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The author presents the consequences of what if Gravitinos in the Electroweak era, all  
8 1210 10  of them 

have an (almost) invariant energy from the beginning of cosmology. This in turn may lead to massive 

Gravitons. This invariant energy constitutes an initial energy value at the start of the universe which can be 

used to obtain, at the onset of inflation  Kauffman’s lower bound to a non zero initial radius of the universe. 

We reference Theorem 6.1.2 of the book by Ellis, Maartens, and MacCallum in order to argue that if there 

is a non zero initial scale factor, that there is a partial breakdown of the Fundamental Singularity theorem 

which is due to the Raychaudhuri equation. The arguments for why the scale factor may not go to zero are 

reviewed, with suggestions as to linkage as to how to avoid the Anthropic principle in having continuity of 

from a prior to the present universe. We also look at how different models of contributing vacuum 

energy, initially may affect divergence from the first singularity theorem and its results. This document 

implicitly uses Salvoy’s (1983) results.  
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1.   Introduction 
 

We wish to investigate if a nonzero graviton mass would lead to conditions which could lead to a 

modification of the first singularity theorem, 6.12 of the recent book by Ellis, Maartens, and MacCallum. 

Note that as given in a prior paper, by the author (Beckwith), Appendix A summarizes why we think 

gravitons should be massive, i.e. having a small rest mass, and this is in turn linked to a paper by Steven 

Kauffmann as to presumably how a nonzero initial energy could lead to a non zero lower bound non 

singular initial radius of the universe. The present document is to determine what may contribute to a 

nonzero initial radius, i.e. not just an initial nonzero energy value, as Kauffman’s paper would imply, and 

how different models of contributing vacuum energy, initially may affect divergence from the first 

singularity theorem.  

 

2. Looking at the First Singularity theorem and how it could fail 

 

We will look at what is given by Ellis, Maartens, and MacCallum. (2012) as to how to state the 

fundamental singularity theorem 

 

Theorem 6.1(Irrotational Geodestic singularities) If 0  ,  3 0p   , and 0p    in a 

fluid flow for which 0u  , 0   and 0 0H   at some time 0s , then a spacetime singularity , where 

either   0   or   , occurs at a finite proper time 0 0H  before 0s . 

 

As was brought up by Beckwith, (2013a), if there is a non zero initial energy for the universe, a 

supposition which is counter to ADM theory as seen in Kolb and Turner (1991), then the supposition by 

Kauffman (2012) is supportable with evidence. I.e. then if there is a non zero initial energy, is this in 

any way counter to Theorem 6.1 above? We will review this question, keeping in mind that.   0   

is in reference to a scale factor, as written by Ellis, Maartens, and MacCallum. (2012), vanishing. What 

we will be doing will be considering what if   0  , and then see if it is still possible for   . 



I.e. the arguments as to if   , which we claim will not happen, if   0   will then be tied into 

a review as to what may be setting the Planck’s constant to be what it is in early times, reviewing the 

recent U. V. S. Seshavatharam, S. Lakshminarayana paper as to if the Planck constant is actually 

variable. To do so we will first of all give arguments as to why, first, the fine structure constant, 

 would be likely invariant since the beginning, due to a ratio behavior of M for mass within a Hubble 

radius, and T for space-time temperature values, which would have profound implications for the fine 

structure constant,  , which in turn would go to the heart of determining if Planck’s constant as 

defined below could have a constant value. Planck’s constant being invariant would in turn say some 

startling things about if Kauffman’s conjecture of being able to avoid having a scale factor   0  , 

i.e. that instead we would be looking at   0  , and also avoiding   . The tie in with 

Gravitinos, and the details of such can be observed in Beckwith(2013b) 

 

3. Looking at how to form the Planck constant and also the fine structure constant. Leading to 

  0   for all scale factors. 

 

We argue that inputs into the early Planck expression argue in favor of a constant Planck constant, and 

that it remains constant due to inputs into the fine structure constant given by U. V. S. 

Seshavatharam, S. Lakshminarayana as, if characteristic cosmic Hubble mass can be expressed as as 

given by the expression given below with
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If the above expression for the fine structure constant is fixed from the beginning, this means than then 

there could be very interesting inter relationships between temperature T and mass M, which will be going 

to what could happen if Kauffman (2012) is correct. To do so, we should also look at another part of the V. 

S. Seshavatharam, S. Lakshminarayana article which has ,  a relationship between the find structure 

constant,   as given by Eq. (2) below, where ,P em m  are for proton and electron mass.  
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The objection to using ,P em m   for proton and electron mass values is that before the Electroweak era, that 

there were no protons and electrons. Needless to say, if    remains invariant, in line with Paul Langacker, 

Gino Segre and Matthew J. Strassler’s statements that   variations of the fine structure constant may not 

provide meaningful limits, then it probably is safe to speak of an interactive ration between background 

cosmological  temperature T, and a mass M. I.e. if temperature T does not become infinite, and Mass M is 

also not infinite, but still proportional, this in itself may eliminate   . Given this, we will examine 

what happens to a defined Plank’s value as given by, if n is a quantum number to the following expression 

from the V. S. Seshavatharam, S. Lakshminarayana article 
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We will then re define Eq. (3) to read as ( eliminating the quantum number n) 

 

0 P eM Gm m                                                                                                                                 (4) 

 

I.e. locking in of the value of Planck’s constant initially would be commensurate with 

 

0M                                                                                                                                                  (5) 

 

We would argue that a given amount of mass, 
0M would be fixed in by initial conditions, at the start of the 

universe and that if energy, is equal to mass ( E = M) that in fact locking in a value of initial energy, 

according to the dimensional argument of ~E   that having a fixed initial energy of ~E  , with 

Planck’s constant fixed would be commensurate with, for very high frequencies,   of having a non zero 

initial energy, thereby confirming in part Kauffmann( 2012) for conditions for a non zero lower bound to 

the cosmological initial radius. If so then we always have   0   . We will then next examine the 

consequences of   0  . I.e. what if   ( )a   for a FLRW cosmology. 

 

4.   0   and what to look for in terms of the Raychaudhuri-Elders equation for    ( )a   at 

the start of cosmological expansion  in FLRW cosmology 

We will start off with   ( ) H

initiala a e    with H an initial huge Hubble parameter 
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Equation (6) above becomes, with   ( ) H

initiala a e    introduced will lead to 
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Here, H  as the initial Hubble expansion rate would be enormous. If we postulate that we wish for  

 2/ 8 0initiala const H G      
, it would be, if we have 0initial   , and maybe a time varying 

by temperature 
start valueT



    as given by Park, (2003), where T is the cosmological temperature, a 

requirement that 
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The above is a serious restriction upon values of initial energy density and also any would be temperature 

variance of . 
start valueT



    . I.e. it would be better that the 
start valueT



   have NO temperature variance 

and that the cosmological constant be a true constant. 

 

I.e. look at if   0start valueT


     and that we have fidelity with the above theorem ? Only true if  

 

I .  
start value 0  if 0   

II. 0start valueT


     if 0  , meaning that we would have, potentially a negative cosmological 

parameter which would initially be strongly negative.. I.e. this is not a good idea. Either that or we would 

have zero temperature initially 



III. 0start value T


     , which we assert is true for higher than four dimensional Brane theory 

models. Even so, the restriction given by Eq. (8) would still have to hold and would be then re written as 
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Note that at a minimum, the 
initial  terms in Eq. (8) and Eq.(9) are due to what Beckwith outlined in 

Beckwith(2013a) as well as judicious use of Salvoy (1983). 

 

5. What if   0   is always true, and then see if it is still possible for ? 

We will then have to go back to the Raychaudhuri-Ehlers equation in terms of the scale factor, in general, if 

what if   0  , and then see if it is still possible for   . To do so, look at 
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Now, set   . Then one has infinite negative acceleration. Now look at it again. How can one have 

infinite negative acceleration if   0   for all values of  ?  Not possible. 

 

One can have a high rate of negative acceleration, but to say it is infinite, while having   0   always 

true while having Eq.(10) hold is false by inspection. 

 

6. Conclusion: Non singular solutions to cosmological evolution require new thinking. 
 

The classical equations referred to and referenced here will need to be re done, and there is much to be 

gained by an appropriate rendering of Eq. 8 and Eq. 9 above, in the future. If there is quintessence, i.e. the 

situation will become immensely more complicated for the reasons stated above. initial  due to Gravitons 

and Gravitinos plus perhaps cyclic cosmology contributions  as stated by Penrose (2012) will provide at 

least a modicum of a density factor which will be followed up in fine tuning Eq. (8) and Eq. (9) above. 
 

Appendix A: Indirect support for a massive graviton 
 

We follow the recent work of Steven Kenneth Kauffmann, which sets an upper bound to concentrations of 

energy, in terms of how he formulated the following equation put in below as Eq. (A1). Equation (A1) 

specifies  an inter-relationship between an initial radius R  for an expanding universe, and a “gravitationally 

based energy” expression we will call  GT r which lead to a lower bound to the radius of the universe at the 

start of the Universe’s initial expansion, with manipulations. The term  GT r is defined via Eq.(A2) 

afterwards.  We start off with Kauffmann’s 
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Kauffmann calls 
4c

G

 
 
 

 a “Planck force” which is relevant due to the fact we will employ Eq. (A1) at the 

initial instant of the universe, in the Planckian regime of space-time. Also, we make full use of setting for 

small r, the following: 
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I.e. what we are doing is to make the expression in the integrand proportional to information leaked by a 

past universe into our present universe, with Ng style quantum infinite statistics use of  

 



~Initial entropy Graviton count entropyn S          (A3) 

 

Then Eq. (A1) will lead to  
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Here, 
5~ ~ 10Initial entropy Graviton count entropyn S  

   , 
62~ 10Gravitonm grams

, and  

1 Planck length = Planckl  = 1.616199 × 10
-35

 meters 

where we set 
3Planck

G
l

c
   with ~ 10PlanckR l  , and 0  .  Typically ~ 10PlanckR l  is about 

310 Planckl  at the outset, when the universe is the most compact.  The value of const is chosen based on 

common assumptions about contributions from all sources of early universe entropy, and will be more 

rigorously defined in a later paper.  

    

‘Acknowledgements 
This work is supported in part by National Nature Science Foundation of China grant No110752. The 

author thanks Jonathan Dickau for his review in 2013.  
 

Bibliography 

Andrew Walcott Beckwith, “Bounds Upon Graviton Mass – Using the Difference Between Graviton Propagation 

Speed and HFGW Transit Speed to Observe Post-Newtonian Corrections to Gravitational Potential Fields: Updated to 

Take Into Account Early Universe Cosmology”, March 2013 a http://vixra.org/abs/1304.0063 

Andrew Beckwith,” If a Machian Relationship Between Gravitons and Gravitinos Exists, What Does Such a 

Relationship Imply as to Scale Factor and Quinessence Evolution and the Evolution of DM?”, 
http://vixra.org/abs/1303.0224, March 2013 b 

G. Ellis, R. Maartens, and M.A. H. MacCallum;”Relativistic Cosmology”, Cambridge University press,2012, 

Cambridge, U.K. 

 

Steven Kauffmann, “ A Self Gravitational Upper bound On Localized Energy Including that of Virtual Particles and 

Quantum Fields, which Yield a Passable Dark Energy Density Estimate”,  

PUT IN WHICH VERSION OF THE DOCUMENT. I CITE THE EQN ON PAGE 12 

 

D. K. Park, H. Kim, and S.  Tamarayan, “Nonvanishing Cosmological Constant of Flat Universe in Brane world  

Scenarios,” Phys.Lett. B535 (2002) pp. 5-10 

 

R. Penrose, Cycles of Time, The Bodley Head, 2010, London, UK 

C.A. Salvoy, “Super symmetric Particle physics: A panorama, pp 299-328; from 18 Rencontres De Moriond, Volume 2 

, “Beyond the Standard Model” , edited by J. Tran Thanh Van, Editions  Frontieres, B. P. 44 91190 GIF Sur Yvette – 

France  1983 

U. V. S. Seshavatharam, S. Lakshminarayana, “Is Planck’s Constant - A Cosmological Variable?” International Journal 

of Astronomy, 2013 volume 2(1): pp 11-15 

http://vixra.org/abs/1304.0063
http://vixra.org/abs/1303.0224

