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Abstract

An elementary algebra of products of distributions is constructed. An
equivalent relation between products of distributions is given and a space
of generalised functions is constructed as a partition space of the ele-
mentary algebra with respect to the equivalent relation. The new space
of generalized functions is used to prove interesting equalities involving
products among elements of D’. A way of multiplying the defined gener-
alised functions with polynomials is also derived.
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1 Introduction

Products of distributions are quite common in several fields of both mathematics
and physics. Examples arise naturally in quantum field theory, gravitation and
in partial differential equation (e.g shock wave solutions in hydrodynamics) see
[1]. An important issue, related to product of distributions, is the fact that the
product, in the general case, is not well defined in D′. This issue is known as
the Schwartz impossibility result (see [1] §1.3). In the Schwartz classical theory,
only the product between a smooth function and a distribution is well defined.
Historically, products of distributions are addressed by means of algebras of
generalised functions developed initially by J. F. Colombeau (see [1] and [2]). In
this paper we will propose a new approach for defining products of distributions.

In paragraphs 2 and 3, we construct a new space of generalised functions.
In paragraphs 4, we use the new developed theory to derive interesting equal-
ities involving products among elements of D’. In paragraphs 5, we derive a
method for multiplying the generalised functions, defined in this paper, with
polynomials.

Preliminary Definitions. Let g ∈ C∞(R) be any function, we say that g is a
function of order p ≥ 0 if:

0 <

∣∣∣∣∫ +∞

−∞
xpg(x)dx

∣∣∣∣ < +∞ (1)

We say that a function g is of order p < 0 if, for each k ∈ N, g(|p|+k) is a function
of order k according to the definition given above.
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Given any function g ∈ C∞, with the notation g(p), where p ∈ Z, we refer
to the derivatives of order p of g for p ≥ 0 and to the function defined by the
following recursive formula:

g(p−1) =

∫ x

−∞
g(p)(τ)dτ (2)

for p < 0.

2 An algebra of generalised functions

Definition 1. Let f : R → R be any function such that f ∈ C∞(R), f(x) ≥ 0

for each x ∈ R and
∫ +∞
−∞ f(x)dx = 1. We define Fη to be the vector space of

infinite dimension spanned by the elements:

ηq,p
xkf(p1)·...·f(pm) (3)

where the elements ηq,p
xkf(p1)·...·f(pm) are the sequences Sn(x) = nqg(nx) where:

• q ∈ Z

• p1, · · · , pm ∈ Z

• k ∈ N ∪ {0}

• g(x) = xkf (p1)(x) · . . . · f (pm)(x)

• p is the order of g(x)

and where the operation + and the multiplication by a scalar are the usual ones
for series.

We will call the above defined elements and their linear combinations η func-
tions. Note that the p in the above notation is redundant since the information
on the order of the function g is already given by the function g itself (i.e by
the integers m and pi) and it is independent from f . The p may therefore be
omitted in the notation.

Definition 2. We define the following operation on the elements ηq,pg introduced
above:

1) ηq1g1 · η
q2
g2 = ηq1+q2,g1g2

2) d
dxη

q
g = ηq+1

g′ derivative term by terms on the sequence
(4)

Note that the operations (· ,+) defined above are commutative, associative
and that the product is distributive with respect of the sum. Note finally that
the above definition of derivative of an η function is compliant with the Leibniz
rule.
It is easy to see that Fη, with the operations (·,+), is an associative and deriva-
tive algebra (with the definition of derivative given above).
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The elements of the set Fη are dependent from the function f of definition
1, however the structure of Fη is not. So we may see the Fη set as the sets of all
possible forms of their elements when we make f vary in C∞ or, which is the
same we may, see Fη the structure of the vector space wich is independent from
f .

We want to show now that it is possible to map a subset of elements of Fη
to a subset of elements of D′. Given η = (ηq1g1 + · · ·+ ηqmgm) ∈ Fη, we define the
following linear transformation:

T : η ∈ Fη → h ∈ D′ ⇐⇒ h = lim
n→∞

nq1g1(nx) + · · ·+ nqmgm(nx) (5)

where T is defined provided that the above limit exists in D′. Moreover, it is
easy to see that, if the limit exists, it is independent from the function f of
definition 1. For example we have:

T (η1f + η2
f ′

) = δ + δ
′
∈ D′ (6)

Given the transformation T defined above, we want to identify some elements of
Fη with some elements of D′ (the ones for which T converges with n). Moreover
we want to identify all elements of Fη with linear combinations of products of
δ(p) with p ∈ Z, whatever they are (to us they are just elements of Fη), even if
T does not converge. We will use the symbol � for the above identification and
we will perform this identification in the obvious way. For example we have:

η1f + η2
f ′

� δ + δ
′

η3
ff ′

+ η5f ′ f ′′ � δδ
′
+ δ

′
δ
′′

η1
f(−1)f

� u(x)δ(x) u(x) being the Heaviside function

(7)

where the coefficient q of the η functions are evaluated by using the definition
of product given above.

Once we have identified elements of D′ with elements of Fη (or Gη), we will
use sometimes the notation = instead of � to refer to this identification. So,
for example, we may write δ = η1f ∈ Gη or δδ′ = η3ff ′ ∈ Gη although the symbol
� should be used instead.

We introduce now a new terminology we will use later in the paper. Given
an η function ηq,pg , we will call g(x) the generating function, q the growing
index and p the order of η. Moreover, we will call the elements of Fη,which are
sequences, the generating sequence of the relevant η function. Note that, even
thought the generating sequence of a specific η function does not converge with
n, this is not a problem for us since we are not interested in its limit but rather
in the sequence itself.

We define the following equivalence relation between elements of Fη:

Definition 3. Given the two elements η1 and η2 of Fη with equal growing
indexes q and equal orders p and with generating sequences Sn(x) and Rn(x)
we say that the two η functions are two representative of the same element of
Fη if, given any test function φ ∈ D, we have:

lim
n→∞

∫ +∞
−∞ Sn(x)φ(x)dx∫ +∞
−∞ Rn(x)φ(x)dx

= 1 (8)
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and if the above limit is independent from φ and from the function f of definition
1. In this case we use the notation η1 ≈ η2

Note that, by using the expression representatives of the same element of Fη,
we are using a terminology similar to the one used in the Colombeau algebras.
Although we are facing a similar situation, the theory developed in this paper is
rather different with respect of the Colombeau algebras, and therefore identical
terms do not imply identical meanings in the two theories.

Note finally that, in this case, the criteria given by the above definition is
used on the elements of Fη but it is quite a general criteria which can be used
to tell if two generalised functions are equivalent.

Example 2.1. Given η1, η2 ∈ Fη, with η1 = δ2(x) and η2 = u(x)δ′(x), we have:

lim
n→∞

∫ +∞
−∞ n2f2(nx)φ(x)dx∫ +∞

−∞ n2f (−1)(nx)f ′(nx)φ(x)dx
= lim

n→∞

n
∫ +∞
−∞ nf2(nx)φ(x)dx

n
∫ +∞
−∞ nf (−1)(nx)f ′(nx)φ(x)dx

=

∫ +∞
−∞ f2(x)dx∫ +∞

−∞ f (−1)(x)f ′(x)

φ(0)

φ(0)
(9)

=

∫ +∞
−∞ f2(x)dx∫ +∞

−∞ f (−1)(x)f ′(x)
= −1

which is independent from f as it is easy to show by integrating by parts∫ +∞
−∞ f2(x)dx and using the fact that f vanishes for f that goes to infinity.

We conclude that δ2(x) ≈ −u(x)δ′(x).

Definition 4. We define Gη to be the set of partitions of Fη with respect of the
equivalence relation given by definition 3.

The set Gη is not an algebra. The set Gη can be effectively seen as a set of
generalised function for witch an associative and commutative product is well
defined and with a definition of derivative (see definition 2) that is compliant
with the Leibniz rule and that gives the right answer when applied to elements
of Gη that can be mapped to elements of D′.

Before we finish this paragraphs, we give below some examples of η func-
tions. The η functions given below are only examples since, for each element
nqg(x), there are infinitely many number of elements of Fη that are the same
representative of the element reported in the table below as well as infinitely
many elements which are not.
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ηq,p p=-1 p=0 p=1 p=2 p=3

q=5 · · · · · · · · · · · ·

q=4 · · · d
dx (δ3(x)) d2

dx2 (δ2(x)) · · ·

q=3 δ3(x) d
dx (δ2(x)) δ′′(x)

q=2 · · · δ2(x) δ′(x)

q=1 (δ2(x))(−1) δ(x)

q=0 u(x)

Figure 1 : Examples of η functions

Where, for example, the element d
dx (δ2(x)) has to be read as 2δ(x)δ′(x) ∈ Fη

and so on.

3 Structure of a generalised function

We have seen in the previous paragraph that the simplest element h = ηqg(x) ∈
Gη can be defined by means of its generating function Sn of the type:

Sn(x) = nqg(nx) (10)

which most of the times does not converge in D′. We want so determine the
structure of such a generalised function. Before we proceed, we need to give a
couple of definitions which will be used later on:

Definition 5. We define S(R) to be the set of all the functions f(x) having the
following characteristics.

1) f(x) ∈ C∞
2) limx→−∞ f(x)xk = 0 for any k ∈ N
3) limx→+∞ f(x)xk = 0 for any k ∈ N

(11)

This functions are known in literature as rapidly decreasing functions on R.

Definition 6. Given any function ξ(x) ∈ S(R) then, if ξ(x) verifies the follow-
ing conditions:∫ +∞

−∞
ξ(x)xkdx =

{
1 for k = 0
0 for 0 < k ≤ s with s ∈ N (12)

then we call ξ a main generating function of order 0. We also call its derivatives
ξ(p) with p ∈ N and p < s a main generating function of order p. Finally, for
each s, we define As to be the set of ξ function relevant to s.
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For more details on the As sets, see [1] §8.2. In most cases, we will assume
that s is large enough for our purpose (i.e. given ξ(p) the main generating
function of higher order, we are working with, we have p < s) and we will not
explicitly mention it in our discussion.

Let us see how to determine all the components, of different order, of a
generalised function defined by means of the (10) and having generating function
f(x). We will suppose, for the moment, that it is possible to find a function
ξ(x) ∈ As such that it is possible to express the generating function f as follows:

g(x) =

s∑
p=0

apξ
(p) + r(x) (13)

where r(x) is a function having all momenta, of order lower then s, equal to 0.
We will see, further on, that the above ξ function exists. By multiplying the
right hand side of the above equation by xp, integrating by parts p times and
taking into account that ξ(x) vanishes at infinity, we find easily that:

ap =
(−1)p

p!

∫ +∞

−∞
f(x)xpdx (14)

and therefore the ap coefficients are related to the momenta of f . The (14)
allow us to evaluate the coefficient ap of all the components of order lower then
s. However, neither a dependency from s nor a dependency from ξ ∈ As is
explicitly present in the above equations and therefore we can use it to evaluate
components of any order just assuming s is big enough.

As mentioned above, we need to justify our assumption that it is possible
to find a ξ ∈ As such that we can write f as in the (13). This can be done
by giving a constructive algorithm to evaluate the required ξ, Given f and the
ap, if we evaluate f1 = f/a0, we have a function with the same base function ξ
and with first momentum equal to 1. We evaluate the a1p coefficient of f1. We
evaluate f2 = f1 − a11f ′1 and we get a function with the same base function ξ,
with first momentum equal to 1 and second momentum equal to 0. Iterating
the process s times we get eventually our required ξ function in As.

Now, given the (13), it is easy to see the distribution h associated to the
sequence (10), it is actually the sum of infinite components in F of same growing
index q and increasing order p as follows:

h� nqg(nx) = nq
s∑
p=0

apξ
p(nx) + nqr(nx) (15)

We will call this kind of generating functions homogeneous. We note that ap,
although not explicitly noted, refer and depend from the function ξ.

Since ap do not depend on s, we may say that the above generalised function
h is composed of infinite components which are η functions of same growing
index and increasing order and, whereas we are interested in the component of
order p, we can evaluate it by choosing a ξ function in As with s > p. In a few
words, h can be expressed as:

h� nq
s∑
p=0

ηq,p
ξ(p)

+R(ηq,s) (16)
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Where, with the notation R (ηq,s) we mean that, to have the above equality
exact, we need to add an infinity number of η components of growing index q
and order p ≥ s. The (16) is what we call the structure of a generalised function
(compare with [4]).

We show now an important fact about the coefficient ap of the (14). Let
ξ ∈ As be any main generating function of order 0 and h ∈ Gη the related
generalised function of growing index q. We have:

h� ap(ξ)n
qξ(p)(nx) (17)

If we choose ξα = αξ(αx), as a different generating function of order 0, we have:

hα � ap(ξα)nqαp+1ξ(p)(nαx) (18)

If the (17) and (18) are the same generalised function (i.e. h = hα) then we can
write:

ap(ξ)n
qξ(p)(nx) ≡ ap(ξα)

αq−p−1
(nα)qξ(p)(nαx) (19)

but, at the same time, we have:

nqξ(p)(nx) ≡ (nα)qξ(p)(nαx) (20)

because the left and the right side of the (20) are the same function growing
and shrinking at the same rate with n, and therefore can be associated to the
same generalised function ηq,pξ . For example, if α is an integer, the sequence on
the right hand side of the equation is a sub-sequence of the one on the left hand
side. We conclude that:

ap(ξα) = αq−p−1ap(ξ) ⇒ h = hα (21)

Note that if p = q − 1 then, as expected, the ap coefficients are independent
from ξ.

The key point here is that, even though the coefficients ap of two separate
generalised functions are different, this does not necessarily imply that the two
generalised functions are different. From the (21) above we see that the coef-
ficient ap depends from the base function ξ and therefore from the generation
function f . For Example, if we change the scaling factor of f by using a different
function αf(αx), the coefficients ap will change accordingly.

We are now ready for the following definition:

Definition 7. Given two homogeneous generalised functions h1, h2, with same
growing index and defined by means of generating function having the same base
function ξ, then if it is possible to find an integer k such that:{

ap(h1) = ap(h2) for p = k
ap(h1) = ap(h2) = 0 for p < k

(22)

we say that h1 and h2 are representatives of the same generalised function and
we use the notation h1 ≈ h2. Moreover, if:

ap(h1) = ap(h2) for each p (23)

7



then we say that the two generating function are equal and we use the notation
h1 = h2.

Note that the criteria given by the above definition is equivalent to the
Criteria given by the (8).

We have seen above that the ap coefficients depend on the underlying f func-
tion of definition 1. We will call the ap relative coefficients. We may want to
express the structure of a distributions by means of bp coefficients which are in-
dependent from the function f. In this case we would have bp which are absolute
coefficients. Such bp coefficients exists at least for the first lower order compo-
nent of our generalised function h and they can bean be evaluated by taking the
ratio ap(h)/ap(hr) where hr is a reference function, for all generalised function
which are proportional to the same representative of h (i.e. proportional to
the same element of Gη defined in the above paragraph). If h � nqg(nx) and
hr � nqgr(nx) We have:

bp =
ap(g(x))

ap(gr(x)
=

∫ +∞
−∞ xpg(x)∫ +∞
−∞ xpgr(x)

(24)

which is equivalent to the (8), and

ηq,pg = bpη
q,p
gr (25)

If we express the generalised function in terms of the bp coefficients then we
have a representation which is independent from f . In this case we can express
the structure of our generalised function as follows:

h =

l∑
p=0

bpη̂
p.q +R(ηl+1,q)

where the hat on the η means that we are using η functions that have, a part
from the component of order p, components of order lower than l + 1 that
vanish. With the equation above we have given the way to evaluate the first
bp non vanishing component of h. We will see with an example, in the next
paragraph, that in addition to the lower vanishing components, we are able to
evaluate at most the first two bp 6= 0 coefficients (i.e. at most the first two
components are independent from f).

It is worth here to point out explicitly that The above theory is also appli-
cable to generalised functions of order p < 0. In this case, however, we need to
extend the definition of the ap to generating function of negative order. Given
any function g ∈ C0 and an integer p < 0 we define the relevant ap coefficient
of g as follows:

ap =

∫ +∞

−∞
g(|p|)dx (26)

For example, for the Heaviside function u(x), if we use the generating func-
tion f (−1) with growing index q = 0, the above defined product keeps working.
For example, we have proven in [4] that:

g(u(x))δ(x) =

(∫ 1

0

g(x)dx

)
δ(x) (27)
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Now, for g = xk and k ∈ N, the above statement is a particular case of (24).
Since for the Heaviside function u(x) we have generating functions f (−1) and

growing index q = 0, we may say that:

u(x) = η0,−1
f(−1) = δ(−1) (28)

4 Equalities and examples of products in D’

By using the above defined product, we can prove interesting equalities involving
products among elements of D′. We will see some examples in this paragraph.

Example 6.1: Evaluate the following product:

u(x)δ′(x) (29)

Before we start we need to choose the function f of definition 1. Although the
theory has been developed with f ∈ C∞, for practical calculations we need a
much less smooth function. In this example we need just C1 class functions, we
choose the most simple one which is a triangular window centred in the origin
with base 2 and hight 1:

f(x) = (x+ 1)u(x+ 1)− 2xu(x) + (x− 1)u(x− 1) (30)

we have q = q1 + q2 = 2 and g(x) = f (−1)(x)f (1)(x) and therefore:

u(x)δ′(x) � n2 f (−1)(nx)f (1)(nx) (31)

We can now evaluate all the coefficients of the structure of our generalised
function:

b0 =
∫ +∞
−∞ g(x)dx∫ +∞
−∞ f2(x)dx

=
− 2

3
2
3

= −1 coeff. of η2,0 = δ2

b1 = a1 =
∫ +∞
−∞ xg(x)dx = 1

2 coeff. of η2,1 = δ′

(32)

where b1 = a1 because for p = 1, p + 1 = q and therefore, given the (21), the
coefficient a1 is independent from f . We have:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) +R

(
η2,2

)
(33)

We may also express u(x)δ′(x) as an equality among products of elements of D′

(compare with [3]), by ignoring the higher order terms:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) (34)

There is a second way to get to the same result. By using (24) we evaluate the
the product of u(x)δ(x). We have:

u(x)δ(x) � n f (−1)(nx)f(nx)→ q = 1 (35)

From which we have:

u(x)δ(x) =
1

2
δ(x) +R

(
η1,1

)
(36)
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We use the Leibniz rule, which we know to work with our definition of product.
By taking the derivatives of both sides of the above equality we have:

δ2(x) + u(x)δ′(x) =
1

2
δ′(x) +R

(
η2,2

)
(37)

as expected.
Finally, there is a third way to get to the same result. First we use the (14) for
u(x)δ′(x). We apply it to g = f(x)(−1)f(x)(1) with q = 2:

ap =
(−1)p

p!

∫ +∞

−∞
g(x)xpdx =


1
p!

(
1
p+3 −

2
p+2

)
for p even

1
p!

1
p+1 for p odd

(38)

and therefore, taking into account that η2,1 = δ′:

u(x)δ′(x) = −2

3
η2,0ξ1 +

1

2
δ′(x)− 3

20
η2,2
ξ
′′
1

+R
(
η2,3

)
(39)

The ap coefficients above refer to a ξ1 base function of g which is unknown.
Then we use the (14) for δ2(x). We apply it to g = f2(x) with q = 2:

ap =
(−1)p

p!

∫ +∞

−∞
f2(x)xpdx =


2
p!

(
1
p+3 −

2
p+2 + 1

p+1

)
for p even

0 for p odd

(40)

and therefore:

δ2(x) =
2

3
η2,0ξ2 +

17

60
η2,2
ξ
′′
2

+R
(
η2,4

)
(41)

The ap coefficients above refer to a ξ2 base function of f2(x) which is unknown.
To compare the (39) and the (41) we should transform the two expressions in

the bp notation which is independent from the function f . However, D(f2(x)) =
2f(x)f ′(x) and therefore is easy to see that ξ1 = ξ2 and the ap notations of the
two generalised functions above are comparable each other. We conclude that
we can add and subtract them in the ap notation. By adding them we have:

u(x)δ′(x) + δ2(x) =
1

2
δ′(x) +R

(
η2,2

)
(42)

as expected.

Example 6.2: Evaluate the following product:

u(x)δ
′′
(x) (43)

Before we start we need to choose the function f of definition 1. In this example
we need a C2 class functions, we choose the following function:

f(x) =
3

2

(
(x+ 1)2u(x+ 1)− 4xu(x)− (x− 1)2u(x− 1)

)
(44)

We have q = q1 + q2 = 3 and g(x) = f (−1)(x)f (2)(x). and therefore:

u(x)δ
′′
(x) � n3 f (−1)(nx)f (2)(nx) (45)
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We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ g(x)dx = 0 coeff. of η3,0 = δ3

b1 =
∫ +∞
−∞ xg(x)dx∫ +∞

−∞ x d
dx f

2(x)dx
= − 3

2 coeff. of η3,1 = (δ′)2

b2 = a2 =
∫ +∞
−∞ g(x)x2dx = 1

2 coeff. of η3,2 = δ
′′

(46)

where b2 = a2 because for p = 2, p + 1 = q and therefore, given the (21), the
coefficient a2 is independent from f . We have:

u(x)δ
′′
(x) = −3

2
η3,1(f2)′ +

1

2
δ
′′

+R
(
η3,3

)
(47)

We see that u(x)δ
′′
(x) /∈ D′ since its component δ

′′
is negligible with respect of

η3,1(f2)′ and therefore u(x)δ
′′
(x) ≈ − 3

2η
3,1
(f2)′ .

Example 6.3: Evaluate the following product:

δ(x)δ′(x) (48)

Before we start we need to choose the function f of definition 1. In this example
we need just C1 class functions, we choose once again the (30) of the previous
example.
We have q = q1 + q2 = 3 and g(x) = f(x)f (1)(x). and therefore:

δ(x)δ′(x) � n3 f(nx)f (1)(nx) (49)

We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ g(x)dx = 0 coeff. of η3,0 = δ3

b1 =
∫ +∞
−∞ g(x)xdx∫ +∞

−∞
d
dx f

2(x)xdx
= 1

2 coeff. of η3,1 = (δ2)′

a2 =
∫ +∞
−∞ g(x)x2dx = 0 coeff. of η3,2 = δ

′′

(50)

we have:

δ(x)δ′(x) =
1

2
η3,1(f2)′ +R

(
η3,3

)
(51)

Once again, there is a second way to get the same result. By taking twice the
derivative of both sides of the (36), and rearranging the terms we get:

δ(x)δ′(x) = −1

3
u(x)δ

′′
(x) +

1

6
δ
′′
(x) +R

(
η3,3

)
(52)

We see easily that, taking into account the (47), the (51) and the (52) are in
perfect agreement.
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Example 6.4: Evaluate the following product:

sign2(x)δ(x) (53)

We have:
sign2(x)δ(x) � n (2f (−1)(nx)− 1)2f(nx)→ q = 1 (54)

which is actually the sum of three products one of which is trivial. We have:

sign2(x)δ(x) =
1

3
δ(x) +R

(
η1,1

)
(55)

compare with [2] §1.1 ex. iii and with [4].

5 Products with polynomials

Now we want to extend our product of distributions to products involving poly-
nomial and therefore product with any function that can be expanded in a
Taylor series.

We note that xk with k ∈ N can be expressed as the limit of the following
sequence of functions:

xk = lim
n→∞

n−k(nx)k (56)

and therefore, it is the limit of a sequence of functions of the kind (10) with
generating function g = xk and growing index q = −k.

From the above limit, we see immediately that the product of a generalised
function with a monomial of degree k, lowers the growing index of the generalised
function by k. Given the generalised function h defined by the (10), then we
have that xkh can be associated to the following sequence:

xkh� nq−kxkg(x) (57)

Let us see what happens, to the order and the amplitude of a generalised
function, when we multiply it by x. The generalization to multiplication by xk

is trivial.
For p > 0, from the (14) is possible to show that given any ξ

(p)
1 ∈ Ap we

have:

ap−1

(
ξ(p−1)(x)

)
= ap

(
−x
p
ξ(p)(x)

)
for p > 0 (58)

From which we see clearly that the product of a generalised function of order p,
with x, lower the order of the generalised function by 1. To sum up, we have:

ηq−1,p−1 = −x
p
ηq,p for p > 0 (59)

and in particular:

δ(p−1) = −x
p
δ(p) for p > 0 (60)

which is a well known result in literature (compare with [3]).
For p = 0, the situation is a bit more complex. It is possible to show that:

a1

(
ξ(1)(x)

)
= a0

(
−x ξ(0)(x)

)
(61)
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From with we have:
ηq−1,1 = −x ηq,0 (62)

and in particular:
η0,1 = −xδ(x) (63)

we see that the order p = 0 cannot be further lowered by multiplying by x. If
we keep multiplying a generalised function of order 0 with x, the growing index
keep decreasing but the order toggles between 0 and 1.

For p < 0 the situation is even more complex since by multiplying an η
function of order lower then 0 with x, we do not even get a η function any more.
We will develop this part in a further issue of this paper.
We can now define some more examples of reference functions to be used for
performing our multiplications:

ηq,p p=-1 p=0 p=1 p=2 p=3

q=2 δ2(x) δ′(x) −(xδ2(x))′ −(xδ(x))′′

q=1 δ(x) −xδ2(x) −(xδ(x))′ · · ·

q=0 u(x) −(xδ2(x))(−1) −xδ(x) −(x3δ2(x))′ · · ·

q=-1 −(xδ2(x))(−2) −(xδ(x))(−1) −x3δ2(x) −(x3δ(x))′

q=-2 −(xδ(x))(−2) −(x3δ2(x))(−1) −x3δ(x) · · ·

q=-3 · · · · · · · · ·
Figure 2 : Examples of η functions for q − p ≤ 1

Example 7.1: Evaluate the following product:

x2δ2(x) (64)

We use (24). Once again we need to choose the function f and once again we
choose the (30) of the previous examples.
If q1 = 2 is the growing index of δ2(x), we have q = q1 − 2 = 0 and g(x) =
x2f2(x). and therefore:

x2δ2(x) = lim
n→∞

x2f2(nx) (65)

We can now evaluate the first coefficient of the structure of our generalised
function:

b0 =

∫ +∞
−∞ g(x)dx∫ +∞

−∞ −(xf2(x))(−1)dx
= 1coeff. of η0,0 = −(xδ2(x))(−1) (66)

13



which is independent from f . We have:

x2δ(x) = −(xδ2(x))(−1) +R
(
η1,0

)
(67)

So, by choosing x2δ2(x) as a reference function for η0,0, we would get the same
result.

We will use now the theory developed above to discuss a well known example
in the theory of product of distributions (compare with [2] §1.1 ex. i).

Example 7.2: If vp 1
x is the Cauchy principal value of 1

x then we have:

0 = (δ(x) · x) · vp 1

x
= δ(x) ·

(
x · vp 1

x

)
= δ(x) (68)

which is absurd.
By using our theory we know that xδ(x) = −η1,0 6= 0. We have:

0 = (x · δ(x) + η1,0) · 1

x
= δ(x) +

1

x
η1,0 = δ(x)− δ(x) (69)

a results that now makes sense.

6 η functions Vs Colombeau algebras

The Colombeau algebras are a beautiful theory as well as very general since, in
this algebras, C∞ and D′ are automatically embedded. However, working with
the Colombeau algebras is, most of the times, very difficult. The η function
are much less general but they have the great advantage to be very convenient
for practical calculations. We believe that, once the η functions are properly
formalised, most of the problems that can be addressed by means of Colombeau
algebras, can also be addressed by means of the η functions. Moreover, the
η functions can be used also to perform calculations with products of delta
functions and polynomials. In the Colombian algebras this kind of products
(e.g. xδ) falls in the category of the null functions and therefore are removed
from the theory. We note finally that the set Gη is not an algebras and this
make the Colombeau algebras and the η functions very different. We believe
that this difference will possibly make the η functions suitable fro solving some
of the problem related to the Colombeau algebras and that have lead to the
definition of many difference variants of them.
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