave, the corresponding transition time is the time needed for the orbiting electron to travel one full 
orbit aroound the nucleus.  

• This suggests that electrons (like all massive particles) are not point-like but must be considered as 
extended spacetime topological structures imbedded in a real physical Dirac aether [30].  

• These structures contain internal oscillations of point-like quantum mechanical charges around 

coresponding gravitational centers of mass, Yµ  so that individual electrons have different centers 

of mass and electromagnetic charge in the particle’s and piloting fields. 
• The Compton radius of mass is much larger than the radius of the charge distribution [30,31].  

• The centers of charge, Xµ  rotates around the center of mass, Yµ  with velocity near the velocity of 

light, c so that individual electrons are real oscillators with Broglian internal oscillations [32].  
• Individual photons are also extended spacetime structures containing two opposite point-like 



charges, e±  rotating with the nearly the velocity of light, v c;  at opposite sides of a rotating 

diameter, with a mass, 
6510 gm.mγ

−;  and an internal oscillation, 2E mc= = h . (Fig. x) 

• The real aether is a covariant polarized Dirac-type stochastic distribution od such extended photons 
which carry electromagnetic waves built with sets of such extended photons beating in phase amd 
thus constituting subluminal and superluminal collective electromagnetic fields detected in the 
Casimir Effect so that a Bohr transition with one photon absorption occurs when a non-radiating 
Bohr orbital electron collides and beats in phase with an aether photon. In that case a photon is 
emitted and Bohr electron’s charge e- spirals in one rotation towards the lover level (Exceplex) 

 
Figure 4. Diagram conceptualizing two oppositely charged sub-elements rotating at v≅ c around a central point 0 
behaving like a dipole bump and hole on the topological surface of the covariant polarized Dirac vacuum. 

 
 

POSSIBLE NEW CONSEQUENCES OF THE MODEL 
  

Since such models evidently imply new testable properties of electromagnetic and gravitational phenomena 
we shall conclude this work with a brief discussion of the points where it differs from the usual 
interpretations and implies new possible experimental tests. 

 If one considers gravitational and electromagnetic phenomena as reflecting different behaviors of the 
same real physical field i.e. as different collective behavior, propagating within a real medium (the aether) 
one must start with a description of some of its properties. 

 We thus assume that this  aether  is built (i.e. describable) by a chaotic distribution )( µρ x of small 

extended structures represented by four-vectors )( αµ xA round each absolute point in I0. This implies 

• the existence of a basic local high density of extended sub-elements in vacuum 
• the existence of small density variations )()( µδρ αµ xAx  above 0>δρ for light and below )0( <δρ  for 

gravity density at µx . 

• the possibility to propagate such  field variations within the vacuum as first suggested by Dirac [33]. 
 

 One can have internal variations: i.e. motions within these sub-elements characterized by internal 
motions associated with the internal behavior of average points (i.e. internal center of mass, centers of 



charge, internal rotations: and external motions associated with the stochastic behavior, within the aether, of 
individual sub-elements. As well known the latter can be analyzed at each point in terms of average drift and 
osmotic motions and µA  distribution. It implies the introduction of non-linear terms. 

 To describe individual non-dispersive sub-elements within 0I , where the scalar density is locally 

constant and the average µA equal to zero, one introduces at its central point )(θµY a space-like radial four-

vector )/exp( hiSrA µµ = (with µ
µ rr  = a2 = constant) which rotates around µY  with a frequency 

hcm /2
γν = . At both extremities of a diameter we shall locate two opposite electric charges +e and −e (so 

that the sub-element behaves like a dipole). The opposite charges attract and rotate around µY with a 

velocity ≅ c. The +e and –e electromagnetic pointlike charges correspond to opposite rotations (i.e ± h /2) 
and µA rotates around an axis perpendicular to µA located at µY , and parallel to the individual sub-element’s 

four momentum Sµ∂ . 

 Assuming electric charge distributions correspond to mδ >0 and gravitation to mδ < 0 one can describe 
such sub-elements as holes ( mδ < 0) around a point 0 around which rotate two point-like charges rotating in 
opposite directions as shown in Figure 6.1 below. 

 These charges themselves rotate with a velocity c  at a distance µµ Ar = (with µµ rr  = Const.). From 0 

one can describe this by the equation     
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with [ ]h/)(exp αµµ xiSrA ⋅=  along with the orbit equations for e+ and −e we get the force equation   

             222 4/ rerm πω =⋅⋅              (32) 

and the angular momentum equation: 

             2/2 h=⋅⋅ ωγ rm              (33) 

 

 Eliminating the mass term between (31) and (33) this yields 

             re 2/2=ωh                     (34) 

 

where e2/2r is the electrostatic energy of the rotating pair. We then introduce a soliton-type solution 
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where                              
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satisfies the relation (31) with 2/1221222 ))/1()(( zycvvtxr ++−⋅−= −  i.e. 

            ? 00 =µA :                     (37) 

so that one can add to 0
µA  a linear wave, µA  (satisfying ? µA = ))/( 222

µγ Acm h  which describes the new 

average paths of the extended wave elements and piloted solitons. Within this model the question of the 
interactions of a moving body (considered as excess or defect of field density, above or below the aether’s 
neighboring average density) with a real aether appears immediately1.  

 As well known, as time went by, observations established the existence of unexplained behavior of light 
and some new astronomical phenomena which led to discovery of the Theory of Relativity. 

 In this work we shall follow a different line of interpretation and assume that if one considers particles, 
and fields, as perturbations within a real medium filling flat space time, then the observed deviations of 
Newton’s law reflect the interactions of the associated perturbations (i.e. observed particles and fields) with 
the perturbed average background medium in flat space-time. In other terms we shall present the argument 
(already presented by Ghosh et al. [34]) that the small deviations of Newton’s laws reflect all known 
consequences of General Relativity 

 The result from real causal interactions between the perturbed local background aether and its apparently 
independent moving collective perturbations imply absolute total local momentum and angular momentum 
conservation resulting from the preceding description of vacuum elements as extended rigid structures. 

 
 
Figure 5 a) 2D drawing of a 3D view of a 4D hyperstructure. A Minkowski spacetime diagram of the electric vector 
only in terms of a present moment of 'tiled' Planck units utilizing the Wheeler-Feynman theory of radiation. The vertices 
represent absorption & emission. The observable present is represented by bold lines, and nonlocal components by 
standard line. Each event is a hyperstructure of Past, Present, and Future interactions, ultimately governed by the 
quantum potential. b) In the reference circle photon mass and energy fluctuate harmonically during propagation of the 
wave envelope (wave) and internal rotation of the ZPF during coupling (particle). 
 

                                                 
1 According to Newton massive bodies move in the vacuum, with constant directional velocities, i.e. no directional acceleration, 
without any apparent relative  friction » or  drag » term. This is not true for accelerated forces (the equality of inertial and gravitational 
masses are a mystery) and apparent absolute motions proposed by Newton were later contested by Mach. 



 
 
Figure 6 4D Minkowski light-cone of advanced and retarded waves (Eq. 1) emitted from a locus at (x,t) = (0,0).  
Adapted from concepts of  Cramer [21]. 
 

Retarded:         
2 2

1 0 2 0,ikx ift ikx iftF F e e F F e eπ π− − −= =            (1a) 

Advanced:        
2 2

3 0 4 0,ikx ift ikx iftF F e e F F e eπ π−= =           (1b) 

 As part of the symmetry breaking process the continuous-state spin-exchange compactification dynamics 
of the vacuum hyperstructure is shown to gives rise naturally to a 2.735 Ko degree 2 . 7 3 5K°Hawking type radiation 
from the topology of Planck scale (albeit a whole new consideration of how the Planck regime operates) 
micro -black hole hypersurfaces. All prior considerations of ‘tired-light mechanisms have been considered 
from the perspective of 4D Minkowski space [27]. This new process arises from a richer open (non-
compactified) Kaluza-Klein dimensional structure of a continuous-state cosmology in an M-Theory context 
with duality-mirror symmetry; also supporting the complex standing-wave postulate of the model. 

or to a lower state ( )k iLE E<  (CMBR-emission) according to the relation  j iL iH khv E E E E= − = − . 

Thus we postulate that boundary conditions inherent in continuous standing-wave spacetime spin exchange 
cavity compactification dynamics of vacuum topology also satisfy the requirements for photon emission. In 
metaphorical terms, periodic phases or modes in the continuous spacetime transformation occur where 
future-past exciplex2 states act as torque moments of CMBR/Redshift BB emission/absorption equilibrium. 
 In reviewing atomic theory Bohm, [34] states: 
 
                                                 
2 An exciplex (a form of excimer- short for excited dimer), usually chemistry nomenclature, used to describe an excited, transient, 
combined state, of two different atomic species (like XeCl) that dissociate back into the constituent atoms rather than reversion to some 
ground state after photon emission. An excimer is a short-lived dimeric  or heterodimeric molecule formed from two species, at least 
one of which is in an electronic excited state. Excimers are often diatomic and are formed between two atoms or molecules that would 
not bond if both were in the ground state. The lifetime of an excimer is very short, on the order of nanoseconds. Binding of a larger 
number of excited atoms form Rydberg matter clusters the lifetime of which can exceed many seconds. Exciplex An electronically 
excited complex of defin ite stoichiometry, ‘non-bonding’ in the ground state. For example, a complex formed by the interaction of an 
excited molecular entity with a ground state counterpart of a different structure. When if hits ground photon emitted Quasiparticle 
soliton 
 



Inside an atom, in a state of definite energy, the wave function is large only in a toroidal region 
surrounding the radius predicted by the Bohr orbit for that energy level. Of course the toroid is not 
sharply bounded, butψ  reaches maximum in this region and rapidly becomes negligible outside it. The 

next Bohr orbit would appear the same but would have a larger radius confining ψ  and propagated with 

wave vector /k hρ=  with the probability of finding a particle at a given region proportional 

to ( )
22 , , .f x y zψ =  Since f  is uniform in value over the toroid it is highly probable to find the 

particle where the Bohr orbit says it should be [34]. 
 

 
 

Figure 7 Geometric model for a spacetime C-QED black body Exciplex for red-shift-CMBR absorption-emission 
equilibrium dynamics. 
 
 

POSSIBILITY OF CAVITY QED EMISSION FROM CONTINUOUS 
SPACETIME COMPACTIFICATION 

 
It is also suggested that further development of the C-QED model of CMBR emission could be extended to 
include spontaneous emission from the continuous dimensional reduction process of compactification. This 
would follow from modeling spacetime cavity dynamics in a manner similar to that in atomic theory for 
Bohr orbitals. As well known photon emission results from electromagnetic dipole oscillations in boundary 
transitions of atomic Bohr orbitals. Bohr’s quantization of atomic energy levels is applied to the topology of 
Spacetime C-QED boundary conditions in accordance with equation (7.1) where spacetime QED cavities of 

energy, iE undergo continuous harmonic transition to a higher state, ( )j iHE E>  (redshift-absorption 

mode). 
 The general equations for a putative spacetime exciplex are: 

          

* * * * *

* * *

* * *

;

emission

G G Z Z m X

X m Z orG

X m Z or G

γ

γ

γ

+ ⇔ + ⇔

− →

+ →

          (38) 



where G is the ZPF ground, Z black body cavity excited states and X  the spacetime C-QED exciplex 
coupling. The numerous configurations plus the large variety of photon frequencies absorbed allow for a full 
black body absorption-emission equilibrium spectrum. We believe the spacetime exciplex model also has 
sufficient parameters to allow for the spontaneous emission of protons by a process similar to the 
photoelectric effect but from spacetime C-QED spallation rather than from metallic surfaces. 
 A torus is generated by rotating a circle about an extended line in its plane where the circles become a 

continuous ring. According to the equation for a torus, ( )
2

2 2 2 2x y R z r + − + =  
, where r is the 

radius of the rotating circle and R is the distance between the center of the circle and the axis of rotation. The 

volume of the torus is 2 22 Rrπ and the surface area is 24 ,Rrπ  in the above Cartesian formula the z axis is 

the axis of rotation. 
 Electron charged particle spherical domains fill the toroidal volume of the atomic orbit by their wave 
motion. If a photon of specific quanta is emitted while an electron is resident in an upper more excited Bohr 
orbit, the radius of the orbit drops back down to the next lower energy level decreasing the volume of the 
torus in the emission process.  
 We suggest that these toroidal orbital domains have properties similar to QED cavities and apply this 
structure to topological switching during dimensional reduction in the continuous state universe (HAM) 
model [27]. To summarize pertinent aspects of HAM cosmology:  
 
• Compactification did not occur immediately after a big bang singularity, but is a continuous process of 

dimensional reduction by topological switching in view of the Wheeler-Feynman absorber model where 
the present is continuously recreated out of the future-past. Singularities in the HAM are not point like, 
but dynamic wormhole like objects able to translate extension, time and energy. 

• The higher or compactified dimensions are not a subspace of our Minkowski 3(4)D reality, but our 
reality is a subspace of a higher 12D multiverse of three 3(4)D Minkowski spacetime packages. 

 
 During the spin-exchange process of dimensional reduction by topological switching two things 
pertinent to the discussion at hand: 
 
• There is a transmutation of dimensional form from extension to time to energy ; in a sense like 

squeezing out a sponge as the current Minkowski  spacetime package recedes into the past down to 
the Planck scale ; or like an accordion in terms of the future-past recreating the present. 

• A tension in this process (string tension, T0 in superstring theory)  allows only specific loci or 
pathways to the dimensional reduction  process during creation of the transient Planck scale domain. Even 
 though there are discrete aspects to this process it appears continuous  from the macroscopic level (like 
the film of a movie); the  dynamics of which are like a harmonic oscillator. 
 
 With the brief outline of HAM parameters in mind, the theory proposes that at specific modes in the 
periodicity of the Planck scale pinch effect, cavities of specific volume reminiscent of Bohr toroidal atomic 
orbits occur. It is proposed rather speculatively at present that these cavities, when energized by 
stochastically driven modes in the Dirac ether or during the torque moment of excess energy during the 
continuous compactification process, or a combination of the two as in standard C-QED theory of 
Rabi/Rydberg  spontaneous emission, microwave photons of the CMBR type could be emitted spontaneously 
from the vacuum during exciplex torque moments. This obviously suggests that Bohr atomic orbital state 
reduction is not the only process of photon emission; (or spacetime modes are more fundamental) but that 
the process is also possible within toroidal boundary conditions in spacetime itself when in a phase mode 
acting like an atomic volume. A conceptualization of a Planck scale cavity during photon emission is 
represented in figure 7.1c with nine dimensions suppressed. 
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