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The paper presents the correlation and correlation coefficient of single-valued
neutrosophic sets (SVNSs) based on the extension of the correlation of intuitionistic
fuzzy sets and demonstrates that the cosine similarity measure is a special case of the
correlation coefficient in SVNS. Then a decision-making method is proposed by the use
of the weighted correlation coefficient or the weighted cosine similarity measure of
SVNSs, in which the evaluation information for alternatives with respect to criteria is
carried out by truth-membership degree, indeterminacy-membership degree, and
falsity-membership degree under single-valued neutrosophic environment. We utilize
the weighted correlation coefficient or the weighted cosine similarity measure between
each alternative and the ideal alternative to rank the alternatives and to determine the
best one(s). Finally, an illustrative example demonstrates the application of the
proposed decision-making method.
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1. Introduction

Smarandache introduced Neutrosophy in 1995. Neutrosophy is a branch of philosophy

which studies the origin, nature, and scope of neutralities, as well as their interactions with

different ideational spectra (Smarandache, 1999). Neutrosophic set is a powerful general

formal framework which generalizes the concept of the classic set, fuzzy set (Zadeh,

1965), interval-valued fuzzy set (Turksen, 1986), intuitionistic fuzzy set (Atanassov,

1986), interval-valued intuitionistic fuzzy set (Atanassov & Gargov, 1989), paraconsistent

set (Smarandache, 1999), dialetheist set (Smarandache, 1999), paradoxist set

(Smarandache, 1999), and tautological set (Smarandache, 1999). A neutrosophic set A

is defined on a universe of discourse U. An element x in set A is denoted as x ¼ x(T, I,

F) [ A, where T is a truth-membership function, I is an indeterminacy-membership

function, and F is a falsity-membership function, then T, I, and F are the real standard or

non-standard subsets of ]02, 1þ[ (Smarandache, 1999). Neutrosophic sets have many

applications such as information fusion in which the data are combined from different

sensors. Recently, neutrosophic sets have mainly been applied to image processing (Cheng

& Guo, 2008; Guo & Cheng, 2009).

The intuitionistic fuzzy set considers both the truth-membership tA(x) and the falsity-

membership fA(x) with tA(x), fA(x) [ [0, 1] and 0 # tA(x) þ fA(x) # 1 and can only handle

incomplete information (set incompletely known), but cannot handle the indeterminate
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information which is the zone of ignorance of a proposition’s value between truth and

falsehood (inconsistent information). In intuitionistic fuzzy sets, the indeterminacy is

1 2 tA(x) 2 fA(x) (i.e. hesitancy or unknown degree) by default. In a neutrosophic set, the

indeterminacy is quantified explicitly, then the component ‘I’, indeterminacy, can be split

into more subcomponents in order to better catch the vague information we work with

(Smarandache, 1999). However, the truth-membership, the indeterminacy-membership,

and the falsity-membership are independent of the neutrosophic set. Its components T, I,

and F are not only non-standard subsets included in the unitary non-standard interval ]02,

1þ[ but also standard subsets included in the unitary standard interval [0, 1] as in the

intuitionistic fuzzy set (Wang, Smarandache, Zhang, & Sunderraman, 2010). Furthermore,

the connectors in the intuitionistic fuzzy set are defined with respect to T and F, i.e.

membership and non-membership only (hence the indeterminacy is what is left from 1),

while in the neutrosophic set, they can be defined with respect to any of them (no

restriction). For example (Wang et al., 2010), when we ask the opinion of an expert about

certain statement, he or she may say that the possibility in which the statement is true is 0.5

and the statement is false is 0.6 and the degree in which he or she is not sure is 0.2. For

neutrosophic notation, it can be expressed as x(0.5,0.2,0.6). For another example, suppose

there are 10 voters during a voting process. Four vote ‘aye’, three vote ‘blackball’, and

three are undecided. For neutrosophic notation, it can be expressed as x(0.4,0.3,0.3).

However, these expressions are beyond the scope of the intuitionistic fuzzy set. So the

notion of neutrosophic set is more general and overcomes the aforementioned issues.

The neutrosophic set generalizes the above-mentioned sets from philosophical point of

view. From scientific or engineering point of view, the neutrosophic set and set-theoretic

operators need to be specified. Otherwise, it will be difficult to apply in the real

applications. Therefore, Wang et al. (2010) proposed a single-valued neutrosophic set

(SVNS), which is an instance of neutrosophic set, and provided the set-theoretic operators

and various properties of SVNSs. The SVNS can be used for the scientific and engineering

applications of SVNSs because SVNS theory is valuable in modelling uncertain,

imprecision, and inconsistent information. Due to its ability to easily reflect the ambiguous

nature of subjective judgements, SVNSs are suitable for capturing imprecise, uncertain,

and inconsistent information in the multicriteria decision analysis. Therefore, the main

purposes of this paper are to present the correlation coefficient of SVNSs based on the

extension of the correlation of intuitionistic fuzzy sets (Gerstenkorn & Manko, 1991; Ye,

2010) and to demonstrate that the cosine similarity measure is a special case of the

correlation coefficient in SVNS. Then, a decision-making method using the weighted

correlation coefficient or the weighted cosine similarity measure of SVNSs is established

in which the evaluation information for alternatives with respect to criteria is carried by

truth-membership degree, indeterminacy-membership degree, and falsity-membership

degree under single-valued neutrosophic environment. The weighted correlation

coefficient or the weighted cosine similarity measure between each alternative and the

ideal alternative is utilized to rank the alternatives and to determine the best one(s).

Finally, an illustrative example demonstrates the application of the proposed decision-

making method. However, the existing fuzzy multicriteria decision-making methods

cannot deal with the decision-making problem in this paper. The main advantage of the

proposed single-valued neutrosophic decision-making method can handle not only

incomplete information but also the indeterminate information and inconsistent

information which exist commonly in real situations.
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2. Some concepts of neutrosophic sets and SVNSs

2.1 Neutrosophic sets

Neutrosophic set is a part of neutrosophy, which studies the origin, nature, and scope of

neutralities, as well as their interactions with different ideational spectra (Smarandache,

1999), and is a powerful general formal framework, which generalizes the above-

mentioned sets from philosophical point of view.

Smarandache (1999) gave the following definition of a neutrosophic set.

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by

x (Smarandache, 1999). A neutrosophic set A in X is characterized by a truth-membership

function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership

function FA(x). The functions TA(x), IA(x), and FA(x) are real standard or non-standard

subsets of ]02, 1þ[. That is TA(x): X ! ]02, 1þ[, IA(x): X ! ]02, 1þ[, and FA(x): X ! ]02,

1þ[.

There is no restriction on the sum of TA(x), IA(x), and FA(x), so 02 # sup TA(x) þ sup

IA(x) þ sup FA(x) # 3þ.

Definition 2. The complement of a neutrosophic set A is denoted by c(A) and is defined as

Tc(A)(x) ¼ {1þ} 2 TA(x), Ic(A)(x) ¼ {1þ} 2 IA(x), and Fc(A)(x) ¼ {1þ} 2 FA(x) for every

x in X (Smarandache, 1999).

Definition 3. A neutrosophic set A is contained in the other neutrosophic set B, A # B if

and only if inf TA(x) # inf TB(x), sup TA(x) # sup TB(x), inf IA(x) $ inf IB(x), sup

IA(x) $ sup IB(x), inf FA(x) $ inf FB(x), and sup FA(x) $ sup FB(x) for every x in X

(Smarandache, 1999).

2.2 SVNS

An SVNS is an instance of a neutrosophic set, which can be used in real scientific and

engineering applications. In the following, we introduce the definition of an SVNS (Wang

et al., 2010).

Definition 4. Let X be a space of points (objects) with generic elements in X denoted by x

(Wang et al., 2010). An SVNS A in X is characterized by a truth-membership function

TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function

FA(x) for each point x in X, TA(x), IA(x), FA(x) [ [0, 1].

When X is continuous, an SVNS A can be written as

A ¼

ð
X

TAðxÞ; IAðxÞ;FAðxÞh i

x
; x [ X:

When X is discrete, an SVNS A can be written as

A ¼
Xn
i¼1

TAðxiÞ; IAðxiÞ;FAðxiÞh i

xi
; xi [ X:

Definition 5. The complement of an SVNS A is denoted by c(A) and is defined

as Tc(A)(x) ¼ FA(x), Ic(A)(x) ¼ 1 2 IA(x), Fc(A)(x) ¼ TA(x) for any x in X (Wang et al.,

2010).
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Definition 6. An SVNS A is contained in the other SVNS B, A # B, if and only if

TA(x) # TB(x), IA(x) $ IB(x), FA(x) $ FB(x) for any x in X (Wang et al., 2010).

Definition 7. Two SVNSs A and B are equal, written as A ¼ B, if and only if A # B and

B # A (Wang et al., 2010).

3. Correlation coefficient of SVNSs

An SVNS is a generalization of classic set, fuzzy set, intuitionistic fuzzy set, and

paraconsistent set. In this section, based on the extension of the correlation of intuitionistic

fuzzy sets (Gerstenkorn & Manko 1991; Ye, 2010), we define the so-called informational

energy of SVNS, correlation of two SVNSs, and the correlation coefficient of two SVNSs,

which can be used in real scientific and engineering applications.

Let any SVNS be A ¼
Pn

i¼1kTAðxiÞ; IAðxiÞ;FAðxiÞl=xi; xi [ X in the universe of

discourse X ¼ {x1, x2, . . . , xn}, where TA(xi), IA(xi), FA(xi) [ [0, 1] for every xi [ X. we

define

TðAÞ ¼
Xn
i¼1

T2
AðxiÞ þ I2AðxiÞ þ F2

AðxiÞ
� �

: ð1Þ

Then the above formula expresses the so-called informational energy of the SVNS A.

Assume that two SVNSs A and B in the universe of discourse X ¼ {x1, x2, . . . , xn}

are denoted by A ¼
Pn

i¼1kTAðxiÞ; IAðxiÞ;FAðxiÞl=xi; xi [ X and B ¼
Pn

i¼1kTBðxiÞ; IB
ðxiÞ;FBðxiÞl=xi; xi [ X, where TA(xi), IA(xi), FA(xi), TB(xi), IB(xi), FB(xi) [ [0, 1]

for every xi [ X. Then we define the following so-called correlation of the SVNSs

A and B:

CðA;BÞ ¼
Xn
i¼1

TAðxiÞ�TBðxiÞ þ IAðxiÞ�IBðxiÞ þ FAðxiÞ�FBðxiÞ½ �: ð2Þ

It is obvious that the correlation of SVNSs satisfies the following properties:

(1) C(A, A) ¼ T(A),

(2) C(A, B) ¼ C(B, A).

Therefore, we now define the correlation coefficient of the SVNSs A and B by the

formula:

KðA;BÞ ¼
CðA;BÞ

TðAÞ�TðBÞ½ �1=2

¼

Pn
i¼1 TAðxiÞ�TBðxiÞ þ IAðxiÞ�IBðxiÞ þ FAðxiÞ�FBðxiÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 T2
AðxiÞ þ I2AðxiÞ þ F2

AðxiÞ
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 T2
BðxiÞ þ I2BðxiÞ þ F2

BðxiÞ
� �q : ð3Þ

Then, it is obvious that the correlation coefficient of SVNSs satisfies the following

properties:

(1) A ¼ B ) K(A, B) ¼ 1,

(2) K(A, B) ¼ K(B, A).
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Theorem 1. For two SVNSs A and B in the universe of discourse X ¼ {x1, x2, . . . , xn}, the

correlation coefficient of SVNSs satisfies the following property:

0 # KðA;BÞ # 1:

Proof. Considering n ¼ 1, from Equation (3), we yield the following correlation

coefficient:

KðA;BÞ ¼
TAðxiÞ�TBðxiÞ þ IAðxiÞ�IBðxiÞ þ FAðxiÞ�FBðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
AðxiÞ þ I2AðxiÞ þ F2

AðxiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
BðxiÞ þ I2BðxiÞ þ F2

BðxiÞ

q : ð4Þ

Assume that three parameters TA(xi), IA(xi), and FA(xi) in the SVNS A or TB(xi), IB(xi),

and FB(xi) in the SVNS B can be considered as a vector representation with the three

elements. Based on the cosine similarity measure (Ye, 2011), the cosine similarity

measure between SVNSs A and B is defined as follows:

SðA;BÞ ¼
TAðxiÞ�TBðxiÞ þ IAðxiÞ�IBðxiÞ þ FAðxiÞ�FBðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
AðxiÞ þ I2AðxiÞ þ F2

AðxiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
BðxiÞ þ I2BðxiÞ þ F2

BðxiÞ

q : ð5Þ

According to the value range of the cosine function, we can obtain the following

property:

0 # SðA;BÞ # 1:

Hence, there is 0 # K(A, B) # 1 for i ¼ 1 because S(A, B) ¼ K(A, B) for i ¼ 1.

When i ¼ n, we can educe the property of 0 # K(A, B) # 1 from Equations (3)–(5)

according to the cosine property.

Thus the proof is finished. A

Obviously, the cosine similarity measure Equation (5) is a special case of the

correlation coefficient Equation (3) for i ¼ 1.

However, the differences of importance are considered in the elements in the universe.

Therefore, we need to take the weights of the elements xi (i ¼ 1, 2, . . . , n) into account. In

the following, we develop a weighted correlation coefficient between SVNSs.

Let w ¼ {w1, w2, . . . , wn} be the weight vector of the elements xi (i ¼ 1, 2, . . . , n),

then we have the following weighted correlation coefficient:

WðA;BÞ ¼

Pn
i¼1wi½TAðxiÞ�TBðxiÞ þ IAðxiÞ�IBðxiÞ þ FAðxiÞ�FBðxiÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1wi T
2
AðxiÞ þ I2AðxiÞ þ F2

AðxiÞ
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1wi T
2
BðxiÞ þ I2BðxiÞ þ F2

BðxiÞ
� �q :

ð6Þ

If w ¼ {1/n, 1/n, . . . , 1/n}, then Equation (6) is reduced to the correlation coefficient

Equation (3).

It is easy to check that the weighted correlation coefficient W(A, B) between SVNSs

A and B also satisfies the property of 0 # W(A, B) # 1.
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4. Single-valued neutrosophic multicriteria decision-making method

An SVNS is a generalization of classic set, fuzzy set, intuitionistic fuzzy set, and

paraconsistent set. It is more general and can handle not only incomplete information but

also the indeterminate information and inconsistent information which exist commonly in

real situations. Therefore, the single-valued neutrosophic decision-making is more

suitable for real scientific and engineering applications.

In this section, we present a handling method for the multicriteria decision-making

problem under single-valued neutrosophic environment (or called a single-valued

neutrosophic multicriteria decision-making method) by means of the weighted correlation

coefficient or weighted cosine similarity measure between SVNSs.

Let A ¼ {A1, A2, . . . , Am} be a set of alternatives and C ¼ {C1, C2, . . . , Cn} be a set of

criteria. Assume that the weight of the criterion Cj ( j ¼ 1, 2, . . . , n), entered by the

decision-maker, is wj, wj [ [0, 1] and
Pn

j¼1xj ¼ 1. In this case, the characteristic of the

alternative Ai (i ¼ 1, 2, . . . , m) is represented by the following SVNS:

Ai ¼
Xn

j¼1

TAi
ðCjÞ; IAi

ðCjÞ;FAi
ðCjÞ

� �
Cj

;Cj [ C;

where TAi
ðCjÞ, IAi

ðCjÞ, FAi
ðCjÞ [ [0, 1], j ¼ 1, 2, . . . , n, and i ¼ 1, 2, . . . , m. An SVNS is

denoted by aij ¼ kaij, bij, cijl for convenience. Here, an SVNS is usually derived from the

evaluation of an alternative Ai with respect to a criterion Cj by means of a score law and

data processing in practice. Therefore, we can elicit a single-valued neutrosophic decision

matrix D ¼ (aij)m£n.

In multicriteria decision-making environments, the concept of ideal point has been

used to help identify the best alternative in the decision set. Although the ideal alternative

does not exist in real world, it does provide a useful theoretical construct against which to

evaluate alternatives (Ye, 2010). Hence, we define the ideal alternative A* as the SVNS

a*

j ¼ ka*

j ; b
*

j ; c
*

j l ¼ k1; 0; 0l for j ¼ 1, 2, . . . , n.

Thus, by applying Equation (6), the weighted correlation coefficient between an

alternative Ai and the ideal alternative A* represented by the SVNSs is defined by

WiðAi;A*Þ ¼

Pn
j¼1wj aij�a

*

j þ bij�b
*

j þ cij�c
*

j

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1wj a2ij þ b2ij þ c2ij

h ir ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1wj a*

j

� �2

þ b
*

j

� �2

þ c*

j

� �2
� 	s : ð7Þ

Then, the bigger the value of the weighted correlation coefficient Wi(Ai, A
*) is, the

better the alternative Ai is. Through the weighted correlation coefficient Wi(Ai, A
*) (i ¼ 1,

2, . . . , m) between each alternative and the ideal alternative, the ranking order of all

alternatives can be determined and the best one can be easily identified as well.

Because the cosine similarity measure Equation (5) is a special case of the correlation

coefficient Equation (3) for i ¼ 1, we can also define the weighted cosine similarity

measure between an alternative Ai and the ideal alternative A* represented by the SVNSs
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are defined as

MiðAi;A
*
Þ ¼

Xn
j¼1

wj

aij�a
*

j þ bij�b
*

j þ cij�c
*

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ij þ b2ij þ c2ij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a*

j

� �2

þ b
*

j

� �2

þ c*

j

� �2
r : ð8Þ

The measure values of Equation (8) can yield the ranking order of all alternatives and

obtain the best alternative.

5. Illustrative example

In this section, an example for the multicriteria decision-making problem of alternatives is

used as the demonstration of the application of the proposed decision-making method, as

well as the effectiveness of the proposed method.

Let us consider the decision-making problem adapted from Ye (2010). There is an

investment company, which wants to invest a sum of money in the best option. There is a

panel with four possible alternatives to invest the money: (1) A1 is a car company; (2) A2 is

a food company; (3) A3 is a computer company; and (4) A4 is an arms company. The

investment company must take a decision according to the following three criteria: (1) C1

is the risk analysis; (2) C2 is the growth analysis; and (3) C3 is the environmental impact

analysis. Then, the weight vector of the criteria is given by w ¼ (0.35, 0.25, 0.40).

For the evaluation of an alternative Ai with respect to a criterion Cj (i ¼ 1, 2, 3, 4;

j ¼ 1, 2, 3), it is obtained from the questionnaire of a domain expert. For example, when

we ask the opinion of an expert about an alternative A1 with respect to a criterion C1, he or

she may say that the possibility in which the statement is good is 0.4 and the statement is

poor is 0.3 and the degree in which he or she is not sure is 0.2. For the neutrosophic

notation, it can be expressed as a11 ¼ k0.4, 0.2, 0.3l. Thus, when the four possible

alternatives with respect to the above three criteria are evaluated by the expert, we can

obtain the following single-valued neutrosophic decision matrix D:

D ¼

0:4; 0:2; 0:3h i 0:4; 0:2; 0:3h i 0:2; 0:2; 0:5h i

0:6; 0:1; 0:2h i 0:6; 0:1; 0:2h i 0:5; 0:2; 0:2h i

0:3; 0:2; 0:3h i 0:5; 0:2; 0:3h i 0:5; 0:3; 0:2h i

0:7; 0:0; 0:1h i 0:6; 0:1; 0:2h i 0:4; 0:3; 0:2h i

2
666664

3
777775:

Then, we utilize the developed approach to obtain the most desirable alternative(s).

By using Equation (7), we can obtain the following values of weighted correlation

coefficient Wi(Ai, A
*) (i ¼ 1, 2, 3, 4):

W1ðA1;A
*
Þ ¼ 0:5785; W2ðA2;A

*
Þ ¼ 0:9108; W3ðA3;A

*
Þ ¼ 0:7554; and

W4ðA4;A
*
Þ ¼ 0:8848:

Therefore, the ranking order of the four alternatives is A2, A4, A3, and A1. Obviously,

amongst them A2 is the best alternative.
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Or by applying Equation (8), we can also give the following values of weighted cosine

similarity measure Mi(Ai, A
*) (i ¼ 1, 2, 3, 4):

M1ðA1;A
*
Þ ¼ 0:5849; M2ðA2;A

*
Þ ¼ 0:9104; M3ðA3;A

*
Þ ¼ 0:7511; and

M4ðA4;A
*
Þ ¼ 0:8779:

Thus, the ranking order of the four alternatives is A2, A4, A3, and A1. Obviously,

amongst them A2 is also the best alternative.

Hence, we can see that the above two kinds of ranking orders and the best alternative

are the same.

6. Conclusion

In this paper, we defined the information energy of SVNS, correlation of SVNSs,

correlation coefficient of SVNSs, and weighted correlation coefficient of SVNSs. Also we

demonstrated that the cosine similarity measure is a special case of the correlation

coefficient for i ¼ 1. Then, the multicriteria decision-making method has been established

under single-valued neutrosophic environment by means of the weighted correlation

coefficient or the weighted cosine similarity measure. Through the weighted correlation

coefficient or the weighted cosine similarity measure between each alternative and

the ideal alternative, the ranking order of all alternatives can be determined and the best

alternative can be easily identified as well. Finally, an illustrative example illustrated the

application of the developed approach. Therefore, the proposed single-valued

neutrosophic multicriteria decision-making method is more suitable for real scientific

and engineering applications because it can handle not only incomplete information but

also the indeterminate information and inconsistent information which exist commonly in

real situations. The technique proposed in this paper extends existing decision-making

methods and provides a useful way for decision-makers. In the future, we shall continue

working in the applications of complex decision-making problems such as group decision-

making problems with unknown weights of criteria and other domains such as expert

system, information fusion system, bioinformatics, and medical informatics.
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