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Abstract

A new space of generalised functions extending the space D’, together
with a well defined product, is constructed. The new space of generalized
functions is used to prove interesting equalities involving products among
elements of D’. A way of multiplying the defined generalised functions
with polynomials is also derived.
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1 Introduction

Products of distributions are quite common in several fields of both mathematics
and physics. Examples arise naturally in quantum field theory, gravitation and
in partial differential equation (e.g shock wave solutions in hydrodynamics) see
[1]. An important issue, related to product of distributions, is the fact that the
product, in the general case, is not well defined in D′. This issue is known as
the Schwartz impossibility result (see [1] §1.3). In the Schwartz classical theory,
only the product between a smooth function and a distribution is well defined.
Historically, products of distributions are addressed by means of algebras of
generalised functions developed initially by J. F. Colombeau (see [1] and [2]).
In this paper we will propose a new approach to define products of distributions.

In paragraphs from 2 to 4, we construct a new space of generalised functions,
extending the space D’. In paragraph 5, we define a products in the above men-
tioned space of generalised functions. In paragraphs 6, we use the new developed
theory to derive interesting equalities involving products among elements of D’.
In paragraphs 7, we derive a method for multiplying the generalised functions
defined in this paper with polynomials.

2 New generalised functions

In this paragraph we will define a new class of generalized functions. Generalised
functions can be defined by means of the limit of sequences of functions fn(x).
In this paper we will deal only with generalised functions defined by means of
the limit of a sequence of the form:

h = lim
n→∞

nqf(nx) (1)
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Note that the above sequences are not the most general way to define distribu-
tions. For example, there is no sequence of the form (1) converging to δ + δ′.
We will call f(x) the generating function, nqf(nx) the generating sequence and
q the growing index of the generalised function defined by the (1). Moreover,
given any function f ∈ C(0), we say that f is a function of order p ≥ 0 if:

0 <

∣∣∣∣∫ +∞

−∞
xpf(x)dx

∣∣∣∣ < +∞ (2)

Given any function f , with the notation f (p), where p ∈ Z, we refer to the
derivatives of order p of f , for p ≥ 0, and the function defined by the following
recursive formula:

f (p−1) =

∫ x

−∞
f (p)(τ)dτ (3)

for p ≤ 0.

Definition 1. Let f(x) ∈ C(p) be any function such that
∫ +∞
−∞ f(x)dx = 1. We

define the generalised functions ηp,q to be the following limit:

ηp,q(x) = lim
n→∞

nqf (p)(nx) with p, q ∈ Z (4)

What kind of generalised function are the ηp,q? If the sequence of distributions
fn = nqf (p)(nx), in the (4), converges to ηp,q, then fn

nq−p−1 converges to δ(p).
So, with an abuse of notation, we may say that:

ηp,q = A
δ(p)

np−q+1
with A depending on f (5)

The ηp,q are therefore the limit of sequences of functions that are shaped like δ(p)

and that, when we take the limit, grow at a lower or faster rate with respect to
it(according to the sign of p-q+1). We will call Aδ(p) the core of our generalised
function.

Most of the work developed in this paper deals with generalised function
having order p ≥ 0. However, all the content of this paper can be generalised
to the case p < 0. This is the reason why in definition 1 we have given the most
general definition.

We are now ready to define our new space of generalised functions.

Definition 2. We define Gη to be the space of generalised functions which
elements are the limits of sequences of the type (4), or a linear combinations of
them.

Before we proceed, we need to give a couple of definitions which will be
intensively used later on:

Definition 3. We define F to be the set of all the function f(x) having the
following characteristics.

1) f(x) ∈ C(∞)

2) limx→−∞ f(x)xk = 0 for any k ∈ N
3) limx→+∞ f(x)xk = 0 for any k ∈ N

(6)
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Definition 4. Given any ξ(x) ∈ F then, if ξ(x) verifies the following conditions:∫ +∞

−∞
ξ(x)xkdx =

{
1 for k = 0
0 for 0 < k ≤ s with s ∈ N (7)

then we call ξ a main generating function of order 0. We also call its derivatives
ξ(p) with p ∈ N and p < s a main generating function of order p. Finally, for
each s, we define Xs the set of all its relevant ξ(p).

For more details on the Xs sets, see [1] §8.2. In most cases, we will assume
that s is large enough for our purpose (i.e. given ξ(p) the main generating
function of higher order we we working with, we have p < s) and we will not
explicitly mention it in our discussion.

Figure 1: Plot of a ξ(0) ∈ X8

3 Structure of a generalised function

Let us see how to determine all the core components, of different order, of a
generalised function defined by means of the (1) and having generating function
f(x). We will suppose, for the moment, that it is possible to find a function
ξ(x) ∈ Xs such that it is possible to express the generating function f as follows:

f(x) =

s∑
p=0

apξ
(p) + r(x) (8)

where r(x) is a function having all momenta, of order lower then s, equal to 0.
We will see, further on, that this turns out to be true. First of all, we note that
all the components of the distribution (1) have the same growing index q. We
will call this kind of generating functions homogeneous. We have:

h = lim
n→∞

nqf(nx) =

s∑
p=0

ap
δ(p)

np−q+1
+ hr (9)
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where the ap, although not explicitly noted, refer and depend from the function
ξ. We note explicitly that, if q ≥ 1, h always contains one (and only one)
distribution ηq−1,q(x) = apδ

(q−1)(x) ∈ D′.
For the distribution defined by the (9), we can determine the ap coefficients

by applying the Schwartz theory of distribution to our sequence of functions
divided by nq−p−1. Let φ ∈ D be a test function and given p, we have:

h− hr
nq−p−1

= lim
n→∞

∫ +∞

−∞
np+1f(nx)φ(x)dx = lim

n→∞

s∑
k=0

(−1)kak
φ(k)(0)

nk−p
(10)

In the right side of the above equation we have two problems which make difficult
to evaluate the ak. The coefficients ak are mixed up by the summation on k
and, given a generic φ, this test function may pick up in the same coefficient
ak components related to different ξ(p). To better evaluate all ap we decide to
use, as a test function, xp. In this way we solve both problems mentioned above
since xp has all derivatives of order i equal to 0 for i 6= p (so the summation will
not mix various ak terms) and xp will filter out all components ξ(i) with i 6= p.
Of course a test function should vanish outside a compact interval (compact
support) and xp does not. However, the above requirement is needed to ensure
integrability which in our case is ensured by the fact that f ∈ F . So the fact
that xi has not compact support it is not a problem. We have:

lim
n→∞

∫ +∞

−∞
np+1f(nx)xpdx = (−1)p ap p! (11)

where p! is the value of the pth derivatives of xp. From the (11) we can easily
evaluate the ap as follows:

ap = lim
n→∞

(−1)p

p!

∫ +∞

−∞
np+1f(nx)xpdx

= lim
n→∞

(−1)p

p!

∫ +∞

−∞
n f(nx)(nx)pdx (12)

We note that the right part of the (12), for n that goes to infinity, in the (x, y)
plane, shrinks (along x) and grows (along y) like n, which leaves the integral
unchanged. For the above reason, the limit of the (12) is simply the value of
the integrals for any n. We may as well evaluate it for n=1. We have:

ap =
(−1)p

p!

∫ +∞

−∞
f(x)xpdx (13)

and therefore the ap coefficients are related to the momenta of f .
The (13) allow us to evaluate the coefficient ap of all the core components

of order lower then s. However, neither a dependency from s nor a dependency
from ξ ∈ Xs is explicitly present in the above equations and therefore we can
use it to evaluate core components of any order just assuming s is big enough.
As a matter of fact, the (13) can be used to evaluate all the infinite components
of a generalised function.

So a generalised function can be expressed as:

h = lim
n→∞

nqf(nx) =

∞∑
p=0

ap
δ(p)

np−q+1
(14)
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This is what we call the structure of a generalised function.
When we use the δ(p)/nk notation to give the structure of a generalised

function, as we did in the (14), this structure is depending from the underling
ξ base function and therefore from the generating function f . In the next
paragraph we will se how to give the structure of a distribution in a form which
is independent from f .

As mentioned above, we need to justify our assumption that it is possible to
find a ξ ∈ Xs such that we can write f as in the (8). This can be done by giving
a constructive algorithm to evaluate the required ξ, Given f and the ap, if we
evaluate f1 = f/a0, we have a function with the same base function ξ and with
first momentum equal to 1. We evaluate the a1p coefficient of f1. We evaluate
f2 = f1 − a11f ′1 and we get a function with the same base function ξ, with first
momentum equal to 1 and second momentum equal to 0. Iterating the process
s times we get eventually our required ξ function in Xs.

4 Additional remarks on the ap coefficients

We show now an important fact about the coefficient ap of the (13). Let ξ ∈ Xs

be any main generating function of order 0 and h ∈ Gη the related generalised
function of growing index q. We have:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = h = ap(ξ)

δ(p)

np−q+1
(15)

If we choose ξα = αξ(αx), as a different generating function of order 0, we have:

lim
n→∞

ap(ξα)nqαp+1ξ(p)(nαx) = hα = ap(ξα)
δ(p)

np−q+1
(16)

If the (15) and (16) are the same generalised function (i.e. h = hα) then we can
write:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = lim

n→∞

ap(ξα)

αq−p−1
(nα)qξ(p)(nαx) (17)

and, for the above equation to be true, we need:

lim
n→∞

nqξ(p)(nx) = ηp,qξ = lim
n→∞

(nα)qξ(p)(nαx) (18)

this is actually true because the left and the right side limit of the (18) are the
same function growing and shrinking at the same rate with n, and therefore
converge to the same generalised function ηp,qξ . For example, if α is an integer,
the sequence on the right hand side of the equation is a sub-sequence of the one
on the left hand side. We conclude that:

ap(ξα) = αq−p−1ap(ξ) (19)

Note that if p = q − 1 then, as expected, the ap coefficients are independent
from ξ since ηp,p+1 = δ(p).

The key point here is that, even though the coefficients ap of two separate
generalised function are different, this does not necessarily mean that the two
generalised functions are different. From the (19) above we see that the coef-
ficient ap depends from the base function ξ and therefore from the generation
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function f . For Example, if we change the scaling factor of f by using a different
function αf(αx), the coefficients ap will change accordingly. We will call the ap
relative coefficients. We will see, in the following paragraph that we can define
coefficient bp which are independent from the function f. We will call the bp
absolute coefficients. We will see that, the bp coefficients are a rescaling of the
ap coefficients with respect of a reference function depending both on p and q.

If we express the components of a generalised function in terms of the bp
coefficients, then we have a representation which is independent from f . In this
case we can express the structure of our generalised function as follows:

h = lim
n→∞

nqf(nx) =

∞∑
p=0

bpη̂
p.q (20)

where the hat on the η means that we are using a specific η function that has
no component of order different from p.

We are now ready for the following definition:

Definition 5. Given two homogeneous generalised functions h1, h2, with same
growing index and defined with respect of the same base function ξ, then if it is
possible to find an integer k such that:{

ap(h1) = ap(h2) for p = k
ap(h1) = ap(h2) = 0 for p < k

(21)

then we say that h1 and h2 are representatives of the same generalised function
and we use the notation h1 ∼ h2. Moreover, if:

ap(h1) = ap(h2) for each p (22)

then we say that the two generating function are equal and we use the notation
h1 = h2.

Note that, by using the expression representatives of the same generalised
function, we are using a terminology similar to the one used in the Colombeau
algebras. Although we are facing a similar situation, the theory developed in this
paper is rather different, with respect of the Colombeau algebras, and therefore
identical terms do not imply identical meanings in the two theories.

5 Product of generalised functions

Let us see now, how to use the theory developed in the previous paragraphs to
define the product of generalised functions in Gη.

Definition 6. Let f(x) be any function of class C(s) with s ∈ N and f(x) ≥ 0
for each x ∈ R. Given k generalised functions hi = ηpi,qi ∈ D′ having generating
sequences nqif (pi)(nx) with orders pi < s and growing indexes qi ∈ Z, we define
the product h of the hi to be the limit of the product of their generating sequences:

h = lim
n→∞

nq1q2···qkf (p1)(nx)f (p2)(nx) · · · f (pk)(nx) (23)
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The reason why we require f(x) ≥ 0 is to avoid problems when we have
situations like fn(x) with n even where, given fn the sign of the original function
f is not unique.

If for each possible choice of f we get generalised functions which are al-
ways representatives of the same generalised function, then the above product
is independent from the choice of f and therefore is a well defined product.

The following proposition applies:

Proposition 1. Given any function f ∈ C(s) with s ∈ N,
∫ +∞
−∞ fdx = 1 and

f(x) ≥ 0 for each x ∈ R the product of k generalised functions:

h = ηp1,q1ηp2,q2 · · · ηpk,qk (24)

with pi < s, is the following generalised function:

h ∼
ap
(
f (p1)f (p2) · · · f (pk)

)
ap
(
dp

dxp fk
) ηp,q =

∫ +∞
−∞ xpf (p1)f (p2) · · · f (pk)dx∫ +∞

−∞ xp dp

dxp fkdx
ηp,q (25)

where p < s is the order of the function f (p1)f (p2) · · · f (pk) and q = q1q2 · · · qk.
Moreover, the amplitude evaluated above is independent from f .
In particular, if q = p + 1, the above product h is an element of D′ and it is
equal to:

h =

∫ +∞
−∞ xpf (p1)f (p2) · · · f (pk)dx∫ +∞

−∞ xp dp

dxp fkdx
δ(p) (26)

Proof. The amplitude of the generalised function h given by the (25) is just a
rescaling, of the base function ξ of f , with respect of reference functions which
are the derivatives of fk. This rescaling keeps the coefficient bp, mentioned
in the previous paragraph, unchanged and in particular has the nice property
to give the amplitude of δk and its derivatives equal to 1. For convenience of
notation we put f∗ = f (p1)f (p2) · · · f (pk). We will suppose for the moment that
f∗ and fk, a part from the order, have the same base function ξ. If we call bp
the amplitude given by the (25), we have:

bp =
ap(f∗(x))ξ(x)

ap(
dp

dxp fk(x))ξ(x)
(27)

If we rescale f and we use αf(αx) with α > 0, given the (19) we have:

bp =
αq−p−1ap(f∗(x))ξα(x)

αq−p−1ap(
dp

dxp fk(x))ξα(x)
(28)

which leave bp unchanged. In the same way, it is possible to see that bp does
not change if we use a generating function f1, that is a linear combinations of
various f scaled by different values of α.

We have to prove now that f∗ and fk, a part from the order, have the same
base function. We will give a prove only for k=2. A more general prove shall
be provided with the next issue of this paper.
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We note that for each p, d
dx (f (p))2 = 2f (p)f (p+1) and therefore, (f (p))2 and

f (p)f (p+1), have the same base function ξ. Moreover, for any p1, p2, integrating
by parts f (p1)f (p2) and taking into account that the integrand vanish at +/−∞,
we see that it is possible to find an integer pm such that:

d
dx · · ·

d
dx (f (pm))2 = −f (p1)f (p2) for p2 − p1 odd

d
dx · · ·

d
dxf

(pm)f (pm+1) = f (p1)f (p2) for p2 − p1 even
(29)

and therefore, all the products f (p1)f (p2) have the same base function ξ inde-
pendently from the value chosen for p1 and p2.

Given the proposition above, the product defined by definition 6 is a well
defined product and it is independent from the generating function f . More-
over, we note that the above defined product is commutative, associative and
compliant with the Leibniz rule for the derivatives. This is because each distri-
bution is associated to a sequence of functions and the product of sequences of
functions is commutative, associative and compliant with the Leibniz rule

It is worth to point out that, for the Heaviside function u(x), if we use the
generating function f (−1) with growing index q = 0, the above defined product
keeps working.

For example, we have proven in [4] that:

f(u(x))δ(x) =

(∫ 1

0

f(x)dx

)
δ(x) (30)

Now, for f = xk and k ∈ N, the above statement is a particular case of propo-
sition 1.

Since for the Heaviside function u(x) we have generating functions f (−1) and
growing index q = 0, we may say that:

u(x) = η−1,0 = δ(−1) (31)

6 Equalities and examples of products in D’

By using the above defined product, we can prove interesting equalities involving
products among elements of D′. We will see some examples in this paragraph.

Example 6.1: Evaluate the following product:

u(x)δ′(x) (32)

We use proposition 1. Before we start we need to choose the function f . In this
example we need C(1) class functions, we choose the most simple one which is
a triangular window centred in the origin with base 2 and hight 1:

f(x) = (x+ 1)u(x+ 1)− 2xu(x) + (x− 1)u(x− 1) (33)

we have q = q1 + q2 = 2 and f∗(x) = f (−1)(x)f (1)(x) and therefore:

u(x)δ′(x) = lim
n→∞

n2 f (−1)(nx)f (1)(nx) (34)

8



We can now evaluate all the coefficients of the structure of our generalised
function:

b0 =
∫ +∞
−∞ f∗(x)dx∫ +∞
−∞ f2(x)dx

=
− 2

3
2
3

= −1 coeff. of η0,2 = δ2

b1 = a1 =
∫ +∞
−∞ xf∗(x)dx = 1

2 coeff. of η1,2 = δ′

(35)

where b1 = a1 because for p = 1, p + 1 = q and therefore, given the (19), the
coefficient a1 is independent from f . We have:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) +R

(
η2,2

)
(36)

where R
(
η2,2

)
means that, to have the above equality exact, we need to add an

infinity number of η components of growing index q = 2 and order p ≥ 2.
We may also express u(x)δ′(x) as an equality among products of elements

of D′ (compare with [3]), by ignoring the higher order terms:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) (37)

There is a second way to get to the same result. By using proposition 1 we
evaluate the the product of u(x)δ(x). We have:

u(x)δ(x)→ n f (−1)(nx)f(nx)→ q = 1 (38)

From which we have:

u(x)δ(x) =
1

2
δ(x) +R

(
η1,1

)
(39)

We use the Leibniz rule, which we know to work with our definition of product.
By taking the derivatives of both sides of the above equality we have:

δ2(x) + u(x)δ′(x) =
1

2
δ′(x) +R

(
η2,2

)
(40)

as expected.
Finally, there is a third way to get to the same result. First we use the (13) for
u(x)δ′(x). We apply it to f∗ = f(x)(−1)f(x)(1) with q = 2:

ap =
(−1)p

p!

∫ +∞

−∞
f∗(x)xpdx =


1
p!

(
1
p+3 −

2
p+2

)
for p even

1
p!

1
p+1 for p odd

(41)

and therefore, taking into account that η1,2 = δ′:

u(x)δ′(x) = −2

3
η0,2 +

1

2
δ′(x)− 3

20
η2,2 +R

(
η3,2

)
(42)

The ap coefficients above refer to a ξ1 base function of f∗ which is unknown.
Then we use the (13) for δ2(x). We apply it to f∗ = f2(x) with q = 2:

ap =
(−1)p

p!

∫ +∞

−∞
f2(x)xpdx =


2
p!

(
1
p+3 −

2
p+2 + 1

p+1

)
for p even

0 for p odd

(43)
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and therefore:

δ2(x) =
2

3
η0,2 +

17

60
η2,2 +R

(
η4,2

)
(44)

The ap coefficients above refer to a ξ2 base function of f2(x) which is unknown.
To compare the (42) and the (44) we should transform the two expressions in

the bp notation which is independent from the function f . However, D(f2(x)) =
2f(x)f ′(x) and therefore is easy to see that ξ1 = ξ2 and the ap notations of the
two generalised functions above are comparable each other. We conclude that
we can add and subtract them in the ap notation. By adding them we have:

u(x)δ′(x) + δ2(x) =
1

2
δ′(x) +R

(
η2,2

)
(45)

as expected. The last method shows us why, in proposition 1, is so convenient
rescaling the a0 coefficient, of the η0,2 component, using the a0 coefficient of f2.
As a matter of fact, the former is propositional to the amplitude of the δ2 com-
ponent of our generalised function while the latter has the same proportionality
with respect to a δ2 of amplitude 1.

Example 6.2: Evaluate the following product:

u(x)δ2(x) (46)

We use proposition 1. Before we start we need to choose the function f . In this
example we need C(1) class functions, we choose again the (33) of the previous
example.
We have q = q1 + q2 = 3 and f∗(x) = f (−1)(x)f (2)(x). and therefore:

u(x)δ
′′
(x) = lim

n→∞
n3 f (−1)(nx)f (2)(nx) (47)

We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ f∗(x)dx = 0 coeff. of η0,3

b1 =
∫ +∞
−∞ xf∗(x)dx∫ +∞
−∞ x d

dx f
2(x)dx

= − 3
2 coeff. of η1,3

b2 = a2 =
∫ +∞
−∞ f∗(x)x2dx = 1

2 coeff. of η2,3 = δ
′′

(48)

where b2 = a2 because for p = 2, p + 1 = q and therefore, given the (19), the
coefficient a2 is independent from f . We have:

u(x)δ
′′
(x) = −3

2
η1,3 +

1

2
δ
′′

+R
(
η3,3

)
(49)

We see that u(x)δ
′′
(x) /∈ D′ since its component δ

′′
is negligible with respect of

η1,3 and therefore u(x)δ
′′
(x) ∼ − 3

2η
1,3.

Example 6.3: Evaluate the following product:

δ(x)δ′(x) (50)
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We use proposition 1. Before we start we need to choose the function f . In
this example we need C(1) class functions, we choose once again the (33) of the
previous example.
We have q = q1 + q2 = 3 and f∗(x) = f(x)f (1)(x). and therefore:

δ(x)δ′(x) = lim
n→∞

n3 f(nx)f (1)(nx) (51)

We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ f∗(x)dx = 0 coeff. of η0,3

b1 =
∫ +∞
−∞ f∗(x)xdx∫ +∞
−∞

d
dx f

2(x)xdx
= 1

2 coeff. of η1,3

a2 =
∫ +∞
−∞ f∗(x)x2dx = 0 coeff. of η2,3 = δ

′′

(52)

we have:

δ(x)δ′(x) =
1

2
η1,3 +R

(
η3,3

)
(53)

Once again, there is a second way to get the same result. By taking twice the
derivative of both sides of the (39), and rearranging the terms we get:

δ(x)δ′(x) = −1

3
u(x)δ

′′
(x) +

1

6
δ
′′
(x) +R

(
η3,3

)
(54)

We see easily that, taking into account the (49), the (53) and the (54) are in
perfect agreement.

Example 6.4: Evaluate the following product:

sign2(x)δ(x) (55)

We use proposition 1. We have:

sign2(x)δ(x) = lim
n→∞

n (2f (−1)(nx)− 1)2f(nx)→ q = 1 (56)

which is actually the sum of three products one of which is trivial. We have:

sign2(x)δ(x) =
1

3
δ(x) +R

(
η1,1

)
(57)

compare with [2] §1.1 ex. iii and with [4].

7 Products with polynomials

Now we want to extend our product of distributions to products involving poly-
nomial and therefore product with any function that can be expanded in a
Taylor series.

We note that xk with k ∈ N can be expressed as the limit of the following
sequence of functions:

xk = lim
n→∞

n−k(nx)k (58)
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and therefore, it is the limit of a sequence of functions of the kind (1) with
generating function f = xk and growing index q = −k.

From the above limit, we see immediately that the product of a generalised
function with a monomial of degree k, lowers the growing index of the generalised
function by k. Given the generalised function h defined by the (1), then we have
that xkh is the limit of the following sequence:

xkh = xk lim
n→∞

xqf(x) = lim
n→∞

nq−kxkf(x) (59)

In order for the above limit to make sense, we have to add an additional constrain
to the function f since we want at least that xkf(x) ∈ C(s) where s is the higher
order of the generalised functions we are dealing with. This is not a problem
since it is always possible to find a function f such that

∫ +∞
−∞ f(x)dx = 1 and f

goes to 0 in 0 at least like xk.
Let us see what happens to the order p and the amplitude of a generalised

function when we multiply it by x. The generalization to multiplication by xk

is trivial.
For p > 0, from the (12) is possible to show that given any ξ

(p)
1 ∈ Xp we

have:
ξ
(p−1)
2 (x) = − x

p
ξ
(p)
1 (x) for p > 0 (60)

From which we see clearly that the product of a generalised function of order p,
with x lower the order of the generalised function by 1. To sum up, we have:

ηp−1,q−1 = −x
p
ηp,q for p > 0 (61)

and in particular:

δ(p−1) = −x
p
δ(p) for p > 0 (62)

which is a well known result in literature (compare with [3]).
For p = 0, the situation is a bit more complex. It is possible to show that:

ξ
(1)
2 (x) = −x ξ(0)1 (x) (63)

From with we have:
η1,q−1 = −x η0,q (64)

and in particular:
η1,0 = −xδ(x) (65)

we see that the order p = 0 cannot be further lowered by multiplying by x. If
we keep multiplying a generalised function of order 0 with x, the growing index
keep decreasing but the order toggles between 0 and 1.

For p < 0 the situation is even more complex since by multiplying an η
function of order lower then 0 with x, we do not even get a η function any more.
We will develop this part in a further issue of this paper.

We will use now the theory developed above to discuss a well known example
in the theory of product of distributions (compare with [2] §1.1 ex. i).

Example 7.1: If vp 1
x is the Cauchy principal value of 1

x then we have:

0 = (δ(x) · x) · vp 1

x
= δ(x) ·

(
x · vp 1

x

)
= δ(x) (66)
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which is absurd.
By using our theory we know that xδ(x) = −η1,0 6= 0. We have:

0 = (x · δ(x) + η1,0) · 1

x
= δ(x) +

1

x
η1,0 = δ(x)− δ(x) (67)

a results that now makes sense.
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