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Abstract : This paper presents the current possible applications of Dynamical Systems in 
Engineering. The applications of chaos, fractals have proven to be an exciting and fruitful 
endeavor. These applications are highly diverse ranging over such fields as Electrical, 
Electronics and Computer Engineering. Dynamical Systems theory describes general 
patterns found in the solution of systems of nonlinear equations. The theory focuses upon 
those equations representing the change of processes in time. This paper offers the issue of 
applying dynamical systems methods to a wider circle of Engineering problems. There are 
three components to our approach: ongoing and possible applications of Fractals, Chaos 
Theory and Dynamical Systems. Some basic and useful computer simulation of Dynamical 
System related problems have been shown also. 
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1. Introduction : The general forms for dynamical systems are, 

x’ = f(x) [continuous time] 

x(k+1) = f(x(k)) [Discrete time] 

dx ax
dt

  is the simplest differential equation. Here x = x(t) is an unknown real valued 

function of a real variable t and dx
dt

is it’s derivative; we can also use x’ or x’(t) for the 

derivative. For each value of parameter a we have a different differential equation. So for 
every value of t, 

x’(t) = ax(t); to solve it, since x(t) = atke is a solution so, x’(t)= atake =ax(t)  

we call the collection of all solutions of a differential equation the general solution of the 
equation. From the initial value problem, 

                                                                      x’=ax, x(0) = u0                                                                        (1) 



The equation x’ = ax is stable in a certain sense if a  0. If a is replace by another constant b 
whose sign is the same as a, then the qualitative behavior of the solutions doesn’t change. 
But if a=0, the slightest change in a leads to a radical change in the behavior of solutions. 
We say, bifurcation at a=0 in the one parameter family of equations x’=ax. A system of 
differential equations is a collection of n interrelated different equations of the form, 

                                                            x’1 = f1(t, x1,x2,…, xn)                                                                        (2) 

                                                            x’2 = f2(t, x1,x2,…, xn)                                                                        (3) 

                                                            x’3 = fn(t, x1,x2,…, xn)                                                                        (4) 

This can be written, x’ = F(t, x); a solution would be of the form X(t)=(x1(t),…,xn(t)) that 
satisfies the equation so that, 

                                                            X’(t)=F(t, X(t))                                                                                   (5) 

The system of equations is called autonomous if none of the fj depends on t, so the system 
becomes x’ = F(x). A vector X0 for which F(X0)=0 is called an equilibrium point for the 
system. An equilibrium point corresponds to a constant solution X(t) X0 of the system. 
Many of the most important differential equations encountered in engineering are second 
order differential equation, like x” = f(t,x,x’) 

Any second order system may be written as a system of first order equations. Unlike linear 
(constant coefficient) systems, where we can always find the explicit solution of any initial 
value problem, this is rarely the case for nonlinear systems.  

In general, a dynamical system is a mapping from the space of input signals to the space of 
output signals. By the term signal, we mean a real vector-valued function of a time variable. 
For an arbitrary dynamical system there are two major kinds of stability notions: internal 
stability and external stability. The internal stability considers trajectories of an 
autonomous system, i.e. system without any inputs and outputs; this way, it is a property of 
internal dynamics of the system. External stability concerns with how much the system 
amplifies signals. Everything in nature is continuously changing and evolving. Any system 
whose status changes with time is called a dynamical system. Dynamical Systems are 
described by differential equations-whose solution show how the variables of the system 
depend on the independent variable time. 

Roughly speaking, a dynamical system describes the evolution of a state over time. To make 
this notion more precise we need to specify what we mean by the terms “evolution”, “state” 
and “time”. Certain dynamical systems can also be influenced by external inputs, which 
may represent either uncontrollable disturbances (e.g. wind affecting the motion of a wind 
turbine) or control signals (e.g. the commands of the programmer to the a robotic 



spacecraft for controlling engines). Some dynamical systems may also have outputs, which 
may represent either quantities that can be measured, or quantities that need to be 
regulated. Dynamical systems with inputs and outputs are sometimes referred to as control 
systems which is a very important topic in Engineering. 

Based on the type of their state, dynamical systems can be classified into: 

1. Continuous 2. Discrete 3. Hybrid  

Based on the set of times over which the state evolves, dynamical systems can be classified 
into: 

1. Continuous time 2. Discrete time 3. Hybrid time 

Continuous state systems can be further classified according to the equations used to 
describe the evolution of their state: 

1. Linear 2. Nonlinear 

A dynamical system consists of two parts:   

1. State 2. Dynamics 

The state is defined as the information necessary at a given time instant to define further 
outputs of the system.  The dynamics are a set of rules that define how the state evolves 
over time. A dynamical system evolves on a state space (also called phase space). The state 
is represented by a vector in the state space.          

A mathematical description of a dynamical system is   

1. System of difference equations for the discrete case     

2. Systems of differential equations for the continuous case     

The motion of the system is called a trajectory or orbit of the dynamical system. 

The revolution in digital technology has fueled a need for design techniques that can 
guarantee safety and performance specifications of embedded systems, or systems that 
couple discrete logics with analog physical environment. Such systems can be modeled by 
hybrid systems, which are dynamical systems that combine continuous-time dynamics 
modeled by differential equations and discrete-event dynamics modeled by finite 
automata. Important applications of hybrid systems include CAD, real-time software, 
robotics and automation, mechatronics, aeronautics, air and ground transportation 
systems, process control etc. Recently, hybrid systems have been at the center of intense 
research activity in the control theory, computer-aided verification, and artificial 



intelligence communities, and methodologies have been developed to model hybrid 
systems, to analyze their behaviors, and to synthesize controllers that guarantee closed-
loop safety and performance specifications.  

Hybrid systems are dynamical systems that involve the interaction of different types of 
dynamics. Hybrid dynamics provide a convenient framework for modeling systems in a 
wide range of Engineering Applications : 

a. In electrical circuits continuous phenomena such as the charging of capacitors are 
interrupted by discrete phenomena such as by switching opening and closing, or diodes 
going on or off. 

b. In embedded computation systems a digital computer interacts with a mostly analog 
environment 

Nonlinear, chaotic systems can produce very irregular data; similar but distinct from a 
stochastic system (i.e. system with probabilistic dynamics).   

1. The rapid loss of predictability of chaotic systems is due to a phenomenon called 
sensitive dependence on initial conditions.   

2. For a certain class of dynamical systems, once transients are over, the trajectory of the 
system approaches a subset of the state space called an attractor.  

3. Attractors of dissipative chaotic systems generally are strange attractors-complicated 
geometrical objects that exhibit fractal structure.   

4. Examples of deterministic chaotic systems: Logistic Map, Lorenz attractor.  

In a linear system, there can be only one equilibrium point, and the structure of the vector 
field over the whole state space is same-determined by the Eigenvalues and Eigenvectors of 
the Matrix. So Linear Systems are simple to Analyze. But actually all systems are practically 
Nonlinear. In general, a linear set of equations is actually a local linear approximation of a 
nonlinear system in the neighborhood of an equilibrium point. 

A dynamical system is a way of describing the passage in time of all points of a given space 
S. S could be thought of the space of states of some physical system. Mathematically S might 
be a Euclidean space or an open subset of Euclidean space or some other space such as a 
surface in n . Given an initial position X  n , a dynamical system on n  tells us where X 
is located 1 unit of time later, 2 units time later, and so on. At time zero, X is located at 
position X. If we measure the positions Xt using only integer time values, we have a discrete 
dynamical system. If time is measured continuously with t  , we have a continuous 



dynamical system. If the system depends on time in a continuously differential manner, we 
have a smooth dynamical system. 

Chua’s circuit is an RLC circuit for the study of chaos with four linear elements and a 
nonlinear diode, which can be modeled by a system of three differential equations. The 
equations for Chua’s are, 

                                                                 X’ = c1(y – x – g(x))                                                                     (6) 

                                                             Y’ = c2(x – y + z)                                                               (7) 

                                                                            Z’ = –c3y                                                                    (8) 

Where,  g(x) = 0 1
1 2
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The function g(x) is the only nonlinearity in the circuit. From the simulation we can see 
attractors from this circuit. The term attractor is used for the forward time limit of an orbit 
that attracts a significant portion of initial conditions. A sink is an example since it attracts 
at least a small neighborhood of initial values. Chaotic orbits can be attracting, If the 
forward limit set of such a chaotic orbit contains the orbit itself (and therefore contains a 
dense orbit), then the attractor is a chaotic attractor.  

In Fractals, If we consider a bounded set A in a Euclidean n-dimensional space,  then the set 
A is said to be self-similar if A is the union of N distinct ( non overlapping) copies of itself, 
each of which has been scaled by a ration r < 1 in all coordinates. The fractal is described by 

the relationship, NrD=1 or  D = ln
ln

N
r

 , where D is the fractal dimension. The ranges in the 

value of D characterize the type of fractal. Fractals are mathematical objects which can be 
in general be written as,  

                                                                                  0im ( )n

n
A A


                                                       (9) 

Where A0 denotes an initial object and n = * * … (n times) 

Denotes n iteration of  . They are typically generated by computing and displaying a 
sequence of iterates, A0, A1, A2, …  

Where, An =  (An-1).  It is clear that fractals satisfy the invariance equation: 

                                                                            A =  (A)                                                                           (10) 

Which confers to them a property which we generally refer to as self-transformability, and 
which leads to the well known properties of fractals to be rugged objects with an infinite 



amount of detail, objects which can be found again and again in magnified small pieces of 
themselves. 

2. Fractals in Engineering : 

2.1. Fractal Image Compression : Storing images in less memory leads to a direct 
reduction in storage cost and faster data transmissions which is important in both signal 
processing and communication engineering. These facts justify the efforts, of companies 
and universities, on new image compression algorithms. Images are stored on computers 
as collections of bits (a bit is a binary unit of information which can answer “yes” or “no” 
questions) representing pixels or points forming the picture elements. Since the human eye 
can process large amounts of information (some 8 million bits), many pixels are required to 
store moderate quality images. These bits provide the “yes” and “no” answers to the 8 
million questions that determine the image. Most data contains some amount of 
redundancy, which can sometimes be removed for storage and replaced for recovery, but 
this redundancy does not lead to high compression ratios. An image can be changed in 
many ways that are either not detectable by the human eye or do not contribute to the 
degradation of the image [1]. The standard methods of image compression come in several 
varieties. The current most popular method relies on eliminating high frequency 
components of the signal by storing only the low frequency components (Discrete Cosine 
Transform Algorithm). This method is used on JPEG (still images), MPEG (motion video 
images), H.261 (Video Telephony on ISDN lines), and H.263 (Video Telephony on PSTN 
lines) compression algorithms. 

Fractal Compression was first promoted by M.Barnsley, who founded a company based on 
fractal image compression technology but who has not released details of his scheme. The 
first public scheme was due to E.Jacobs and R.Boss of the Naval Ocean Systems Center in 
San Diego who used regular partitioning and classification of curve segments in order to 
compress random fractal curves (such as political boundaries) in two dimensions [2]. A 
doctoral student of Barnsley’s, A. Jacquin, was the first to publish a similar fractal image 
compression scheme [3]. 

Imagine a special type of photocopying machine that reduces the image to be copied by half 
and reproduces it three times on the copy (see Figure 1). What happens when we feed the 
output of this machine back as input? Figure 2 shows several iterations of this process on 
several input images. We can observe that all the copies seem to converge to the same final 
image, the one in 2(c). Since the copying machine reduces the input image, any initial image 
placed on the copying machine will be reduced to a point as we repeatedly run the 
machine; in fact, it is only the position and the orientation of the copies that determines 
what the final image looks like. 



 

Fig 1 : A copy machine that makes three reduced copies of the input image 

 

Fig 2 : The first three copies generated on the copying machine Figure 1. 

The way the input image is transformed determines the final result when running the copy 
machine in a feedback loop. However we must constrain these transformations, with the 
limitation that the transformations must be contractive, that is, a given transformation 
applied to any two points in the input image must bring them closer in the copy. This 
technical condition is quite logical, since if points in the copy were spread out the final 
image would have to be of infinite size. Except for this condition the transformation can 
have any form.  

A common feature of these transformations that run in a loop back mode is that for a given 
initial image each image is formed from a transformed (and reduced) copies of itself, and 
hence it must have detail at every scale. That is, the images are fractals. This method of 



generating fractals is due to John Hutchinson [5], and more information about the various 
ways of generating such fractals can be found in books by Barnsley [4] and Peitgen, Saupe, 
and Jurgens. Barnsley suggested that perhaps storing images as collections of 
transformations could lead to image compression.  

The scheme will encode an image as a collection of transforms that are very similar to the 
copy machine metaphor. Just as the fern has detail at every scale, so does the image 
reconstructed from the transforms. The decoded image has no natural size, it can be 
decoded at any size. The extra detail needed for decoding at larger sizes is generated 
automatically by the encoding transforms. One may wonder if this detail is “real”; we could 
decode an image of a person increasing the size with each iteration, and eventually see skin 
cells or perhaps atoms. The answer is, of course, no. The detail is not at all related to the 
actual detail present when the image was digitized; it is just the product of the encoding 
transforms which originally only encoded the large-scale features. However, in some cases 
the detail is realistic at low magnifications, and this can be useful in Security and 
Biomedical Engineering Imaging applications. 

A typical image of a face, does not contain the type of self-similarity like the fern. The image 
does contain other type of self-similarity. Like, if someone stands in front of the mirror 
outside and takes an image then the reflection portion on face from sunlight is same as the 
portion that we get from the mirror. These distinctions form the kind of self-similarity 
rather than having the image be formed by whole copies of the original (under appropriate 
affine transformations), here the image will be formed by copies of properly transformed 
parts of the original. These transformed parts do not fit together, in general, to form an 
exact copy of the original image, and so we must allow some error in our representation of 
an image as a set of transformations. 

2.2. Fractal Antenna : Classical geometry limits the packing of large wave-lengths into 
small devices. By leveraging the space-filling properties of fractals, it is possible to extract 
the maximum performance from miniature antennas. The fractal repetition of patterns at 
reducing scales also enables researchers to design multiband antennas with the highest 
possible density of bands. 

Fractal antenna theory is built, as is the case with conventional antenna theory, on classic 
electromagnetic theory.  Fractal antenna theory uses a modern (fractal) geometry that is a 
natural extension of Euclidian geometry. A fractal antenna is an antenna that uses a fractal, 
self-similar design to maximize the length, or increase the perimeter (on inside sections or 
the outer structure), of material that can receive or transmit electromagnetic radiation 
within a given total surface area or volume. Such fractal antennas are also referred to as 
multilevel and space filling curves, but the key aspect lies in their repetition of a motif over 
two or more scale sizes [6] or "iterations". For this reason, fractal antennas are very 



compact, multiband or wideband, and have useful applications in cellular telephone and 
microwave communications. 

 

Fig 3: An example of Fractal Antenna 

A good example of a fractal antenna as a space filling curve is in the form of a shrunken 
fractal helix. Here, each line of copper is just a small fraction of a wavelength. A fractal 
antenna's response differs markedly from traditional antenna designs, in that it is capable 
of operating with good-to-excellent performance at many different frequencies 
simultaneously. Normally standard antennas have to be "cut" for the frequency for which 
they are to be used—and thus the standard antennas only work well at that frequency. This 
makes the fractal antenna an excellent design for wideband and multiband applications. 

 

Fig 4 : An example of a fractal antenna: a space-filling curve called a Minkowski Island 



Many fractal element antennas use the fractal structure as a virtual combination of 
capacitors and inductors. This makes the antenna so that it has many different resonances 
which can be chosen and adjusted by choosing the proper fractal design. Just like any other 
antenna, the physical size of the antenna is related to its potential bandwidth, and the 
resonant frequency changes depending on the amount of fractal reactive loading. In this 
manner, the fractal antenna, just like any other antenna with reactive loading (i.e. 
dielectric, ferrites, capacitors, inductors, etc.), can have its resonant frequency lower than 
that of the typical free-space half-wavelength fundamental resonant frequency predicted 
by setting the largest physical dimension of the antenna equal to half a wavelength. In 
general, although their effective electrical length is longer, the fractal element antennas are 
themselves physically smaller, again due to reactive loading. 

Fractal element antennas are shrunken compared to conventional designs, and do not need 
additional components, assuming the structure happens to have the desired resonant input 
impedance. In general the fractal dimension of a fractal antenna is a poor predictor of its 
performance and application. Not all fractal antennas work well for a given application or 
set of applications. Computer search methods and antenna simulations are commonly used 
to identify which fractal antenna designs best meet the need of the application. 

Although the first validation of the technology was published as early as 1995, recent 
independent studies show advantages of the fractal element technology in real-life 
applications, such as RFID [8] and cell phones [9]. 

Antenna theory considers three classes of radiators in terms of frequency coverage: (1) 
narrowband – small range of the order of a few percent around the designed operating 
frequency, (2) wideband or broadband – covers an octave or two, and (3) frequency 
independent – about a ten to one or greater range of frequencies. Any good antenna text 
talks about antenna scaling, that is the properties (impedance, efficiency, pattern, etc.) 
remain the same if all dimensions and the wavelength are scaled by the same factor.   

Now, remembering that a fractal is a figure that “looks” the same independent of size 
scaling, we come upon the amazing realization that a fractal shaped metal element can be 
used as an antenna over a very large band of frequencies.  A typical book would say 
something like, “A distinguishing feature of frequency independent antennas is their self-
scaling behavior”.  But then go on to say, “Frequency independent antennas can be divided 
into two types: spiral antennas and log-periodic antennas”.  To remedy this situation a 
large volume of research has been published on various aspects of fractal antennas and 
fractal electromagnetics. It is interesting to note that, as fractal geometry is a superset of 
Euclidian geometry, so is fractal (geometry based) antenna theory a superset of classic 
(Euclidian geometry) antenna theory.  It is somewhat poetic that because of this set to 



superset relationship, fractal antenna analysis picks up (where classic theory lets off) with 
the spiral and the log-periodic structures.  We are seeing fractal antenna theory shedding 
new light on our understanding of classic wideband antennas [7].  

A fractal antenna is created using fractal geometry, a self-similar pattern built from the 
repetition of a simple shape. The inherent qualities of fractals enable the production of high 
performance antennas that are typically 50 to 75 percent smaller than traditional antennas. 
Fractal antennas are also reliable and cost-effective. Antenna performance is attained 
through the geometry of the conductor, rather than with the accumulation of separate 
components or elements that increase complexity and potential failure points. Fractal 
antennas also allow for multiband capabilities, decreased size, and optimum smart antenna 
technology.  Fractal antennas can be produced in all existing antenna types, including 
dipole, monopole, patch, conformal, bicone, discone, spiral, and helical. Many hybrid 
designs greatly extend frequency ranges.  The key benefits of fractal antenna technology 
are: 

a) Reduced antenna size b)Multi-band functionality c) Improved antenna performance 

The geometry of the  fractal antenna  encourages its study both as a multiband solution and 
also as a small (physical size) antenna.  First, because one should expect a self-similar 
antenna (which contains many copies of itself at several scales) to operate in a similar way 
at several wavelengths.  That is, the antenna should keep similar radiation parameters 
through several bands.  Second, because the space-filling properties of some fractal shapes 
(the fractal dimension) might allow fractal shaped small antennas to better take advantage 
of the small surrounding space.  

 

Fig 5 : Four antennas (with a wave cartoon) intended to be used on four discrete frequency 
bands (Left); One antenna (Sierpinski’s Fractal) intended to be use for four discrete 

frequency bands (Right). 



Also the study of the fractal random array remains one of the most interesting and fruitful 
areas in fractal antennas.  The fractal random array utilizes a balance of long-range order 
(typical of fractals) and short-range disorder (typical of random arrays).  The randomness 
provides robustness to element failure while the fractal or periodic structure provides the 
needed multiband or wideband performance.  

Researchers now also have developed a new metamaterial technology that uses fractals to 
make layered, partless antennas and related electronics. Metamaterials are composites 
with unusual properties not found in nature. These new antennas, called metacloak 
antennas, have unique performance abilities in bandwidth, gain, directivity and versatility 
of form factor. Previously antennas had attributes in many form factor and performance 
regimes, but these new antennas are unprecedented. The new antennas have layers that 
are partless, with no electrical connections, are lightweight, have no ferrite or exotic 
materials, and are easy to make and implement. They can be far smaller and far thinner. 
Built up as layers of separated printed circuits to form a covering or ‘cloak’, the technology 
also applies to other EM spectral regimes, in addition to RF. The cloaking layers use close-
spaced fractal resonators, tiny part less circuits, to accomplish the effect, and the scientific 
community has commonly called close-spaced resonators metamaterials. As the smaller 
size and pleasing bandwidth attributes of fractal resonators enable the new metamaterial 
advantages. The technology has also led to fractal-based arrays that are far smaller than 
expected from their gain, while maintaining very broadband ability. The new antenna 
technology is expected to allow antennas to go in many places they haven’t been used 
before, especially in conformal or hidden platforms. It can be used to integrate antenna 
onto surfaces used for other things, thereby making the separate antenna platform notion a 
relic in many cases. Fractal sees the new technology as a logical extension of its core 
technologies and a new and versatile addition in solving challenging problems in 
electromagnetics. 

2.3. Fractal Capacitor : Capacitors are one of the crucial elements in integrated circuits 
and are used extensively in many IC applications such as data converters, sample and 
holds, switched capacitor circuits, RF oscillators, and signal mixers. A high-density 
capacitor structure using fractal geometries that can be built in standard digital processes. 
The linearity of this structure is similar to the conventional parallel-plate metal to metal 
capacitor. The bottom plate parasitic capacitance of this structure is small, which makes it 
appealing for many circuit applications such as switched capacitor systems. Unlike 
conventional metal-to-metal capacitors, the density of a fractal capacitor increases with 
scaling. In this structure a lateral flux capacitor is used where two terminals of the device 
are built using a layer of metal, unlike a vertical flux capacitor, where two different metal 
layers must be used. 



 

Fig : 6 Cross connected metal layers in Lateral flux capacitor (Capacitance is increased) 

The increase in capacitance due to fringing is proportional to the periphery of the 
structure. Therefore, structures with large periphery per unit area like Fractals are 
desirable. So It is possible to increase the capacitance density of parallel-plate capacitors by 
exploiting lateral fringing fields in cross connected metal layers [10]. Fractals are geometric 
patterns that are repeated at ever smaller scales to produce irregular shapes and surfaces. 
They are geometrical structures with large perimeters. These suggest that fractals are good 
candidates for use in lateral flux capacitors. Although lithography limitations prevent 
fabrication of a real fractal, one can use quasi fractal geometries with feature sizes limited 
by lithography. 

 

Fig: 7 Three Dimensional representation of a fractal capacitor using a single metal layer 
(Fractals with large dimensions lead to greater capacitance) 

This capacitor uses only one metal layer with a fractal border. The terminals of this square 
shaped capacitor have been identified using two different colors. One advantage of using 
lateral flux capacitors in general, 

And fractal capacitors in particular, is the reduction of the bottom-plate capacitance. This 
reduction is due to two reasons. First, the higher density of the fractal capacitor (compared 
to a standard parallel-plate structure) results in a smaller area. Second, some of the field 



lines originating from one of the bottom plates terminate on the adjacent plate instead of 
the substrate, which further reduces the bottom-plate capacitance, as shown in fig.8. 
Because of this property, some portion of the parasitic bottom-plate capacitor is converted 
into the more useful plate-to-plate capacitance. 

 

Fig: 8 Reduction of the bottom plate capacitance (Left); Parasitics are normally from the 
top and bottom plate to ac ground which is typically the substrate (Right) 

 

Fig 9: Die micrograph of a prototype fractal capacitor 

This structure (fig. 9), exploits cross connected metal layers with a fractal border. Aside 
from the higher density, one advantage of the this structure is the reduction of bottom-
plate capacitance due to the smaller area. In addition, since some of the field lines 
terminate on the adjacent plate instead of the substrate, the bottom plate capacitance is 
further reduced. The capacitance density of fractal structures increases with scaling of the 
process technologies, which makes them more attractive compared to standard parallel-
plate capacitors.  



2.4. Fractal Filters, Resonators and Resistors: One of the critical issues in the 
performance of a reactive component is the quality factor Q. The highest Q, the better the 
component. One of the critical issues in the performance of a reactive component is the 
quality factor Q. The highest the Q, the better the component. The Q is degraded by ohmic 
losses, but enhances with storage of reactive energy. In general terms, the performance of a 
small filter is related to the ability of the resonating structures of the filter in storing as 
much reactive energy as possible in the available volume. A good example of the energy 
storing capabilities of fractals is the Hilbert Resonator. Due to the unique space filling 
properties of fractals, a very long but small resonator can be efficiently packed into the 
same space as conventional half-wavelength resonator yet featuring a Q factor which is 
about 10 times larger. 

 

Fig 10 : The Hilbert Curve – Two different iterations. The curve grows exponentially at each 
iteration and completely fills up a square surface. 

Due to the very long length of the strip, electromagnetic waves are bouncing back and forth 
and traveling for a longer time inside the resonator which results in a much higher stored 
energy. In general, in any application where the wavelength is large and a high-density 
package integration is convenient, fractals provide the optimum packaging technology. Low 
Q, high value fractal resistors is another area of fractal applications (Fig 12). Since an 
arbitrary large length of resistive material can be packed in an arbitrarily small area (with 
the only limitation of the manufacturing resolution), resistance per unit surface is 
maximized. At the same time, the parasitic serial inductance is minimized due to the ability 
of the fractal shape of filling space while maximizing the distance with itself due to its 
avoiding geometrical property [11].  



 

Fig 11 : The planar Hilbert Resonator is a high Q microstrip filter (Left); Comparison 
between a conventional half wavelength resonator, a meander line resonator and a Hilbert 

fractal resonator (Right) 

 

 

Fig 12 : Fractal Resistors 

2.5. Fractals in Nanotechnology : 'Self-assembly' holds great promise as a technique for 
building commercial nano-circuits. Adopting this approach, the nano-engineer allows the 
circuit to build itself by exploiting natural growth processes. Self-assembly offers two 
striking advantages. Not only is it more efficient at assembling vast numbers of 
components compared to traditional fabrication techniques, this fundamentally 'green' 
technique constructs circuits by the addition of material rather than the wasteful removal 
of material that lies at the heart of previous 'top-down' fabrication techniques.  One of the 
remarkable consequences of harnessing natural growth processes is that the resulting 
circuits exhibit natural patterns rather than the smooth, straight lines that form the 



framework of today's commercial circuit designs. In particular, many self-assembly 
processes generate fractal patterns. Fractals are shapes that repeat at many magnifications 
and are prevalent throughout nature, appearing in natural environments [12], biological 
systems and human physiology [13].  Nature uses fractals frequently because they possess 
a number of highly desirable properties. Topping this list is the fact that the repeating 
shapes build objects with huge surface areas. Nature exploits this property for example in 
trees, where the large surface area of the tree canopy ensures an unprecedented ability to 
absorb sunlight. The same approach could equally be employed to great effect by designing 
novel solar cell structures based on fractal shapes.  Another consequence of large surface 
areas is that two merging patterns connect together very efficiently. For example, the 
dendritic structure of the neurons in the human brain exploits this fractal connectivity to 
produce enhanced information processing. The same connectivity could equally be 
exploited for future commercial computers by using artificial fractal electrical circuits. This 
philosophy of learning from nature's successes may well revolutionize many fields within 
nanotechnology. Although some electronics applications already exploit fractal geometry 
(cell phone antennae being a famous example), many fields lie at the start of this exciting 
journey, with many discoveries and challenges lying ahead. Current investigations focuses 
on two families of electronic device in which millions of metallic nano-particles (each 
approximately 50 nanometers across) are self-assembled into fractal circuits [16]. In the 
first family of device, the particles merge together to form 'nanoflowers'[14]using a growth 
process called diffusion-limited aggregation. In the second family, the nano-particles are 
attached to DNA strands [15] which assemble to form a fractal circuit. In both cases, the 
self-assembly process generates a tree-like pattern.  

 

Fig 13 : Simulation of the self-assembled fractal electronic circuits 



These projects are driven by the potential to tune the growth conditions so that the fractal 
characteristics of the circuits match those found for example in the neural structure of the 
human brain. Imagine a future where computers operate like our own minds and, 
ultimately, where fractal circuits may act as implants to be inserted into specific regions of 
the brain, restoring or enhancing a patient's mental functionality. Such goals represent the 
exceptional promise of nanotechnology - where researchers from a diverse range of 
disciplines work together to improve the basic quality of human life. 

 

Fig 14: Fractal Field Effect Transistor (FET); schematic representation of a gating scheme 
for a DLA pattern 

 

Fig15: (a) Fractal circuit formed using the diffusion‐limited aggregation growth process 
(b) Simulation of metallic fractal electrodes (light gray), photoactive material (dark gray) 

(c) Examples of fractal branches with different scaling properties, course to fine ratios 
 
2.6 Other applications of Fractals : The application of fractal geometry to speech signals 
and speech recognition systems is now receiving serious attention. A very important 
characteristic of fractals, useful for their description and classification, is their fractal 
dimension D. The fractal dimension provides an objective means of quantifying the fractal 
property of an object and comparing objects observed in the natural world. Fractals thus 
provide a simple description of many natural form. Intuitively D measures the degree of 



irregularity over multiple scales. Fractal speech recognition can be generally defined as the 
process of transforming continuous acoustic speech signals into a discrete representation. 
It involves the identification of specific words, by comparison with stored templates. The 
application of fractal geometry for modeling naturally occurring signals and images is well 
known. This is due to the fact that the statistics and spectral characteristics of random 
scaling fractals are consistent with many objects found in nature, a characteristic that is 
expressed in the term ‘statistical self-affinity’.  

3. Chaos in Engineering : 

One interesting possibility opens up in systems of order three or greater : to get waveforms 
that do not have any periodicity. In such a case, the system state remains bounded-within a 
definite volume in the state space, but the same state never repeats. In every loop through 
the state space  the state traverses a new path. This situation is called chaos and the 
resulting attractor is called a strange attractor. The system undergoes apparently random 
oscillations.  

Even though long-term prediction may fail if a system is chaotic, an engineer need not be 
over-concerned about this failure. Rarely does an engineer need to predict the future state 
of a system so accurately. An engineer is more concerned with the overall properties of the 
orbit of a system. Even if one doesn’t know the future state of the system, from the 
numerical solution of the concerned differential equations one can say with great 
confidence that the state will not run to infinity, will not collapse, and the state will be 
“somewhere” within a definite volume of the state space. 

One of the utilities of chaos is that it can provide a framework for analyzing where on the 
spectrum between pure signal and pure noise, a data set might fall. Chaos is a type of signal, 
but can appear to be noise if not analyzed properly. Chaotic signals are irregular in time, 
but highly structured in phase space. Phase space embedding therefore provides a tool for 
visualizing the structure of chaotic signals, and for distinguishing chaos from noise. 
Furthermore, noise, by definition, is infinitely dimensional, whereas chaos is (relatively 
small) finite dimensional. Time series data can therefore be “unfolded” into higher 
dimensional space by sampling data points at fixed distances. A new data point will be 
created from a single time point and some integer number of steps ahead of that time point. 

3.1. Chaos based Cryptography : Over the past decade, there has been tremendous 
interest in studying the behavior of chaotic systems. They are characterized by sensitive 
dependence on initial conditions, similarity to random behavior, and continuous broad-
band power spectrum. Chaos has potential applications in several functional blocks of a 
digital communication system: compression, encryption and modulation. The possibility 
for self-synchronization of chaotic oscillations [17] has sparked an avalanche of works on 



application of chaos in cryptography. An attempt only to mention all related papers on 
chaos and cryptography in this short presentation will result in a prohibitively long list; 
and, therefore, we refer the reader to some recent work [18]. Despite a huge number of 
papers published in the field of chaos-based cryptography, the impact that this research 
has made on conventional cryptography is rather marginal. This is due to two reasons: 

a) First, almost all chaos-based cryptographic algorithms use dynamical systems defined on 
the set of real numbers, and therefore are difficult for practical realization and circuit 
implementation. 

b) Second, security and performance of almost all proposed chaos-based methods are not 
analyzed in terms of the techniques developed in cryptography. Moreover, most of the 
proposed methods generate cryptographically weak and slow algorithms. 

Cryptography is generally acknowledged as the best method of data protection against 
passive and active fraud [19]. An overview of recent developments in the design of 
conventional cryptographic algorithms is given in [20]. 

Sensitive dependence on initial conditions is a very valuable property for cryptographic 
algorithms because one of the desired features of a cryptographic algorithm is that if the 
initial conditions used to encrypt data are changed by a small amount, one bit for instance, 
the encrypted text should be wildly different. For example a chaotic map like logistic map 
could be used because when r = 3.9, the logistic map exhibits chaotic behavior. A cipher  is 
another name for a cryptographic algorithm [21]. The purpose of a cipher is to take 
unencrypted data, called plaintext, and produce an encrypted version of it, called the 
ciphertext. There are two types of ciphers : block ciphers and stream ciphers. 

Keys increase the degree of security because well known, off the shelf, time tested 
algorithms can be used. An encryption pair is a key and the encryption system that the key 
is used with. Thus in an encryption pair, only the key has to be secret. Every encryption 
pair can be thought of as different key-less encryption algorithm. Chaotic maps and 
cryptographic algorithms (or more generally maps defined on finite sets) have some 
similar properties: sensitivity to a change in initial conditions and parameters, random-like 
behavior and unstable periodic orbits with long periods. Encryption rounds of a 
cryptographic algorithm lead to the desired diffusion and confusion properties of the 
algorithm. Iterations of a chaotic map spread the initial region over the entire phase space. 
The parameters of the chaotic map may represent the key of the encryption algorithm. An 
important difference between chaos and cryptography is that encryption transformations 
are defined on finite sets, while chaos has meaning only on real numbers. Moreover, for the 
time being, the notions of cryptographic security and performance of cryptographic 
algorithms have no counterpart in chaos theory (Fig 16). 



 

Fig 16: Similarities and differences between chaotic systems and cryptographic algorithms 

Two general principles which guide the design of practical algorithms are diffusion and  
confusion [22]. Diffusion means spreading out of the influence of a single plaintext digit 
over many ciphertext digits so as to hide the statistical structure of the plaintext. An 
extension of this idea is to spread the influence of a single key digit over many digits of 
ciphertext. Confusion means use of transformations which complicate dependence of the 
statistics of ciphertext on the statistics of plaintext. The mixing property of chaotic maps is 
closely related to the property of diffusion in encryption transformations (algorithms). The 
keys of an encryption algorithm represent its parameters. Therefore, we should consider 
only such transformations in which both parameters and variables are involved in a 
sensitive way, that is “a small variation of any one” (variable, parameter) “changes the 
outputs considerably”. In other words, a kind of “mixing property” should hold also in the 
parameter space of the map, if we would like to use chaotic maps as encryption algorithm. 
This implies that we consider only the maps for which chaos is persistent under small 
perturbations of parameters (keys). 



3.2. Chaotic Circuits : The Chua circuit is among the simplest non-linear circuits that show 
most complex dynamical behavior, including chaos which exhibits a variety of bifurcation 
phenomena and attractors. In recent years chaos theory has attracted much interest in 
both the academic area and engineering study. One of the great achievements of the chaos 
theory is the application in secure communications. Chaotic signals depend very sensitively 
on initial conditions, have unpredictable features and noise like wideband spread 
spectrum. So, it can be used in various communication applications because of their 
features of masking and immunizing information against noise. The chaos communication 
fundament is the synchronization of two chaotic systems under suitable conditions if one of 
the systems  is driven by the other. Chua's circuit  is a simple oscillator circuit which 
exhibits a variety of bifurcations and chaos. The circuit contains three linear energy storage 
elements (an inductor and two capacitors), a linear resistor, and a single nonlinear resistor 
NR (Fig 17). 

 

 

Fig 17: Schematic of Chua’s Circuit. NR is the active nonlinear resistor, Called as the Chua 
diode. 

 

Fig 18 : Piece wise linear characteristic of the nonlinear resistor NR in Chua’s circuit 



Chua’s circuit is the simplest autonomous (i.e no input signals) electronic circuit to 
generate chaotic signals. In fig.18 shows the typical piece wise linear characteristic of the 
non linear resistor NR (Chua Diode). Chua’s circuit exhibits almost all known phenomenon 
of chaos. It has an easily implemented design and is a widely studied chaotic circuit. 

 

Fig : 19 Chua’s circuit, the nonlinear resistor is realized using two operational amplifiers 

 

Fig 20: waveforms and phase plots recorded on an oscilloscope from experimental 
measures of Fig 3. The three waveforms in (a), (b) and (c) (left column) corresponds to 

VC1(t), VC2(t) and iL(t) from fig 3. The three phase plots displayed in (d), (e) and (f) 
correspond to the pair of variables (VC1, iL), (VC1, VC2) and (VC2, iL) respectively. 



4. Dynamical Systems in  Engineering : 

Feedback and Control Systems: A dynamical system is a system whose behavior changes 
over time, often in response to external stimulation or forcing. The term feedback refers to 
a situation in which two (or more) dynamical systems are connected together such that 
each system influences the other and their dynamics are thus strongly coupled. Fig. 21 
shows two feedback systems, one is open and another is closed. Feedback has many 
interesting properties that can be exploited in designing systems. It can also be used to 
create linear behavior out of nonlinear components, and a common approach in 
electronics. Feedback has many interesting and useful properties [23].  

 

Fig : 21 Open and closed loop systems. (a) The output of system 1 is used as the input of 
systems 2, and the output of system 2 becomes the input of system 1, creating a closed loop 

system. (b) The interconnection between system 2 and system 1 is removed, and the 
system is said to be open loop. 

It makes it possible to design precise systems from imprecise components and to make 
relevant quantities in a system change in a prescribed fashion. An unstable system can be 
stabilized using feedback, and the effects of external disturbances can be reduced. 
Feedback also offers new degrees of freedom to a designer by exploiting sensing, actuation 
and computation. The principle of feedback is simple: base correcting actions on the 
difference between desired and actual performance. Feedback can change the dynamics of 
a system. Through feed-back, we can alter the behavior of a system to meet the needs of an 
application, systems that are unstable can be stabilized, systems that are sluggish can be 
made responsive and systems that have drifting operating points can be held constants. 
Control theory provides a rich collection of techniques to analyze the stability and dynamic 
response of complex systems and to place bounds on the behavior of such systems by 
analyzing the gains of linear and non linear operators that describe their components. The 
term control has many meanings and often varies between communities. It means the use 
of algorithms and feedback in engineered dynamical systems. A modern controller senses 
the operation of a system, compares it against the desired behavior, computes corrective 
actions based on a model of the system response to external inputs and actuates the system 
to effect the desired change. This basic feedback loop of sensing, computation and actuation 
is the central concept in control. Control has had a major impact on electronics. The first 



application of feedback in electronics was patent on Vacuum tube amplifiers by the Robert 
Goddard in 1912, but the most influential development is undoubtedly the negative 
feedback amplifier (fig. 22). Negative feedback reduces the gain but makes the amplifier 
very insensitive to variations.  

 

Fig: 22 An Amplifier with negative feedback 

 

Fig : 23 Robotic systems; NASA (National Aeronautics and Space Administration) Mars 
Rover Spirit (Left) and Sony AIBO Entertainment Robot (Right). Both robots make use of 

feedback between sensors, actuators, and computation to function in unknown 
environments. These are also examples of Dynamical Systems. 

The goal of cybernetic engineering has been to implement systems capable of exhibiting 
highly flexible or ‘intelligent’ responses to changing circumstances (Fig 23 : shows two 
robots). The higher level of feedback is a key element in robotics, where issues such as 
obstacle avoidance, goal seeking, learning and autonomy are prevalent.  

 

 



5. Basic Simulations in Dynamical Systems 

(A) Graphical Iteration of the Logistic Map: 

MATLAB Source Code : 

fsize=15; 
nmax=100;halfm=nmax/2; 
t=zeros(1,nmax);t1=zeros(1,nmax);t2=zeros(1,nmax); 
t(1)=0.2; 
mu=3.8282; 
axis([0 1 0 1]); 
for n=1:nmax 
    t(n+1)=mu*t(n)*(1-t(n)); 
end 
  
for n=1:halfm 
    t1(2*n-1)=t(n); 
    t1(2*n)=t(n); 
end 
  
t2(1)=0;t2(2)=t(2); 
for n=2:halfm 
    t2(2*n-1)=t(n); 
    t2(2*n)=t(n+1); 
end 
hold on 
plot(t1,t2,'r'); 
fplot('3.8282*x*(1-x)',[0 1]); 
x=[0 1];y=[0 1]; 
plot(x,y,'g'); 
hold off 
%title('Graphical iteration for the tent map') 
set(gca,'xtick',[0 1],'Fontsize',fsize) 
set(gca,'ytick',[0 1],'Fontsize',fsize) 
xlabel('x','Fontsize',fsize) 
ylabel('f_{\mu}','Fontsize',fsize) 
 
Simulation Result : 

 



(B) Chaotic Attractor of the Hénon Map : The Hénon map is a discrete-time dynamical 
system. It is one of the most studied examples of dynamical systems that exhibit chaotic 
behavior. 
 
MATLAB Source Code : 
 
a=1.2; 
b=0.4; 
N=6000; 
x=zeros(1,N); 
y=zeros(1,N); 
x(1)=0.1; 
y(1)=0; 
for n=1:N 
    x(n+1)=1+y(n)-a*(x(n))^2; 
    y(n+1)=b*x(n); 
end  
axis([-1 2 -1 1]) 
plot(x(50:N),y(50:N),'.','MarkerSize',1); 
fsize=15; 
set(gca,'XTick',-1:0.5:1,'FontSize',fsize) 
set(gca,'YTick',-1:0.5:2,'FontSize',fsize) 
xlabel('\itx','FontSize',fsize) 
ylabel('\ity','FontSize',fsize) 
 
Simulation Result: 

 
 

(C) The Lorenz Attractor : 
 
MATLAB source code : 
 
% Lorenz=inline('[10*(x(2)-x(1));28*x(1)-x(2)-x(1)*x(3);x(1)*x(2)-
(8/3)*x(3)]','t','x'); 



sigma=10;r=28;b=8/3; 
Lorenz=@(t,x) [sigma*(x(2)-x(1));r*x(1)-x(2)-x(1)*x(3);x(1)*x(2)-b*x(3)];  
options = odeset('RelTol',1e-4,'AbsTol',1e-4); 
[t,xa]=ode45(Lorenz,[0 100],[15,20,30],options); 
plot3(xa(:,1),xa(:,2),xa(:,3)) 
title('The Lorenz Attractor') 
  
fsize=15; 
xlabel('x(t)','Fontsize',fsize); 
ylabel('y(t)','Fontsize',fsize); 
zlabel('z(t)','FontSize',fsize); 
 
Simulation Result : 
 

 
 
 

(D) Chua’s Attractor : 
 
MATLAB source code : 
 
Chua=@(t,x) [15*(x(2)-x(1)-(-(5/7)*x(1)+(1/2)*(-(8/7)-(-5/7))*(abs(x(1)+1)-
abs(x(1)-1))));x(1)-x(2)+x(3);-25.58*x(2)];  
options = odeset('RelTol',1e-4,'AbsTol',1e-4); 
[t,xb]=ode45(Chua,[0 100],[-1.6,0,1.6],options); 
plot3(xb(:,1),xb(:,2),xb(:,3)) 
title('Chua`s Double Scroll Attractor') 
  
fsize=15; 
xlabel('x(t)','Fontsize',fsize); 
ylabel('y(t)','Fontsize',fsize); 
zlabel('z(t)','FontSize',fsize); 



 
 
Simulation Result : 
 

 
 
 
(E) The Mandelbrot Set : 

MATLAB Source code : 

Nmax = 50;   scale = 0.005; 
xmin = -2.4; xmax  = 1.2; 
ymin = -1.5;  ymax  = 1.5; 
  
% Generate X and Y coordinates and Z complex values 
[x,y]=meshgrid(xmin:scale:xmax, ymin:scale:ymax); 
z = x+1i*y; 
  
% Generate w accumulation matrix and k counting matrix 
w = zeros(size(z)); 
k = zeros(size(z)); 
  
% Start off with the first step ... 
N = 0; 
  
% While N is less than Nmax and any k's are left as 0  
while N<Nmax && ~all(k(:)) 
    % Square w, add z 
    w = w.^2+z; 
    % Increment iteration count 
    N = N+1; 
    % Any k locations for which abs(w)>4 at this iteration and no 
    % previous iteration get assigned the value of N 
    k(~k & abs(w)>4) = N; 



end 
  
% If any k's are equal to 0 (i.e. the corresponding w's never blew up) set 
% them to the final iteration number 
k(k==0) = Nmax; 
  
% Open a new figure 
figure 
  
% Display the matrix as a surface 
s=pcolor(x,y,k); 
  
% If you truly want the Mandelbrot curve in B&W, comment the above line and 
% uncomment these two 
% s = pcolor(x, y, mod(k, 2)); 
% colormap([0 0 0;1 1 1]) 
  
% Turn off the edges of the surface (because the cells are so small, the 
% edges would drown out any useful information if we left them black) 
set(s,'edgecolor','none') 
  
% Adjust axis limits, ticks, and tick labels 
axis([xmin xmax -ymax ymax]) 
fontsize=15; 
set(gca,'XTick',xmin:0.4:xmax,'FontSize',fontsize) 
set(gca,'YTick',-ymax:0.5:ymax,'FontSize',fontsize) 
xlabel('Re z','FontSize',fontsize) 
ylabel('Im z','FontSize',fontsize) 
  
keyboard 
figure 
 

Simulation Result :  

 



6. Conclusion : In this work, some basic applications of Dynamical Systems have been 
explored. Recently extensive research works in various other fields of Engineering have 
been going only to better understand these Dynamical Systems. Fractals have been 
successfully used in different applications like Image watermarking, De-noising, coding, 
indexing, and time series prediction. Fractal dimension idea can also be extended to 
distinguish between natural and artificial objects. Also fractals can be used in EEG signal 
analysis and fault classification. On the other side chaos can also be used in signal masking, 
and in random number generating. Bifurcation Analysis has also become an important 
analysis tool in stability studies of power system networks. Due to limited time, this study 
didn’t go through those ongoing applications but definitely in upcoming days other useful 
Engineering applications of Dynamical Systems will emerge through research and studies 
like these. 
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