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Abstract

A new space of generalised functions extending the space D’, together
with a well defined product, is constructed. The new space of generalized
functions is used to prove interesting equalities involving products among
elements of D’. A way of multiplying the defined generalised functions
with polynomials is also derived.
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1 Introduction

Products of distributions are quite common in several fields of both mathematics
and physics. Examples arise naturally in quantum field theory, gravitation and,
in partial differential equation, such as shock wave solutions, in hydrodynamics,
(see [1]). An important issue, related to product of distributions, is the fact that
the product, in the general case, is not well defined in D′, issue known as the
Schwartz impossibility result (see [1] §1.3) and that only the product between
a smooth function and a distribution is well defined. Historically, products
of distributions are addressed by means of algebras of generalised functions
developed initially by J. F. Colombeau (see [1] and [2]). In this paper we will
propose a new approach to define products of distributions.

In paragraphs from 3 to 6, we construct a new space of generalised functions,
extending the space D’. In paragraph 7, we use the new space of generalised
functions to define a product among distributions. In paragraphs 8, we use the
new developed theory to derive interesting equalities involving products among
elements of D’. In paragraphs 9, we derive a method to multiply the generalised
functions defined in this paper with polynomials.

2 The need for new generalised functions.

In [3] we have proven that:

f(g(x))δ(x) =
1

b− a

(∫ b

a

f(x)dx

)
δ(x) (1)
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where the above product has to be intended as:

f(g(x))δ(x) =
1

b− a
lim
n→∞

f(gn(x))g′n(x) (2)

and gn(x) is a sequence converging to a step discontinuous function jumping,
from a to b, in 0. The above equation shows that product of distributions
strongly depend from the structure of the various discontinuity which are mul-
tiplied (in this case the step discontinuity), where the structure (represented
in this case by the function f) has to be intended as the specific sequence of
functions used to define the discontinuity.

The above equation, focuses its attention only on the structure of step dis-
continuities and the way they are modified (by composition with a locally in-
tegrable function f). When it comes to Dirac delta functions, it is possible to
show that they change their own structure by means of multiplication by step
discontinuous functions. Let us consider the function f(g(x)) where g is a step
discontinuous function, jumping from a to b in 0, and f ∈ L1

loc([a, b]). Since we
may define our function as the limit of a sequence of functions f(gn(x)) with
gn(x) ∈ C1, and since the Leibniz rule may be applied to each term of the
sequence, we will suppose that we can apply the Leibniz rule also to its limit.
This point will be justified in further paragraphs. We have:

Df(g(x)) = (b− a)f ′(g(x))δ(x) (3)

from which we see that by multiplying a delta function having structure g(x)
(i.e. derivative of a step discontinuous function g(x)) by f ′(g(x)) we get a delta
function with structure f(g(x)) (i.e. derivative of a step discontinuous function
f(g(x))).

We have seen that, in a product of distributions, if we change the structure
of a term we get a different result. In order to overcame this limitation, we want
now to extend the space of distributions D′ by adding to it, as separate gen-
eralised functions, additional elements representing any possible discontinuity
structure needed for describing products of step and delta functions.

We will assume now that all step discontinuous and delta functions, we are
dealing with, are all related to the same Heaviside function and their structure
can be described by the way they are related to it. From this new point of view,
the function f , which before was used to relate distribution structures, became
now the structure itself of the distribution. We will say that a step discontinuity
has structure f if it is of the form f(u(x)). We will say that a delta function has
structure f if it is the derivative of a step discontinuous function of structure f .
We will consider steps and delta functions, with different structures, as separate
generalised functions.
We will use the following notation:

u[f(x)] = f(u(x)) step function having structure f
δ[f ′(x)] = f ′(u(x))δ(x) delta function having structure f

(4)

where u[f(x)] and δ[f(x)] are not normalised (i.e they may have amplitude dif-
ferent from 1) and u[x] = u(x) ∈ D′, δ[1] = δ(x) ∈ D′. We will show, with
an example at the end of this paragraph, that the above defined generalised
functions have components outside D′ and therefore there is a need for defining
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a larger space of generalised functions including D′. We will do that in the next
paragraphs.
Using the (4), we define the multiplication as follows:

u[f1]u[f2] · . . . · u[fn]δ[fn+1] = δ[f1f2· ... ·fnfn+1] (5)

Finally we define a projector operator PD′ , which project any generalised func-
tion of the kind (4), on the space D′. For step discontinuous functions the way
PD′ works is trivial (e.g. u2(x) goes to u(x) ). For delta functions, we apply the
(1), we have:

PD′
(
δ[f1f2· ... ·fnfn+1]

)
=

(∫ 1

0

f1f2 · . . . · fnfn+1dx

)
δ(x) ∈ D′ (6)

where the integration is performed between 0 and 1, which is the jump of our
reference step discontinuity u(x). Note that the (5) and (6) provide a well
defined product of the (4). The product is also commutative and associative
since commutative and associative is the product of the fi functions used in the
definition of the (5).

Let us make an example. Consider the product of distributions sign2(x)δ(x)
(compare with [2] §1.1 ex. iii). By using proposition 1 we find easily that:

sign2(x)δ(x) =
1

3
δ(x) (7)

Let us check associativity by using, once again, proposition 1:

sign2(x)δ(x) = sign(x)[sign(x)δ(x)] = sign(x) · 0 = 0 (8)

we conclude that, in D′, our product is not associative. Let us see what happen
using the (5):

sign(x)[sign(x)δ(x)] = sign(x)δ[(2x−1)·1] = sign(x)[δ[2x] − δ[1]] (9)

In D′, δ[1] = δ and PD′(δ[2x]) = δ. However, as generalised function of the
kind (4), they are separate objects and they do not cancel each other. We have
eventually:

sign2(x)δ(x) = PD′
(
δ[(2x−1)2]

)
=

1

3
δ(x) (10)

3 New generalised functions

In this paragraph we will define a new class of generalized functions. Before we
proceed, we need a definition. We define F to be the set of all the function f(x)
having the following characteristics.

1) f(x) ∈ C∞
2) limx→−∞ f(x)xk = 0 for any k ∈ N
3) limx→+∞ f(x)xk = 0 for any k ∈ N

(11)

Generalised functions can be defined by means of the limit of sequences of
functions fn(x). In this paper we will deal only with generalised functions
defined by means of the limit of a sequence of the form:

lim
n→∞

nqf(nx) (12)
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with f ∈ F . Note that the above sequences are not the most general way
to define distributions. For example, there is no sequence of the form (12)
converging to δ + δ′. We will call f(x) the generating function, nqf(nx) the
generating sequence and q the growing index of the generalised function defined
by the (12). Finally, we define the generalised functions ηp,qf to be the following
limit:

ηp,qf (x) = lim
n→∞

nqf (p)(nx) with p ≥ 0, q ∈ Z (13)

provided that f ∈ F and ∫ +∞

−∞
f(x)dx = 1 (14)

We will see in further paragraphs that, in order to have ηp,qf to be an interesting
mathematical object, we need to define further constrains on f . Note also that,
for reasons that will be clear further on, it is very important to keep track of
the generating function f. We do that by using the notation ηp,qf . It is easy to
see that:

ηp,p+1
f (x) = δ(p)(x) (15)

What kind of generalised function are the ηp,qf ? If the sequence of distribu-

tions fn converges to ηp,qf , then fn
nq−p−1 converges to δ(p). So, with an abuse of

notation, we may say that:

ηp,qf =
δ(p)

np−q+1
(16)

The ηp,q are therefore the limit of sequences of functions that are shaped like
δ(p) and that, when we take the limit, grow at a lower or faster rate (according
to the sign of p-q+1).

Now, let us see how to determine all the ηp,q components of a generalised
function defined by means of the (12) and having generating function f(x) ∈ F .
We will suppose, for the moment, that all ηp,q, have the same generating function
g ∈ F . We will see further on, that this turn out to be true. First of all, we note
that all the components of the distribution (12) have the same growing index
q. We will call this kind of generating functions homogeneous. We have:

h = lim
n→∞

nqf(nx) =

∞∑
p=0

apη
p,q
g (17)

where the ap, although not explicitly noted, refer and depend from the function
g which we suppose known. Now, if q > 1, h always contains one (and only one)
distribution ηq−1,qg (x) = δ(q−1)(x) ∈ D′. From the (16) we know that:

lim
n→∞

nqf(nx)

nq−p−1
= apδ

(p) (18)

So, for the distribution defined by the (17), we can determine the ap coefficients
by applying the Schwartz theory of distribution to our sequence of functions
divided by nq−p−1. Let φ be a test function and given p, we have:

h

nq−p−1
= lim
n→∞

∫ +∞

−∞
np+1f(nx)φ(x)dx = lim

n→∞

∞∑
k=0

(−1)kak
φ(k)(0)

nk−p
(19)
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In the right side of the above equation, when n goes to infinity, some terms go
to infinity (the ones with k < p) and some other terms go to 0 (the ones with
k > p). To better evaluate all ap we decide to use a test function φ that has
all derivatives φ(i)(0) = 0 for i 6= p. A test function with this characteristic is
φ(x) = xp. Of course a test function should vanish outside a compact interval
and xp does not. However, given the (11), integrability for |x| going to infinity
in ensured, and therefore this is not a problem. We have:

lim
n→∞

∫ +∞

−∞
np+1f(nx)xpdx = (−1)p ap p! (20)

where p! is the value of the pth derivatives of xp. From the (20) we can easily
evaluate the ap as follows:

ap = lim
n→∞

(−1)p

p!

∫ +∞

−∞
np+1f(nx)xpdx

= lim
n→∞

(−1)p

p!

∫ +∞

−∞
n f(nx)(nx)pdx (21)

We note that the right part of the (21), for n that goes to infinity, in the (x, y)
plane, shrinks (along x) and grows (along y) like n, which leaves the integral
unchanged. For the above reason, the limit of the (21) is simply the value of
the integrals for any n. We may as well evaluate it for n=1. We have:

ap =
(−1)p

p!

∫ +∞

−∞
f(x)xpdx (22)

and therefore ap coefficients are related to the momenta of f . We are now ready
to define our new space of generalised functions.

Definition 1. We define Gη to be space of generalised functions which elements
are the limits of series of the type (13), (which we know to be homogeneous
generalised functions), or the linear combinations af a finite or infinite numbers
of them.

We also define A to be the set of all sequences of coefficients af = (a0, a1, . . .)
associated by the (22) to the generating function f .

4 Main generating functions

For a generalised function h ∈ Gη, if q is the growing index, f ∈ F is the gener-
ating functions and af ∈ A are the coefficients of the ηp,qg , we can fully charac-
terize the structure of a discontinuity (i.e. fully define the relevant generalised
function) by providing either (f, q) or (af , g, q). Moreover, if af = (a0, a1, . . . ),
then af ′ = (0, a0, a1, . . .) and therefore, in Gη, the derivative of h = (f, q) is
h′ = (f ′, q + 1).

Let f(x) ∈ F be a generating function for δ in D′ and h ∈ Gη the relevant
generalised function defined by the generating sequence n f(nx). If we evaluate
the coefficients af ∈ A of h, we know that a1 = 1. We also know that all the
others coefficient can have any value. We are interested, among all the f ∈ F ,
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to the ones for which af is of the form a0 = 1 and ap = 0 for p > 1. We give
the following definitions:

Definition 2. Given ξ(x) ∈ F . If ξ(x) verifies the following equations:∫ +∞

−∞
ξ(x)xpdx =

{
1 for p = 0
0 for p > 0

(23)

then we call ξ a main generating function for δ(x) or main generating function of
order 0. We also call the derivative ξ(p) with p ∈ N a main generating function
of order p.

We have:
lim
n→n

nqξ(p) = ηp,qξ with p ≥ 1, q ∈ Z (24)

and also (compare with the (16) above)

lim
n→∞

np+1ξ(p) = δ(p)(x) inGη p ≥ 0 (25)

The (25) states that, if we use main generating functions, we can define delta
and delta derivatives that have no components outside D′. In a few words, if
we accept generalised function ηp,q to be real things (i.e. we work in Gη), we
have also to accept that only sequences nξ(nx) composed of main generating
functions converge to δ.

Figure 1: ξ function

The above figure is a plot of a ξ(x).
Given f ∈ F , there is only one element af ∈ A. On the contrary, given

af ∈ A, there exist at least one generating function g ∈ F , with f 6= g, such
that af = ag. In particular, there are several elements of F which are a main
generating function of order 0.
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If Hp ⊂ F is the set of all generating functions of order p, then we have:

ξ(x) ∈ H0 ⇒ αξ(αx) ∈ H0

ξ(x) ∈ H0 ⇒ a[α1ξ(α1x) ] + b[α2(ξ(α2x) ] ∈ H0 with a+ b = 1
ξ(p)(x) ∈ Hp ⇒ αp+1ξ(p)(αx) ∈ Hp

ξ
(p)
1 (x) ∈ Hp ⇒ ξ

(p−1)
2 (x) = − x

p ξ
(p)
1 (x) ∈ Hp−1 with p > 0

(26)

with α1 > 0, α2 > 0.
From the second implication of the (26) it follows that if ξ1 ∈ H0, then for

any ρ(α) ∈ D′, such that: ∫ ∞
0

ρ(α)dα = 1 (27)

we have:

ξ2(x) =

∫ ∞
0

ρ(α)αξ1(αx)dα ∈ H0 (28)

provided that the above integral converges. Note that given ξ1 and ξ2, ρ is not
unique. Note that ρ may be continuous, impulsive or mixed. For example, in
the second implication of the (26), we have ρ(α) = aδ(α− α1) + bδ(α− α2).

5 Additional remarks on the η functions

Given a function f ∈ F , we say that f is a null function if all the coefficients ap
evaluated by means of the (22) are equal to 0 (i.e. all the momenta of f vanish).
We define N ⊂ F to be the set of all null functions. Of course, null functions
are generating functions for 0 ∈ Gη.

For example, if ξ1 and ξ2 are two separate main generating functions of order
0, then ξ1 − ξ2 is a null function.

If we choose any ξ ∈ H0, then given f ∈ F we can easily evaluate the
coefficient ap by means of the (22). We define the function fξ to be:

fξ =

∞∑
p=0

apξ
(p) (29)

We will call Fξ ⊂ F the subset of F of all functions for which f − fξ = 0. In a
few words, Fξ is the set of all elements of F which can be expressed as a finite
or infinite linear combinations of the ξ(p).

We show now an important fact about the coefficient ap of the (22). Let
ξ ∈ H0 be any main generating function of order 0 and ηp,qξ ∈ Gη a related
generalised function. We have:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = ap(ξ)η

p,q
ξ (30)

If we choose ξα = ξ(αx), as a different generating function for of order 0, we
have:

lim
n→∞

ap(ξα)nqαp+1ξ(p)(nαx) = ap(ξα)ηp,qξα (31)

If the (30) and (31) are the same generalised function then:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = lim

n→∞

ap(ξα)

αq−p−1
(nα)qξ(p)(nαx) (32)
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since
lim
n→∞

nqξ(p)(nx) = ηp,qξ = lim
n→∞

(nα)qξ(p)(nαx) (33)

because the left and the right side limit of the (33) are the same function growing
and shrinking at the same rate with n, and therefore converge to the same
generalised function ηp,qξ , we conclude that:

ap(ξα) = αq−p−1ap(ξ) (34)

and therefore:

ηp,qξα =
1

αq−p−1
ηp,qξ (35)

From the (35), it is clear that if we want to use the ηp,q notation we have always
to specify the reference main generating function ξ since, for any specific element
of Gη, this has an impact on the amplitudes of the ηp,q (i.e. the amplitude of
the coefficients). This is why we use the notation ηp,qξ ∈ Gη.

Note that if p = q− 1 then, as expected, the η notation is independent from
ξ since ηp,p+1 = δ(p).

We conclude this paragraph by finding a relation similar to the (34) but valid
in the most general case. Given ηp,qξ1 , if we choose any other ξ2 ∈ H0, evaluated
using the (28), as the reference generating function, then by using both the (34)
and the (28) we find that the relationship between the coefficients of ηp,qξ2 and

ηp,qξ1 is the follows:

ap(ξ2) = σp,q12 ap(ξ1) (36)

where:

σp,q12 =

∫ ∞
0

ρ(α)αq−p−1dα (37)

We are now ready to see an example. Given a Gaussian distribution fξ1(x) ∈
Fξ1 defined as follows:

fξ1(x) =
1√
2π
e−

x2

2 (38)

we want to represent the generalised function h ∈ Gη, having generating function
fξ1 and grooving index q = 1, by means of the ηp,q notation. Using the (22) we
have:

h = lim
n→∞

n fξ1(nx) = δ(x) +
1

2
η2,1ξ1 +

1

8
η4,1ξ1 +R

(
η6,1

)
(39)

where R(η6,1) means that, to have the above equality exact, we need to add
components of growing index 1 and order ≥ 6. If ξ2 ∈ H0 is a different main
generating function, we can represent the same generalised function h by means
of the ηp,qξ2 . To do that, we need to find the function ρ which allows as to evaluate
ξ2 from ξ1 as defined by the (28) and then, using the (37), we have:

h = δ(x) +
1

2
σ2
12 η

2,1
ξ2

+
1

8
σ4
12 η

4,1
ξ2

+R
(
η6,1

)
(40)

Note that the (40) has generating function:

fξ2 ∈ Fξ2 =

∞∑
p=0

σp12 ap ξ
(p)
2 (41)
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also note that fξ1 6= fξ2 and both fξ1 and fξ2 are generating functions for the
same generalised function h ∈ Gη which is:

h = lim
n→∞

n fξ1(nx) = lim
n→∞

n fξ2(nx) (42)

6 Transformations in F

Before we proceed, we note briefly that it is certainly possible to find elements
of F which do not belong to any Fξ, a good example of that are the elements
of N (null momenta functions).

Now, given the ξ1, ξ2 ∈ H0 and the σ from the (37), we define

τ q12 = (σ0,q
12 , σ

1,q
12 , · · · ) (43)

to be a transformation in F such that:

τ q12 : f1 ∈ Fξ1 → f2 ∈ Fξ2 (44)

which transforms any element of Fξ1 in the relevant element of Fξ2 such that
the two elements are generating functions for the same element of Gη. We also
define T to be the set of all separate τ functions. Note that, for example, τ qξ1ξ1
and τ qξ2ξ2 , having the same σ components, are the same element in T . It is easy
to show that T has the structure of an Abelian group where the operation is
composition of transformations and:

1) τ qξξ = (1, 1, · · · ) is the 0 element

2) − τ qξ1ξ2 = τ qξ2ξ1 with σp,q21 = (σp,q12 )−1
(45)

Now, let fξ1 , gξ1 ∈ Fξ1 be two generating functions for h1, h2 ∈ Gη of growing
indexes q1 and q2. Let also fξ2 , gξ2 ∈ Fξ2 , be the relevant generating functions
(taking into account the growing indexes) for the same generalised functions,
h1 and h2. If fξ1gξ1 ∈ Fξv and fξ2gξ2 ∈ Fξw then we state that:

τ q112 (fξ1) · τ q212 (gξ1) = τ q1+q2vw (fξ1 · gξ1) (46)

The (46) tells us that we can transform f and g from Fξ1 to Fξ2 and then
multiply them or multiply them and then transform the product from Fξv to
Fξw . In both cases we get the same function.

Unfortunately we do not have a formal prove for the (46). However, numer-
ical evidences (see appendix) suggest that the (46) is true.

An important question is whether ξv and ξw depend only from ξ1 and ξ2 and
are independent from the function f and g. We believe this is likely to be the
case although we do not have a formal proof of it. However, for the (46) to be
true, this assumption is not required nor it is ever used throughout the paper
and therefore, for the time being, we will not spend more time on it.

7 Product of generalised functions in Gη.

Let us see now, how to use the theory developed in the previous paragraphs to
define the product of generalised functions in Gη.
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Definition 3. Given k homogeneous generalised functions hi ∈ Gη with gener-
ating functions fi ∈ Fξi and growing indexes qi, we define the product h of the
hi, to be the limit of the product of the generating sequences nqifi(nx):

h = lim
n→∞

nq1·...·qkf1(nx) · . . . · fk(nx) (47)

Note that, the product f1(x) · . . . · fk(x) ∈ Fξv where, in general, ξi 6= ξv for
each i.

Since any generalised function hi is well defined when the relevant generat-
ing function and growing index is given, then commutativity, associativity and
applicability of the Leibniz rule in Gη, for the product defined above, is ensured
by the commutativity, associativity and applicability of the Leibniz rule for the
relevant generating sequences.

We will show now, with a specific example, how to use the (47) to define
a product of generalised functions which is independent from the chosen ξi.
Suppose we want to evaluate the product h of the two generalised functions
h1, h2 ∈ Gη. We choose any ξ1 ∈ H0 and we find the relevant generating
function fξ1 , gξ1 ∈ Fξ1 and the growing indexes q1, q2. We know also that
fξ1 · gx1 ∈ Fξv . We have:

hξ1 = lim
n→∞

nq1+q2fξ1(nx) gξ1(nx) (48)

Suppose now that we want to choose a different generating function of order 0
ξ2 ∈ H0 for which we find the generating functions fξ2 ∈ Fξ2 and gξ2 ∈ Fξ2
relevant to h1 and h2. We know also that fξ2 · gξ2 ∈ Fξw . We have:

hξ2 = lim
n→∞

nq1+q2fξ2(nx) gξ2(nx) (49)

given the (46) then we have:

hξ2 = lim
n→∞

nq1 τ q112 (fξ1(nx)) nq2 τ q212 (gξ1(nx)) (50)

= nq1+q2 τ q1+q2vw (fξ1(nx) gξ1(nx))

from which we see that hξ1 and hξ2 are the same generalised function in Gη and
therefore the above product is well defined.

8 Equalities in D’

By using the above defined product, we can prove interesting equalities involving
products among elements of D′. We will see an example in this paragraph.

Note that from now on, we will choose a specific main generating function
ξ ∈ H0, once and forever. We will perform all our calculations with generating
functions in Fξ and we will give all the final results in terms of ηp,fξ . Since
the underling ξ is always the same, we will drop the ξ notation from the ηp,q

functions and ap coefficients. When we write ηp,q, we really mean ηp,qξ and when
we write ap, we really mean ap(ξ).
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Before we proceed we need to see how to represent step discontinuous func-
tions by using elements of Gη. Let ξ ∈ F be a main generating function for δ.
We define the following function:

χ(x) =

∫ x

−∞
ξ(t)dt (51)

to be a main generating function for u(x), the Heaviside function, where we use
a growing rate q = 0. Also if f ∈ C∞ is a function and χ is a main generating
function for u, then we define f(χ(x))) to be a generating function for f(u(x)).

Of course χ(x) and f(χ(x))) are not in F . However we are interested in mul-
tiplication of a step discontinuous functions with elements of Gη and therefore
in multiplying χ(x) and f(χ(x))) with elements of F so that we eventually get
a generating function, for our product, which is in F .

Now, given a generalised function f(u(x))), there are always β, γ ∈ R such
that:

[f(χ(x))− β − γχ(x)] ∈ F (52)

By applying the (22) to the (52), we can evaluate f(u(x)) in terms of elements
of Gη as follows:

f(g(x)) = β + γu(x) +

∞∑
p=0

apη
p,0 (53)

For example:

u2(x) = u(x) +

∞∑
p=0

apη
p,0 (54)

sign2(x) = (2u(x)− 1)2 = 1 +

∞∑
p=0

apη
p,0 (55)

By comparing the (55) with the (9), we can finally see why the functions δ[2x]
and δ[1], present in that equation, are different and do not cancel each other.

Note that, in the following example we will use the notation introduced in
(16) (ηp,q expressed in the δ(p)/nk notation) and, since we do not have ξ in a
closed form, the coefficients of the ηp,q will be evaluated numerically.
We want to evaluate u(x)δ′(x):

u(x)δ′(x)→ n2 χ(nx)ξ′(nx) (56)

From which we have:

u(x)δ′(x) = a0nδ(x) +
1

2
δ′(x) + a2

δ(2)

n
+R

(
δ(4)

n3

)
(57)

We want to remove the nδ term. To do that, we evaluate the product δ2(x):

δ2(x)→ n2 ξ2(nx) (58)

From which we have:

δ2(x) = b0nδ(x) + b2
δ(2)

n
+ b4

δ(4)

n3
+R

(
δ(6)

n5

)
(59)
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Where b3 and b5 vanish (evaluated numerically, are smaller, in module, then
10−15). For any ξ, a0 = −b0 (evaluated numerically, have opposite sign and are
equal in module with an error smaller, then 10−14). By substituting the value
nδ from the (59) in the (57), we have eventually:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) +R

(
δ(2)

n

)
(60)

or,(compare with [4]), as an equality among products of elements of D′ (i.e.
ignoring the higher order terms):

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) (61)

We can get to the same results by using the Leibniz rule. We evaluate the
product of u(x)δ(x). We have:

u(x)δ(x)→ n χ(nx)ξ(nx) (62)

From which we have:

u(x)δ(x) =
1

2
δ(x) +R

(
δ′

n

)
(63)

by taking the derivatives of both sides we have:

δ2(x) + u(x)δ′(x) =
1

2
δ′(x) +R

(
δ(2)

n

)
(64)

as expected. More examples can be found in the appendix.

9 Products with polynomials

From the forth implication of the (26) we know that given any ξ1 ∈ H0 we have:

ξ
(p−1)
2 (x) = − x

p
ξ
(p)
1 (x) ∈ Hp−1 with p > 0 (65)

The above equality gives us an hint on how to extend to the concept of main
generating functions and define main generating functions of negative orders.

To do that, we define a function ξ[−p] ∈ H [−p] ⊂ F tu be a main generating
function of order −p if it is possible to find f ∈ F such that ξ[−p)]xp = f for
each x ∈ C − {0} (i.e. f goes to 0 in 0+ and 0− at least like xp) and:∫ +∞

−∞
ξ[−p)](x)xkdx =

{
1 for k = −p
0 for k > −p (66)

In analogy with the definition of Fξ (linear combinations of derivative of ξ),
we define the set F[ξ] in the obvious way (linear combinations of derivatives

of ξ[−p]). Note that the notation ξ[−p] may be misleading since, although the
derivative of ξ[−p] is a ξ[−p+1], the ξ[−p], both for p positive and negative, are
always null functions. So, for example, the derivative of ξ[−1] is ξ[0] which is
different from ξ(0) which, in turn, is the derivative of χ(x) /∈ F .
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From the (66) we see that:

ξ
[−1]
2 (x) = −xξ(0)1 (x) ∈ H [−1] (67)

and
ξ
[p−1]
2 (x) =

x

p− 1
ξ
[p]
1 (x) ∈ H [p−1] with p < 0 (68)

We define the following generalised functions:

η[p],q = lim
n→∞

nqξ[p] with p, q ∈ Z (69)

Note that, due to the way Gη has been defined, it already contains the η[p],q.
Now, by using the definitions of ηp,q and η[p],q, it is easy to prove the following
equalities:

ηp−1,q−1 = −xpη
p,q p > 0

η[−1],q−1 = −x η0,q p = 0
η[p−1],q−1 = −xpη

[p],q p > 0

η[p−1],q−1 = x
p−1η

[p],q p < 0

(70)

We will briefly prove only the first equality of the (70). Multiplying a generalised
function by x is equivalent to multiply its generating sequence by x before taking
the limit. Given the generating sequence nq x ξ(p) and by using the (21), we can
evaluate the coefficients as:

ak(nq x ξ(p)) = lim
n→∞

(−1)k

k!

∫ +∞

−∞
nx ξ(p)(nx)(nx)kdx

= lim
n→∞

(−1)k

k!

1

n

∫ +∞

−∞
n ξ(p)(nx)(nx)k+1dx

= ak−1(nq ξ(p−1))

= −k ak(nq−1 ξ(p−1)) (71)

from which the first of the (70) follows. In particular:

δ(p−1) = −x
p
δ(p) for p > 0 (72)

which is a well known result in literature (compare with [4]).

Note that, xξ
[0]
1 = −ξ[[−1]]2 and the derivative of ξ[[−1]] is equal to ξ[[0]] 6= ξ[0],

with obvious meaning of the notation. By iterating the process we can define
the ξ[[...p...]], all in F , and the η[[...p...]],q, all in Gη, with as many square brackets
as we want. These are all new generalised functions present in Gη and which
arise naturally from the theory we have developed.

We will use now the theory developed in this paragraph to discuss a well
known example in the theory of product of distributions (compare with [2] §1.1
ex. i). If vp 1

x is the Cauchy principal value of 1
x then we have:

0 = (δ(x) · x) · vp 1

x
= δ(x) ·

(
x · vp 1

x

)
= δ(x) (73)

which is absurd.
By using our theory we know that xδ(x) = −η[−1],0 6= 0. We have:

0 = (x · δ(x) + η[−1],0) · 1

x
= δ(x) +

1

x
η[−1],0 = δ(x)− δ(x) (74)

a results that makes us to feel much more comfortable.
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Appendix

A.1 Examples of product of distributions

We will use the notation introduced in (16).
Example 1:

δ(x)δ′(x) (75)

By taking twice the derivative of both sides of the (63), and rearranging the
terms we get:

δ(x)δ′(x) =
1

6
δ(2)(x)− 1

3
u(x)δ(2)(x) +R

(
δ(3)

n

)
(76)

Example 2: evaluated numerically (compare with paragraph 2 above)

sign2(x)δ(x)→ n (2χ(nx)− 1)2ξ(nx) (77)

from which we have:

sign2(x)δ(x) =
1

3
δ(x) +R

(
δ(2)

n2

)
(78)

A.2 Numerical evidences in support to the (46)

First of all, to perform our numerical analysis, we need to choose suitable ξ
functions. Let f(x) be the following Gaussian distribution:

f(x) =
1√
2π
e−

x2

2 (79)

then we define ξ1(x) to be:

ξ1(x) = f(x)− 1

2
f (2)(x) +

1

8
f (4)(x)− 1

48
f (6)(x) (80)

which is a very good approximation of a ξ function and it is derived from the
Gaussian distribution by removing the first 3 higher order ηp,1(x) components
(compare with the (39) above). Also we define ξ2(x) to be:

ξ1(x) = 0.3 ξ1(x) + 0.7 ξ2(2x) (81)

By means of the (22) we evaluate numerically the coefficients ap of the two
products ξ · ξ and ξ · ξ′, generating functions for δ2 and δ · δ′. We have:

a0 a1 a2
q-p-1 1 0 -1
ξ1 · ξ1 0.747850786175440 0 0.064630940223461
ξ2 · ξ2 1.164372758468304 0 0.025251755987242

Table 1 (δ2)
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a0 a1 a2 a3
q-p-1 2 1 0 -1
ξ1 · ξ′1 0 0.373925393087720 0 0.032315470111731
ξ2 · ξ′2 0 0.582186379234155 0 0.012625877993621

Table 2 (δ · δ′)

The coefficients in the table 1 and 2 above, have been evaluated by integrat-
ing the functions numerically in the interval [-10,10] on 5000 points.

Our argument in support of the (46) is that, the ratios between the ap coef-
ficients are the σp,qvw and, if the (46) is true, these ratios have to be independent
from the specific ξ(p) functions that have been multiplied.

We know that the σ depends only from q − p − 1 and therefore, if the (46)
is true then, for example, σ0,2

vw evaluated from table 1 will be equal to σ1,3
vw

evaluated from table 2 although they refer to the product of different functions.
Note that, for our analysis to be correct, we make the assumptions that ξv and
ξw are the same sets in both multiplications of table 1 and 2. Although this has
not been proven in the general case, in this case it is certainly true since, for
example, Dξ21=2ξ1 · ξ′1 and therefore ξ21 and ξ1 · ξ′1 belong to the same space Fξv .

We show in the following tables the results we have found in our analysis:

σ0,2
vw = σ1,3

vw σ2,2
vw = σ3,3

vw

table 1 a0(ξw)
a0(ξv)

= 1.556958660728280 a2(ξw)
a2(ξv)

= 0.390706926124457

table 2 a1(ξw)
a1(ξv)

= 1.556958660728288 a3(ξw)
a3(ξv)

= 0.390706926124451

difference 7.9 · 10−15 6.0 · 10−15

Table 3

We conclude that the numerical evidences suggest the (46) is true.
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