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ABSTRACT

The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many
renowned scientists, to know:

-The dilatation of time, and
-The contraction of the Lorentz Length.

The solution to these have driven the author to the development of the Undulating Relativity (UR) theory,
where the Temporal variation is due to the differences on the route of the light propagation and the lengths
are constants between two landmarks in uniform relative movement.

The Undulating Relativity provides transformations between the two landmarks that differs from the
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (u ), Acceleration (a ), Energy (E), Momentum

(p), Force (17“ ), Electrical Field (E ), Magnetic Field (E ), Light Frequency ( y ), Electrical Current (j) and
“Electrical Charge” ( p ).

From the analysis of the development of the Undulating Relativity, the following can be synthesized:

- It is a theory with principles completely on physics;

- The transformations are linear;

- Keeps untouched the Euclidian principles;

- Considers the Galileo’s transformation distinct on each referential;

- Ties the Speed of Light and Time to a unique phenomenon;

- The Lorentz force can be attained by two distinct types of Filed Forces, and

- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special
relativity rounding is not necessary as concluded on the Doppler effect.

Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:

, , A% / v’
Aberration of zenith = tgo=—/,|1 -—-
c c
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Along with the equations of transformations between two references of the UR, we get the invariance of
shape to Maxwell's equations, such as:

— divE =L - = divE = 0. — divB = 0.
EO0
= RotE = ﬂ
ot

. - OE . OE
= RotB = po. j+ eo.ﬂo.E;: RotB = eo.uo.E.

We also get the invariance of shape to the equation of wave and equation of continuity under differential
shape:

2 2 2 2
ag+ag+82_i262:0 3a—p+Vj=0
ox~ 0y~ 0z° ¢ 0Ot ot
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Undulating Relativity
§ 1 Transformation to space and time

The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light
speed, exactly like Albert Einstein’s Special Relativity Theory defined:

a) The laws, under which the state of physics systems are changed are the same, either when referred to a
determined system of coordinates or to any other that has uniform translation movement in relation to the
first.

b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same,
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of
Michel-Morley).

Let’'s imagine first that two observers O and O’ (in vacuum), moving in uniform translation movement in
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’
move with velocity v, on the positive axis x, with the respective parallel axis and sliding along with the x axis
while the O’, together with the x’, y’' and z' axis of a system of a rectangle Cartesian coordinates sees O
moving with velocity —v’, in negative direction towards the x’ axis with the respective parallel axis and sliding
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t' (t # t').
Let's admit that both observers set their clocks in such a way that, when the coincidence of the origin of the
coordinated system happens t = t' = zero.

In the instant that t = ' = 0, a ray of light is projected from the common origin to both observers. After the
time interval t the observer O will notice that his ray of light had simultaneously hit the coordinates point A (x,
y, z) with the ray of the O’ observer with velocity ¢ and that the origin of the system of the O’ observer has
run the distance v t along the positive way of the x axis, concluding that:

x2+y2+22—02t2=0 1.1
X=x-vt. 1.2
The same way after the time interval t' the O’ observer will notice that his ray of light simultaneously hit with
the observer O the coordinate point A (X', y’, Z') with velocity ¢ and that the origin of the system for the
observer O has run the distance v't’ on the negative way of the axis x’, concluding that:
x’2+y’2+z’2—czt’2=0 1.3
x=x+Vvt. 1.4
Making 1.1 equal to 1.3 we have

X2+y2+22—02t2=x’2+y’2+z'2—czt'2. 15
Because of the symmetry y =y’ end z = Z, that simplify 1.5 in

X —c? P =x? - t2 1.6
To the observer O X’ = x — v t (1.2) that applied in 1.6 supplies

X —c*t= (x-v t)2 — ¢ t” from where

. vi 2wx
t:t 1+—2——2. 17
c ct

To the observer O’ x = x’ + V' t' (1.4) that applied in 1.6 supplies
(x + Vvt —c?? = x? - c t? from where
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V4 VX

I+—+ 1.8
>t
Table |, transformations to the space and time
X =x-vt 1.2 x=xX+vt 1.4
y=y 1.2.1 y=y 1.4.1
z=z 1.2.2 z=7 14.2
2
ve o 2wx 2v'x
t'=t 1+_2__2 1.7 =t 1+_2 1.8
T | c c’t'
From the equation system formed by 1.2 and 1.4 we find
vt=vtor |v|t = |v'|t' (considering t>o0 e t™>0) 1.9

what demonstrates the invariance of the space in the Undulatory Relatitivy.
From the equation system formed by 1.7 and 1.8 we find
v 2w v:ioo2v'x!
1+—2——2. 1+—2+T=1. 1.10
c c't c ct'
Ifin 1.2 x’ = 0 then x = v t, that applied in 1.10 supplies,

2
v 12
N=5 1 =1 1.11
C c

Ifin 1.10 x = ct and x’ = ¢ t’ then

(l—ﬁ}(ulj:l. 112
C C

To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of
the light speed are also constant along its axis, thus

X, === Uy, == Uz 1.13

’

E—ﬁ—u y _dy z dz
t dt t dt t dt

and then we can write

vi o 2ux v Qvux
1+—2——2 = 1+—2— 7 - 1.14
c ct c c
With the use of 1.7 and 1.9 and 1.14 we can write
|V| t vi o 2w v Qvux
= = 1+_2__2 = 1+_2_ . 1.15
|v| t c ct c c

Differentiating 1.9 with constant v and v/, or else, only the time varying we have

e =|pide or 11— 116

|v
f 2vux / 2vux
but from 1.15 —; | then dt'=dt 1+——— 1.17
v
1
Being v and Vv’ constants, the reazons H and — in 1.15 must also be constant because fo this the
v
) , vio 2wx x dx ,
differential of 1+—2——2 must be equal to zero from where we conclude — = ? =ux, that is exactly
c ct ¢ t

the same as 1.13.
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To the observer O’ the principle of Constancy of velocity of light guarantees that the components u'x’, u’y’,
and u’z’ of velocity of light are also constant alongside its axis, thus

x'dx' "ody z' dZ
! !,y :l:uy)_:_:uz’ 118
t dt’ t dt’ t dt'

and with this we can write ,

1 vio2v'x! . Vi 2v'u'x!
st = . 1.19

c ct' c c

With the use of 1.8, 1.9, and 1.19 we can write

V|t Vviioovx Vi 2v'u'x!
== ]+ 5 + 5 = 1+_2+ > . 1.20
M o c c’t c c

Differentiating 1.9 with v’ and v constant, that is, only the time varying we have

wlde=plar or 1 - 2

|v| dt
! 12 "u'x' 12 (]
v 2V'u v 2v'u
but from 1.20 | | \/1+—+ -— then dtzdt'\/l+—2+—2. 1.22
|v| c c c c
v t
Being v’ and v constant the divisions H and - in 1.20 also have to be constant because of this the
% t
vvz (W] xv X'
differential of 1+—2+T must be equal to zero from where we conclude —':?zu'x', that is
c c't t t

exactly like to 1.18.

Replacing 1.14 and 1.19 in 1.10 we have

v 2vux v 2v'u'x!
I+ ———— I+ +———=1. 1.23
c c c c
To the observer O the vector position of the point A of coordinates (x,y,z) is
R=xi +yj +zk , 1.24
and the vector position of the origin of the system of the observer O’ is
Ro'=vti +0j +0k = Ro'=vii . 1.25
To the observer O’, the vector position of the point A of coordinates (x',y’,Z’) is
R=xi+yj+z'k, 1.26
and the vector position of the origin of the system of the observer O is
Ro=—V1'i+0j+0k = Ro=—v17. 1.27
Due to 1.9, 1.25, and 1.27 we have, Ro'=—R'0. 1.28

As 1.24 is equal to 1.25 plus 1.26 we have
R=Ro'+R' = R'=R-Ro'. 1.29

Applying 1.28 in 1.29 we have, R = R'—R'o . 1.30
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To the observer O the vector velocity of the origin of the system of the observer O’ is

dRo'

V= =vi+0]+0k = v =vi. 1.31

To the observer O’ the vector velocity of the origin of the system of the observer O is

- dR'O e - -~ - g
V'= 7 =Vi+0j+0k =>V'=2"i. 1.32
t'
From 1.15, 1.20, 1.31, and 1.32 we find the following relations between v and V'
7= Y 133
v 2v'u'x!
l+—+—7—
c c
P'= —v ] 1.34
2vux
o=y
c c

Observation: in the table | the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30.

§2 Law of velocity transformations # and u’

Differentiating 1.29 and dividing it by 1.17 we have

dR' dR —dRo' -V u—v

= . 2.1
2vux v 2vux x/E
dt, |1+ PR
c
Differentiating 1.30 and dividing it by 1.22 we have
dR dR'-dR'o ~ u'—v' u'—v'
—= =>u= = . 2.2
dt v 2v'u'x' Vv 2wy K
at'\[1+—+——5— I+—+—
c c c c
Table 2, Law of velocity transformations u and u’
=ty 2.1 it 2.2
VK ' VK '
S Y 03 o — u'x'+v' 04
VK ' VK '
Vo WY u'y'
uwy= 2.3.1 uy = 2.4.1
VK VK
=2 232 vz 242
u'z'=— 3. uz = 4.
K VK
|V' :ﬂ 1.15 V= |v’| 1.20
VK VK’
2 2
v: o 2vux v 2v'u'x!
JK = ]+_2__2 2.5 1/[{':\/14__24_ > 2.6
c c c c
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Multiplying 2.1 by itself we have

v 2vux
u 1+72— )
" u u
u= . 2.7
v 2vux
I+ =
c c

Ifin 2.7 we make u = c then U’ = ¢ as it is required by the principle of constancy of velocity of light.
Multiplying 2.2 by itself we have

vv2 2vvuvx|
u'y[1+—+

12 12
U= u u _ 2.8
v|2 2v'u'x'
I+—+—
c c
If in 2.8 we make U’ = c then u = ¢ as it is required by the principle of constancy of velocity of light.
c—v
If in 2.3 we make ux = ¢ then u'x'=————— = as it is required by the principle of constancy of
v 2ve
I+
c c
velocity of light.
c+V'
If in 2.4 we make u’x’ = ¢ then ux = = as it is required by the principle of constancy of
v 2v'e
I+—+—
c c

velocity of light.

Remodeling 2.7 and 2.8 we have

1 u
v 2vux c?
1+—2— 2 = . 2.9
C C u|2

1-—

CZ

1 u|2
v12 2v'u'x' cz

I+ —+——75— = : 2.10

c c u’

1——

C

The direct relations between the times and velocities of two points in space can be obtained with the
equalities #'=0 = u'x'=0 = ux =v coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply

2 '
dr=di 1+ 0 -2 o g= 9 2.11
c c 1?2
h-r
C2

2
di=dr 1+ + 20 g A 2.12
c c 1+ﬁ
2
(W IV 2.13
1+37+220 1+X7
C C C
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Aberration of the zenith

To the observer O’ along with the star u'x’ = 0, Uy’ = ¢ and u'Z = 0, and to the observer O along with the
Earth we have the conjunct 2.3

2
ux —v u / v
0= =Sux=v,c= 4 =Suy=c,/l——,uz=0,
vi o 2vux vio 2wy c
I+ =3 S I
c c c c
2

2
u= \/ux2 +uy2 +uz’ = v +|c,l- +0° =c exactly as foreseen by the principle of relativity.

:‘
[N

To the observer O the light propagates in a direction that makes an angle with the vertical axis y given by

ux v v/c
tango = — = = 2.15

uy v’ \/ v’
Cull—— 1——
\/ c’ c’

that is the aberration formula of the zenith in the special relativity .
If we inverted the observers we would have the conjunct 2.4

2
u'x'+v' u'y' v
0= =ux'=-v',c= ) =uly'=c\|l——,uz=0,
\/ vl vl \/] v'? N 2v(=v") c

I1+—+ —
c’ c’ c’ c’
2
5 v(Z
u'z\/u'x’Z-1-u'y’2+u'z'2 = |(=v) + 01’1——2 +0° =c
c
! ! !
—v —Vv'e
tango = = = 2.16

uiy’ v!2 vr2
C\/l - \/1 -
c c
that is equal to 2.15, with the negative sign indicating the contrary direction of the angles.

Fresnel’s formula

Considering in 2.4, u'x'=c/n the velocity of light relativily to the water, v'=v the velocity of water in
relation to the apparatus then ux = ¢' will be the velocity of light relatively to the laboratory

1
, c/n+v c/n+v c v:io 2v) 2?2 c (v 2v
c'= = =l —+v|l+—5+—| =|—+v|l-——| 5+—
\/1 v 2ve/n \/1 v:i 2y \n ¢ nc n 2\¢® nc

I T
2 2
C C

CZ nc

Ignoring the term v’ /¢® we have

(c % c vV
gl —+v|l-——|2—+v-———
n nc) n n-  nc

and ignoring the term v? /nc we have the Fresnel’s formula

c vV c 1
c'=—+tv-—=—+V1-—|. 2.17
n n n n
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Doppler effect

Making 7°=x"+y’+z> and r”=x"+y”+z” in 15 we have r’—-c’t’=r"-c’t" or
r'+ct’ v 2w
(r—ct)= (r’—ct')Q replacing then » =ct, r'=ct' and 1.7 we find (r —ct) = (r'—ct’) I+—-———
(r+ct) c c't
wow 1 1 v 2w
as ¢ :; :F then %(kr—wt)z—,(k’r'—w’t') I+— ——— where to attend the principle of relativity
c c't

2
/ v 2vx
we will define kK'=k ]+—2——2 2.18
c c’t

Resulting in the expression (kr— wt)= (k’r'—w’t') symmetric and invariable between the observers.

To the observer O an expression in the formula of w(r,t)= f(kr —wt) 2.19
represents a curve that propagates in the direction of R . To the observer O’ an expression in the formula of
t//’(r',t’):f(k’r’—w’t') 2.20

represents a curve that propates in the direction of R'.

- 2, 2n
Applyingin 2.18 k :7, k :7, 1.14,1.19, 1.23, 2.5, and 2.6 we have
A A
AM=——el=—r, 2.21
VK VK’
that applied in ¢ = yA=y'A" supply, y'=yVK and y=y)y'vK". 2.22

Considering the relation of Planck-Einstein between energy (E) and frequency (y ), we have to the
observer O E = hy and to the observer O’ E'= hy' that replaced in 2.22 supply

E'=EJK and E=E'JVK'. 2.23

If the observer O that sees the observer O’ moving with velocity v in a positive way to the axis x, emits
waves of frequency ) and velocity ¢ in a positive way to the axis x then, according to 2.22 and ux = ¢ the

observer O’ will measure the waves with velocity ¢ and frequency y’:y(l—z), 2.24
c

that is exactly the classic formula of the longitudinal Doppler effect.

If the observer O’ that sees the observer O moving with velocity —v’ in the negative way of the axis x’, emits
waves of frequency y’ and velocity c, then the observer O according to 2.22 and u'x'=—V" will measure
waves of frequency y and velocity ¢ in a perpendicular plane to the movement of O’ given by

12
, Vv
V=M/1—c—2, 2.25

that is exactly the formula of the transversal Doppler effect in the Special Relativity.
§3 Transformations of the accelerations @ and a’

Differentiating 2.1 and dividing it by 1.17 we have
di' di/NK . _\v dux/KJK L, a4 (. .V ax
- -7 S @=L (i-7)

=—+u-v —_— V)——. 3.1
dt'  diNK ¢’ dnK ? K?
Differentiating 2.2 and dividing it by 1.22 we have
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3.2

du _ du’ /K’ (i[’ 4,)v du'x'/ K'NK' a' (ﬁ’—\?')i a'x'
dr 'K ¢ drJK' K’ ¢’ K7

Table 3, transformations of the accelerations @ and a’

=2 (i -v) 2= 3.1 -2 —(@—v) v 3.2
K K’ ' K’ ’ K" '
ax Vv ax a'x' via'x
a'x'=—+ux-v)—— |33 ax = —Wx' ) 34
K ( )CZ KZ K, ( )CZ K!Z

_ay vV oax _ay via'x
a'y'—E+MyC—ZP 3.3.1 ay = I —u' ’_2 K" 3.4.1
., az vV oax az ., Vax
a z ZE-FMZC—ZF 3.3.2 az = K’ - _ZK'Z 3.4.2
! a a’
a =E 3.8 a =E 3.9
2 12 Pl At
v 2vux v vu'x
K=1+—5-"5 35 K'=1+—5+— 3.6
c c c c

From the tables 2 and 3 we can conclude that if to the observer O ii.d = zero and ¢’ =ux’ +uy2 +uz’,

o y 2 2 2 2 — . . —
then it is also to the observer O’ u'a'=zero and ¢ =u'x""+u'y""+u'z'", thus u is perpendicular to a
and ' is perpendicular to a’ as the vectors theory requires.

Differentiating 1.9 with the velocities and the times changing we have, ftdv+vdt=t"dvV'+V'dt', but
considering 1.16 we have, vdt =V'dt'= tdv=t'dv' 3.7

av'  dv a
Where replacing 1.15 and dividing it by 1.17 we have, — =—— or a’'=—. 3.8
dt'  dtK K

We can also replace 1.20 in 3.7 and divide it by 1.22 deducing
dv av' a'
ora=—.
dt dr'K’ K’
The direct relations between the modules of the accelerations a and a’ of two points in space can be

obtained with the u'=0=u'x'=0= a'x'=0 = 1 =V = ux = v coming from 2.1, that applied in 3.8 and
3.9 supply

3.9

, a a a' a
a= 3 = > and a= = —= . 3.10
v 2vy v v'e o 2V'0 v
It—5-——5 I-—5 It—5+—5 I+—5
¢ ¢ c c c c

That can also be reduced from 3.1 and 3.2 if we use the same equalities
u=0=ux'=0=a'x'=0=u=v = ux=v coming from 2.1.

§4 Transformations of the Moments p and p’

Defined as p=m(u)ii and p'=m'(u')i’, 4.1
where m(u) and m'(u') symbolizes the function masses of the modules of velocities u :|ﬁ| and u':|ﬁ'| .

We will have the relations between m(u) and m'(u’) and the resting mass m,, analyzing the elastic

collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The
spheres while observed in relative resting are identical and have the mass m,. The considered collision is
symmetric in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment
of. Collision.
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Before and after the collision the spheres have velocities observed by O and O’ according to the following
table gotten from table 2

Sphere | Observer O Observer O’
VIZ
Before S Uxs = zero, uys =w ux's==v,u'y's=wl- 5
c
VZ
Collision s’ uxs'=v, uys'=—w, |1 —— u'x's'=zero, u'y's'=-w
c

2
_ _ v
After s Uuxs = zero , uys = —w u'x's=—v, u'y's:—wqfl——2
c
vZ
Collision s uxs'=v, uys'=w,|l—— u'x's'=zero, u'y's'=w
c

To the observer O, the principle of conservation of moments establishes that the moments px = m(u)ux

and py = m(u)uy of the spheres s and s’ in relation to the axis x and y, remain constant before and after
the collision thus for the axis x we have

m(w/uxszjL uys’ )uxs+ m(«/uxs’zjtuys’2 )uxs’z m(wluxszjL uys’ )uxs+ m(«/uxs’2+uys’2 )uxs’ ,

where replacing the values of the table we have

2 2
2 2
ml v+ —w 1——2 v=m| |[vi+| W 1——2 v from where we conclude that w = w,
c c

and for the axis y

m(«/uxs2+uys2 )uys+ m(«/uxs’2+uys’2 )uys’: m(«/uxs2+uys2 )uys+ m(«/uxs’2+uys’2 )uys’,

where replacing the values of the table we have

vZ ? vZ V2 ? vZ
m(w)w—m| v+ —w I-— | |w 1——2:—m(W)W+m Vi Wal—— | (W l-—,
c c c c

simplifying we have

2

2
v v
m(w) =m \/v2+ w’ (] ——Zj I——, where when w—> () becomes

m(0)=m| v+ 07 1222|122 = m(0)= mo) 1= = mly) =240
0) \/ 0(1 c]\/i 0)=m(e) 1 -5 = m(v) ]_0?

but m(O) is equal to the resting mass m, thus

m(v) = L, with a relative velocity v =u = m(u) =

2 2
1/I—V—Z 1_”7
c c

11/149

4.2



Lo L —~ myu
that applied in 4.1 supplies p = m(u)u =T 4.1
u
1=
c

m
m'(u') = —="— 4.3
u/Z
1= 2
c
- ~ myu'
and p’:m’(u')u'zo—. 4.1
u'’
1= 2
c
m,
Simplifying the simbology we will adopt m m(u) > 4.2
j
CZ
m
and m'=m'(u') 0 4.3
u'’
1—
C2
that simplify the moments in p =mu and p'=m'u’. 4.1

Applying 4.2 and 4.3 in 2.9 and 2.10 we have

2
V' 2Vu'x' 2vux
m:m'\/1+ >+ — > m= m'~vK' and m'=m I+ —2:>m':m\/K. 4.4
c c \ c? c

= dp d\mu = dp' dm'u'
Defining force as Newton we have F' = 7]) = (d ) and F'= di = (d—) with this we can define then
t ¢ ¢

kinetic energy (E,,E', )as

—

_[F.dR :jd(mu
0

u

d(mii).ii = j(uzdm+ mudu),

N—"

dR =

E
g dt

Q'—.:
S ey

mﬁ

and E', = jF'dR' Ljd o
0

dﬁ'zljrd(m’ﬁ MJ.( dm’+m’u’du’).
0 0
2

2

Remodeling 4.2 and 4.3 and differentiating we have m’c’—m’u’ = mozc2 = u’dm+ mudu = c¢*dm and

m?c’—m'"u'’ =m0 ¢’ = udm'+m'u'du'=c’dm’, that applied in the formulas of kinetic energy

m m'
supplies £, = jczdm =mc’ —myc’ =E-E, and E', = jczdm’:m’cz -m,c’ =E'-E,, 4.5
my my
where E=mc’ and E'=m'c’ 4.6
are the total energies as in the special relativity and £, = mocz 4.7

the resting energy.
Applying 4.6 in 4.4 we have exactly 2.23.

From 4.6, 4.2, 4.3, and 4.1 we find
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E=c\/mozcz +p’ and E'= c\/m0202+ p”

identical relations to the Special Relativity.

Multiplying 2.1 and 2.2 by m, we get

m,u' m,u m,v b, . E
== - ==>m'u'=mi—mv = p'= p-—V

u' u u ¢
I1—— I—— [1-—

c c c

- = ! !
m,u m,u m,v ~ - Y - -, E'_
and L= 2 ——= S>mu=mu'-mv'=p=p'-——v'.

u2 u(Z u(Z 02
1=

Table 4, transformations of moments p and p’

> - E o - -1 E,_'I
P=P—c—2V 4.9 P=P—c—2v 410
1 _ E = p'x'+ ' '
p X =px C_Zv 4.1 px=px C_ZV 412
p'y’:py 4111 py:p’y’ 4121
p’z’: pz 4.11.2 pz = p’Z’ 412.2
E’IE\/E 2.23 E=E' /Kr 2.23
m m
M=M(u)=—”2 4.2 m'=m'(u'):—02 43
]—u—2 1-—;
C C
m'II’H\/E 4.4 m=m'~K' 4.4
E =E-E, 45 | E =E-E 45
E =mc?’ 4.6 E'=m'c’ 4.6
E =m CZ 4.7 E =m c2 4.7
E:c 'm 2cz+p2 48 E’:C 'm 202+p/2 48

Wave equation of Louis de Broglie

The observer O’ associates to a resting particle in its origin the following properties:

-Resting mass m,

-Time t'=1,

-Resting Energy £, = mocz

2

o _MyC

-Frequency y, :72 h

-Wave function y,=asen2ry,t, with a = constant.

The observer O associates to a particle with velocity v the following:

o

2
-
C

-Mass m = m(v) = (from 4.2 where u =v)
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t
-Time t = = (from 1.7 with ux =v and #'=¢ )

2 2
v 2vy v
el e

CZ
E m,c’
-Energy E = ——%—=—=—— (from 223 with ux=v and E'= E,)
VZ VZ
I-— |I-—
c C
Y, _mocz/h

-Frequency y= (from 2.22 with ux =v and y'=y,)

2 2
c c

-Distance x = vt (from 1.2 with X’ = 0)

{ 2 { 2 2
v v X c

-Wave function y =asen2ny,t, =asen2ny,|l-——t,|1-—— =asen ZEy(t——j with u = —
c c u v

2
-Wave length u:yizc—:E:y—h:wl:ﬁ (from 4.9 with p'= p, = 0)
v p P p

To go back to the O’ observer referential where u'= (0 = u'x'= (), we will consider the following variables:

-Distance x = v't’ (from 1.4 with x’ = 0)

2 2
v'e o 2v'0 V'
-Time t:t’\/1+ + :t'\/]+ (from 1.8 with u'x'=0)

c’ c’ c’
v!Z
-Frequency y=)' 1+—2 (from 2.22 with u'x'=0)
c
. V'
-Velocity v = — (de 2.13)
v’
I+—;
c

that applied to the wave function supplies

2 12 12 4
. VX ) , vl \ vt B o
7 —asenZny(t—c—Zj—asenZny \/1+ ¥ t \/]+—2——2 =asen2ny't',

butas t'=¢, and y'=y, then y' =y .

§5 Transformations of the Forces F and F'

Differentiating 4.9 and dividing by 1.17 we have

d[; d[; dE L:}FV: 1 [ﬁ, dE V}:Fw:

dt' diNK  dtJK ¢ JK

Differentiating 4.10 and dividing by 1.22 we have

dt ¢’

[F— (ﬁﬁ)iz} 5.1

dp  dp' dE' V' i dE' ¥’

. B L [ (e
£ — — >F=——|F'—- — | =>F= F'—\F'u')—]. 5.2
dt  d'\K'  di'JK ¢’ \/f[ dt' cz} \/f{ ( )02}

From the system formed by 5.1 and 5.2 we have

dE _ dE’

as ', 53
dt dt’

<y

or F.ii=F"

that is an invariant between the observers in the Undulating .Relativity.
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Table 5, transformations of the Forces F a

F

4’! ] I oo~ ‘7 I V "V ‘_}.'

! ! 1 o= V ] ! ! QI = v’
F'x :ﬁ[Fx—(F.u)c—z} 54 Fx = N2 [F X +( U )c_} 55
F'y'= Fy/NK 541 | Fy=F'y'/JK' 5.5.1
F'z'= Fz/JK 542 | Fz=F'z'/JK' 552
dE' _dE o
dr dr 5.3 Fau=F.a 5.3

§6 Transformations of the density of charge p, p' and density of current J and J'

d
Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as p, :d—q we have
v

o

=

pou — p()u _ p()v :p'ﬁ':pﬁ_pvjj':j—plj
u!Z u2 u2
1- j; ]—? I_CT
and 2 _ Pt PoV = pii=p'i'-p'V'=J=J~p'V".

2 12 12
\/1—”2 \/1—”2 \/1—”2
C C C

Table 6, transformations of the density of charges p, p' and density of current J and J'

jr:j_p‘j 6.1 j:j'—p'\_}.' 6.2
J'x'=Jx— pv 6.3 Jx=Jx' + p"V' 6.4
J'y'=Jy 6.3.1 Jy=Jy 6.4.1
J'z'=Jz 632 | Jz=J'7 6.4.2
j:pa’ 6.5 j/:pri[/ 6.6
po , po
P=—T—— p =
u 6.7 u' 6.8
I-—— 1—
c 02
o' = K 6.9 o= K 6.10

From the system formed by 6.1 and 6.2 we had 6.9 and 6.10.
§7 Transformation of the electric fields E E' and magnetic fields B, B’
E ”xé) and F' = q(E'Jrﬁ’xE’) in 5.1 and 5.2 we have

B J%[Q(EH,XB) o(e+ < B)a) " }
andq(mxg):%[ (Brviitx B')~[g(E+

Applying the forces of Lorentz F = q(

Dﬁ

Dc

\._/
<)

—2} , that simplified become

6.1

6.2



(mxg')zi[(mxg)_(m)

K

—

\%
CZ

} and (E+iix B)=

el

o

(ErvaxB)-(Era)

v
5 from
c

where we get the invariance of E.ii=E'ii' between the observers as a consequence of 5.3 and the

following components of each axis

E!xl+ulleIZI_u!ZIB!yI:

Ely!+u!Z!BVx!_ulx!BVZ!:

~ 5~

EIZI+u!x!BIyI_uIyIBIx!=

=

1
Ex"’”yBZ_”ZBy:—{E'x#u'y’B’z’—u'z’B'y’+ .

NI

1~

[Eer uyBz—uzBy—

Exuxv  Eyuyv  Ezuzv

c’ c’

[Ey+usz—usz]
[Ez+uxBy—uyBx]

[ R e B ) [0 Ay A B ) !
E'xu'xv' E'y'u'yv' E

C2 C2

1
Ey+uzBx-uxBz :—[E’y'+u'z'B’x’—u'x’B’z']

NI

1
Ez+uxBy—-uyBx :—[E'z’+u’x’B'y'—u'y'B'x']

\/E

To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8.

Table 7, transformations of the electric fields E

E' and magnetic fields BeB

|

7.1

711

7.2

7.21

7.2.2

, ., Ex vux E'x’ viu'x'
E = ﬁ(]_c_zj 7.3 Ex = \/F (]-i' cz j 74
Ey v’ vux )| vBz E'y' v oviu'x'
Evyv=-"-"X"AM]4+———|—— | 7.31 Ey = I+—+ + 7.41
y \/E( cZ cZ j \/E y IKI CZ cZ
, ., Ez v vux)| VBy E'zZ' v vy
E'z=—— ]+—2——2 +— | 732 Ez = , 1 — 5 7.4.2
JK c c K VK c c
B'x'= Bx 7.5 Bx=RB"x' 7.6
v v’
B'y'=By+—Ez 751 | By=B'y'-—E'Z’ 7.6.1
c c
r ! v r ! V' ! ’
B'z'= Bz——Ey 7.5.2 Bz=B'z+—E'y 7.6.2
c c
E!y(:Ey\/E 77 Ey — EVyI }K! 78
E2= EeJK 771 | g oJK 7.8.1
ux u'x’'
By=—-—Ez 7.9 B'y'=——E'7 7.10
c c
ux u'x’'
BZ=C—ZE 7.9.1 B'Z'ZC—ZE'J" 7.10.1
Table 8, transformations of the electric fields E‘, E' and magnetic fields BebB
1 - _\Vv 1 - V'
E'x'=——| Ex—\E.u)— 711 Ex = E'x'+\E'u')— 712
\/E[ ( )cz} \/E[ ( )cz
1 1
Er)}¢= (Ey—VBZ) 7.11.1 Ey:—(E'y’-i—V’B'Z’) 7121
1 1
E’Z' =—K (Ez+vBy) 7112 | Ez= N (E'z'-v'B'y) 7122
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B'x'= Bx 713 Bx=RB"x' 714

B’y':By 7.13.1 By:B'y’ 7.14 1

B'z'= Bz 713.2 | Bz=RB'Z' 7.14.2

Relation between the electric field and magnetic field

If an electric-magnetic field has to the observer O’ the naught magnetic component B'=zero and the

electric component E'. To the observer O this field is represented with both components, being the
magnetic field described by the conjunct 7.5 and has as components

vEz vE
szzero,By:——Z,Bz=—2y, 7.15
c c
: = 1 =
that are equivalentto B=—VXxE. 7.16
c

Formula of Biot-Savart

The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x’ the
following electric-magnetic properties:

-Linear density of resting electric charge p, = d_q'
X

-Naught electric current I'= zero
-Naught magnetic field B' = zero = ii'= zero

-Radial electrical field of module E'=+/E'y°+E'z"” = p Po R at any point of radius R =+/y"* +z'° with

e

o

the component E'x'= zero.

To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity ux =v
to which it associates the following electric-magnetic properties:

-Linear density of the electric charge p = p—”2 (from 6.7 with u = v)
v
1=
c
. R
-Electric current [ = pv =
vZ
1=
c
-Radial electrical field of module E = — (according to the conjuncts 7.3 and 7.5 with
v
1=
c
B'=zero = ii'=zero and ux =v)
vEz vE
-Magnetic  field of  components Bx =zero, By=——7, Bz = _2y and  module
c c
vE v E y 1 o, u,/ 1 . .
B =—=— =— = where U = > being in the vectorial form
¢ c v ¢ v: 2me, R 2nR g,C
I-— I——
c c
- I _
B= K, u 717
2nR
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where u is a unitary vector perpendicular to the electrical field E and tangent to the circumference that
passes by the point of radius R = w/yz +z° because from the conjunct 7.4 and 7.6 E.B=rzero.

§8 Transformations of the differential operators

Table 9, differential operators

8_6+v6 81 0 0 v 0 8o
ox' 0O0x ¢ Ot ' ox 0x' ¢’ ot '

0 _ 2 8.1.1 2 = 2 8.2.1
oy' 0y | oy 0y o
0 _9 8.1.2 0.9 8.2.2
0z 0z | 0z 0z B
o v 0 N 1 vl w0 8.3 o v 0 N 1 J v?2 oyix') o | 894
or JK ox K\ & Pt)ot ot K ox' JK' > ot
From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions

0 x/t 0 o x'/t'0
—+—F—=o0oand —+———=0. 8.5
ox ¢ Ot ox'" ¢ ot
From where we conclude that only the functions y (2.19) and ' (2.20) that supply the conditions

0 /t O oy' x'/t' oy’
WY g and L4220V 8.6

o,
ox ¢’ ot ox' ¢ ot

can represent the propagation with velocity ¢ in the Undulating Relativity indicating that the field propagates
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also
write to the other axis

Ov yhoy_, v YOV, Qv 210y _, v ZHoy _,

oy ¢ Ot oy ¢F or and oz ¢ Ot "oz o ot o
From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem

_ vux JRARS
godbwy) T dpzt) T 8.8

8(x,y,z,t) - JK 6(x’,y’,z’,t')_ JK
variables with ux and u'x’ as a consequence of the principle of contancy of the light velocity but are equal ais
J =J" and will be equaltoone J=J'=1 when ux=u'x'=c.

Invariance of the wave equation
The wave equation to the observer O’ is

o0, o 1
ax12 ayIZ 82’2 CZ atyz

=zero

18/149



where applying to the formulas of tables 9 and 1.13 we get

2
o voy, o o v o df, v vuxyof
ox ¢’ ot oy’ ozb ¢’ JK 0x K ¢’ ¢ )ot

from where we find

0’ o’ 0° 1 07 2v o’ 2 07 lux o7 v:i ol v o? 2viux &7
K_2+K_2+K_2__2_2+_2 T - 4 4 A2 6 A2 6 2
ox oy 0z" ¢° Ot° c¢° oxot ¢' Oxot ¢’ oxot c'ott " ot ¢’ ot

viaol 2v o? o7 2iux &7 2v2i 2vux 02 2Vlux 07 viux? 87 v o’

-—— - + - + —+ ————————— =zero
c’ox’ ¢’ oxot ¢! oxot ¢t oxor ' ot ¢t o’ ¢’ ot ¢’ o’ o’
that simplifying supplies
kO g O g0 1O ux v VO 2w v o
ox’ oy’ oz° ¢t ot’ ¢ oxor ccoxt ot o o c’ ot
where reordering the terms we find
o’ 0’ o’ vi 2vwux )1 8 v (9 2ux &0 ux’ o’
K—2+K—2+K—2— ]+—2__2 S A2 2 —2+—2—+—4—2 = zero 8.9
ox oy oz c ¢’ Jetott ¢\ ox ¢’ oxot ¢ ot
o xito o uxo) & 2ux & ux’ &’
but from 8.5and 1.13 we have —+-—F—=0 —t = | =71+t +——5 =zero
ox ¢ Ot ox ¢ Ot Ox c” oxot ¢ ot
S . . o’ o’ &’ 1 ¢’
that applied in 8.9 supplies the wave equation to the observer O —+t— ——=zero. 8.10

+__
ox’ oy’ oz’ o’

To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting
2
0 voYy, o o 1| v 8 1 v oo
ox' ¢’ ot oy’ 027 ¢’ K Ox' K’ c’ c® ot

from where we find

’ 82 ' 62 ' 62 1 82 2V, 62 2v13 62 4V/2 u!xl 82 V!Z 82 V/4 62
K+ K+ K~ T N 4 Yt T T
ox' oy’ 0z'° c ot ¢ ox'ot’ ¢ ox'or c ox'ot' c¢” o't ¢ o
iux e v? o? v o v o7 Hiu'x o7 7?87 Wu'x o°
6 12 __2 12 + _2 ' 2 + 4 (-} + 4 ' 2 - 4 12 - 4 12 -
c Ot c® Ox c® ox'ot c’ ox'ot c ox' ot ¢’ ot c Ot
B V!3 ulxr 82 ~ V/Z uerZ 62 ~ V/4 62 — soro
C6 ath C6 aﬂZ 06 atIZ
that simplifying supplies
.0’ 0’ .0’ 1 07 2Vu'x & v ot vl ot vu'x o0 Vviu'x’ o’
K 2+K 2+K 2 2 Ag2 4 T2 A2 4 Ag2 4 2 6 2
ox' oy oz'" ¢t ot c ox'ot' c¢” ox'® ' o ¢ o c ot'
where reordering the terms we find
62 82 aZ 12 Wu'x ) 1 62 12 aZ 2u'x' aZ r 12 az
K' 2+K' 2+K’ >~ I+v—2+ W’;x — Z—V—Z >+ uzx +u)j > | = zero
ox' oy oz' c c c ot ¢ \ox c- ox'ott ¢’ o

but from 8.5 and 1.18 we have
o x'/t' o o uwx' oY & wx & ux’ o
’ + 2 _! =0= ' + 2 ' = 2 + 2 1 Apt + 4 2
ox ¢’ Ot ox' «¢° Ot ox' c” ox'ot ¢’ ot
that replaced in the reordered equation supplies the wave equation to the observer O’.

=zero

Invariance of the Continuity equation
The continuity equation in the differential form to the observer O’ is

op' = = ap' N oJx’ N oSy’ N oJz'

+V.J =zero = — = zero 8.11
ot’ o' ox' oy oz
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where replacing the formulas of tables 6, 9, and 1.13 we get
2
SN I P Kk pﬁ+(i+%ij(Jx_pv)+M+%= sero
JK 0x K c ¢ )ot ox ¢ Ot oy Oz
making the operations we find

2
v8p+8_p+v 8_p_vux8_p+8Jx Lz

v dJx vdp v28p+8Jy+%
ox o0t ¢ ot ¢ ot ox ¢ ot ox ¢’ ot 0y 0z

= zero

that simplifying supplies

op vux0dp OJx v OoJx OJy 0Jz
5 +
ot ¢ 0t Ox ¢ 0t 0y Oz

=zero

where applying Jx = pux with ux constant we get
8_p_ﬂ8_p+6Jx+L6(pux)+8Jy+8Jz =Zer0:>6_p+6Jx+8Jy+6Jz

3 3 = zero 8.12
ot ¢ 0t Ox ¢ Ot oy Oz ot 0Ox 0y 0z

that is the continuity equation in the differential form to the observer O.

To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of
tables 6, 9, and 1.18 in 8.12 getting

, 12 [ ! "y! 'z
[ v 0 1 ’(1+V_+VU x} 0 Jpr\/ﬁ_,_(i_v_ 0 j(]’x’+p'v’)+a']y +6JZ = zero

- +
JK'ox' K ¢’ > ot ox' ¢’ ot dy' oz
making the operations we find
ra/a/ rZal r/ra/ aJrr raJrr ra/ yZa/aJrr aJr/
_YOpt Opt VI Op Vux'Opt OJ'X v OJX vOp' v 0p' OV 0J'z
ox'" ot ¢ ot ¢ ot o0x' ¢ ot ox' ¢ ot 0y oz'

= zero

that simplifying supplies

op' vu'x'op' oJ'x" v oJ'x" oJy 0JzZ
' + 2 ' + ' T2 i + ' + i

ot ¢~ Ot ox ¢~ Ot oy oz

= zero

where applying J'x'= p'u’x" with u'x’ constant we get
a ! ! ’ ! a ! aJI ! ! a [ A aJI ! aJI ! a ! aJI ! aJI ! aJI !
p L ruxop o7 V. (pux)+ Y 9P E o= p,+ r ey el

ot' ¢ ot ox' & ot oy’ oz’ ot ox' o0y’ oz’

= zero

that is the continuity equation in the differential form to the observer O’.
Invariance of Maxwell’s equations
That in the differential form are written this way

With electrical charge

To the observer O To the observer O’
OEx OEy OEz p OE'x' OE'y' OE'z' p
+ + = 8.13 + + =— 8.14
ox Oy 0z g, Oox' oy’ oz g,
8Bx+63y+632=0 815 68x+8By+8 2 816
ox oy Oz ox' oy’ oz'
OEy OEx 0Bz OE'y" OFE'x' OB'Z'
- == 8.17 - == 8.18
ox Oy ot ox'’ oy’ ot’
OEz OEy OBx OE'z" OFE'y' OB'x'
- == 8.19 - == 8.20
oy 0Oz ot oy’ oz' ot'
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OEx OEz _ OBy 621 OE'x' OE'z' _ 0B’y 8.2
0z  Ox ot ' oz' ox' ot' '
OBy OBx OFz OB'y'" OB'x' OE'Z
—— =W Jz+e,n,—— | 82 - =u,J' z'+e 1, 24
x oy " T R Y R0 |8
OBz OBy OEx OB'z" OBy OE'x'
2 ke, S8 | 82 _OBY I 5
> o M hoo |82 | o M, | 8.26
OBx OBz OEy OB'x' OB'Z OE'y'
———=n,Jyt+e u, — - =p,J' y+e
= o H,JY+EH, or 8.27 o o K, J V+E N, o 8.28
Without electrical charge p = p'= zero and J=J'=zero
To the observer O To the observer O’
8Ex+6Ey+6Ez:0 829 OFE' x +8Ey +8 Z o 8.30
ox Oy Oz ox’ oy’ oz'
8Bx+6By+6Bz:0 831 OB' x +aBy +aBz _0 8.3
ox Oy Oz ox' oy’ oz'
OEy OEx OBz OE'y' OE'xX' OB'zZ'
- =—- 8.33 - =—- 8.34
ox Oy ot ox’ oy’ ot’
OEz OEy OBx OE'z" OFE'y' OB'x'
- == 8.35 - == 8.36
oy Oz ot oy oz' ot'
OEx OEz _ OBy 837 OE'x' OE'z' _ OB’y 8 3
0z  Ox ot ' oz' ox' ot' '
@_@_8 OEz 8 30 6B’y'_6B’x’_8 OF'z' 8.40
o o My ' o oy Mo '
%_6&_8 OEx 6 41 6B’z’_8B'y'_8 OFE'x' 6.4
oy oz Py | o o P '
@_%_8 OEy 8 43 68’x’_6B’z’_8 OE'y' 8.4
2o M e Mo '
1
gM, =— 8.45
c

We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is
OE'x’ OE'y' OE'Z !

L2y _P 8.14
ox' oy’ oz €

o

where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u’x’ constant, we get
0 v 0| Ex vux) 0| Ey v’ vux) VvBz
—t = |=| - |t =t |-—F=|t
ox ¢’ ot K c 6y_\/E c c JK
+8 Ez J vz_vux +vBy__p\/E
| JE\ @@ )UK,
2

c c
, , , v* OEx ,
making the products, summing and subtracting the term —-——, we find

¢’ oOx

8Ex+18E _vux 8Ex_v2ux OEx 8Ey+i8Ey_vux 8Ey_vaBZ+
2

2 4 2

ox ¢ 0Ot ¢ oOx ¢’ ot oy oy < oy oy
O0Ez v’ 0Ez wvuxO0Ez vOBy v’ 0Ex Vv’ 0Ex pK

+ —— + e — =
oz ¢’ 0z ¢ oz oz ¢ ox ¢ ox e

o
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that reordering results

v’ (OFEx ux OEx 0Bz 0By I OFEx OEx OEy OEz vl ovux) pK
- Ech_ZE —y - -— + + + I+——-——|="—

c’ oy oz ¢’ ot ox oy Oz ¢’ g,

where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to

vpux I
—v(uaJx) =—VU pux =— - gotten from 8.25 and 8.45 resulting in
g,C

o

2 2
(6Ex+8Ey+8EZJ(]+V__EJ:£(1+v__vuxj_£vux+£vux

2 2 2 2 2 2
ox Oy Oz ¢ c g, ¢ c g, ¢ g, c

OEx OEy OEz p
+ + =—
Oox oy Oz g,
that is the Law of Gauss in the differential form to the observer O.

8.13

from where we get

To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux
constant, we get

[i_ii}E'x'(]_i_v'u,x'j_i_i E!yl 1+ﬁ+vlu1xl +V’B’Z' .
ox' ¢’ ot |JK' c’ oy'| VK’ c’ c’ VK’
a |:E!Z!(] v/Z v!ulx!j_v!B/y!:|_pI\/F

+— —+
oz'| VK’ c’ c’ VK’ g,
12 Elx!
making the products, adding and subtracting the term —- o we get
c X
aErx!_vla rx!+vru!x!a 'x'_v'zu'x’a rxr a ryr V(2a ryr vlurxla ryr+
ox' ¢’ ot ¢’ ox c’ ot' o' & oy o
N v'OB'z' N OFE'z' N v'? OE'Z' N v'u'x'0E'z" v'OB'y' N V7 OE'X' B V2 OE'x  p'K'
oy’ oz o’ o7 ¢ o oz’ o o g,

that reordering results in
v?(OE'x u'x'OE'x' J[(O0B'z" OB'y'" I OE'X
+— +v - -— +
ox' c- ot oy’ oz' ¢’ ot

aEVxV aEVyV aEVZV! VVZ V!u!x! pVK!
+ + + I+—+——5—|=

ox' oy’ oz' c c g,
where the first blank is 8.5 and because of this equals to zero, the second blank is equal to

V!pru!xr . '
———— gotten from 8.26 and 8.45 resulting in
ec

aE!xl aEly! aE!Z! v/Z vlulxl pl v/Z vlulxl p vlulxl p! v'u'x'
(ax, + o + P ](]-i— —+— J— I+—+——7F [+— -
P

c c B c c € c’ € c’
OE''x' OE'y' OE'Z , , . .
+ + =— that is the Law of Gauss in the differential form to the O’
ox' oy’ oz e

2
C

VI(MUJIXI) — vluop!ulx!:

8 o o

o

!

from where we get

observer.
Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.
§9 Explaining the Sagnac Effect with the Undulating Relativity

We must transform the straight movement of the two observers O and O’ used in the deduction of the
Undulating Relativity in a plain circular movement with a constant radius. Let’'s imagine that the observer O
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial
speed V' in a unclockwise way (U) equals to the negative course of the axis x of the UR.
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In the moment t =t = zero, the observer O emits two rays of light from the common origin to both
observers, one in a unclockwise way of arc cty and another in a clockwise way of arc ctc, therefore cty = ctc
and ty = tc, because c is the speed of the constant light, and t; and tc the time.

In the moment t = t' = zero the observer O’ also emits two rays of light from the common origin to both
observers, one in a unclockwise way (useless) of arc ct’y and another one in a clockwise way of arc ct’c, thus
ct'y =ct'c and t'y = t'c because c is the speed of the constant light, and t';, and t'c the time.

Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR):

|V| ' v 2vux

W 1+ -2 115
|V'| t Vi 2v'u'x!

o PR 1.20
v c c

Making ux = u'x’ = ¢ ( ray of light projected alongside the positive axis x ) and splitting the equations we
have:

t'=t(l—zj 9.1 z:z'(1+1J 9.2
C C

, v V'
V=—= 9.3 V=——"-+< 9.4

v v

1—— 1+—

c c
When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance
Vi, = v’t'U of the observer O and simultaneously will detect its clockwise ray of light at the same point of

the observer O, in a symmetric position to the diameter that goes through the observer O because
ct, =ct. =>t, =t. and ct'y =ct'.=t', =1, following the four equations above we have:

271R

cty, +vt, =2nR =t = 9.5
c+v
271R
ct' ANV, =2nR =1 = 9.6
c+2V

When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its
own clockwise ray and will be at the distance vi,. =V't’,, of the observer O, then following the equations
1,2,3 and 4 above we have:

2R
Clye =2TR+Vt,. = t,. = 9.7
c—v
2R
cthe=2nR=>1t,. = — 9.8
The time difference to the observer O is:
Af = 3 271R 2R 3 4nRy
=t —t. = - =— 9.9

c—V c+v c’ —v

The time difference to the observer O’ is:

23/149



., , 2nR  2nR 4RV
A=t~ = -~ = 9.10
c e+ (c+2V)

Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating
Relativity.

§10 Explaining the experience of Ives-Stilwell with the Undulating Relativity

We should rewrite the equations (2.21) to the wave length in the Undulating Relativity:

A A
A= and A = , 2.21
v Qvux V2 2Vu'x
c c c c

Making ux = u’x’ = ¢ ( Ray of light projected alongside the positive axis x ), we have the equations:

x':L and X:L 10.1

S GH]

If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and wave length A, in the positive
way of the axis x, then according to the equation 10.1 the observer O’ will measure the waves with velocity ¢
and the wave length A/, according to the formulas:

A My
=) ()
c c
If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and the wave length A’ in the
positive way of the axis x, then according to the equation 10.1 the observer O will measure waves with

velocity ¢ and wave lenght A , according to the formulas:
A, A

The resting sources in the origin of the observers O and O’ are identical thus A, =A',.

Ap= and A, = 10.2

A= and A, = 10.3

We calculate the average wave length A of the measured waves (A ,,A,) using the equations 10.2 and
10.3, the left side in each equation:

! — ! ?
2 2(1—") c 2 2(1—VJL ¢
c C

We calculate the diffrence between the average wave length A and the emited wave length by the sources
AL=A—N,:

_ Iy 2
AN=h—L, =—F{1+(1—Xj }xF
2[1—Vj ¢

c
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c
— B 2
s 1+1—2K+V—2—2+2K}
2 ]_Z L c C C
c
— 2
Y 10.4
(]_V) 2 c
c
Reference

http://www.wbabin.net/physics/faraj7.htm

§10 Ives-Stilwell (continuation)
The Doppler’s effect transversal to the Undulating Relativity was obtained in the §2 as follows:

If the observer O’, that sees the observer O, moves with the speed -V’ in a negative way to the axis x’, emits
waves with the frequency )’ and the speed c then the observer O according to 2.22 and u'x'=—V" will
measure waves of frequency y and speed c in a perpendicular plane to the movement of O’ given by

y=y' [1-Y 2.25
c

12 2
For u'x'=—Vv' we will have ux=zero and ,/]—v—z,/]wtv—z =/ with this we can write the relation between
c c

the transversal frequency y =y, and the source frequency )'=)’.. like this

[——— 10.5

\4
1+c—2

With c=y A, =)' A';. we have the relation between the length of the transversal wave A, and the length of

the source wave A,
2

,
M=ty 1+ 10.6

The variation of the length of the transversal wave in the relation to the length of the source wave is:

2 2 2 AoL2
AN =h, =N =0\"s ,/1+Z—2—wF :wF( /1+z—2—1j;w1, (1+2V7—1j;7FZ—2 10.7

that is the same value gotten in the Theory of Special Relativity.

Applying 10.7 in 10.4 we have
— AL
Al = :

(-]

With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows
2
xA=x5(1—X) 10.9

c

10.8
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And from this we have the formula of speed Y_1- T 10.10
¢ D

A=A =A A, 10.11

Applying 10.10 and 10.11 in 10.6 we have

2
k,:‘/xAx'D\/H(J— ;:—Aj 10.12

D
From 10.8 and 10.12 we conclude that A , <A, <A, <A<A, . 10.13

So that we the values of A, and A/, obtained from the Ives-Stiwell experience we can evaluate A,, A,

Y and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity.
c

§11 Transformation of the power of a luminous ray between two referencials in the Special Theory of
Relativity

The relationship within the power developed by the forces between two referencials is written in the Special
Theory of the Relativity in the following way:

. Fii—vF
Frip=2M7V% 11.1

vux
j P
)

The definition of the component of the force along the axis x is:
dpx d\mux) dm dux
Fx=P% :—( ):—ux+m—
dt dt dt dt

For a luminous ray, the principle of light speed constancy guarantees that the component ux of the light
speed is also constant along its axis, thus

11.2

x dx ) ) dux dm

— =— =ux = constant, demonstrating that in twvo —— = zero and Fx = —ux 11.3
¢t dt dt dt
The formula of energy is £ = mc” from where we have — = — 11.4

dt ¢ dt
- df - . o - ux
From the definition of energy we have 7 = F.u that applying in 4 and 3 we have Fx = F.u — 11.5
t c

Applying 5 in 1 we heve:

~ (= _\Vux
Fu- (Fu)—z
Flai'= €
Vux
) B
] ~ L, = dE' dE
From where we find that F'u'= F.u or =— 11.6
dt’ dt

A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as
the source.

§12 Linearity

The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating
Relativity:
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x dx dy z dz

—=—=UxX,—=——=Uy,—=—=Uz 1.13
t dt dt t dt

x' dx "ody z' dZ

—= :u'x',L:lzu’y’,—: =u'z 1.18
' dr t dr ' dr

Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in
the following way:

x = Ax'+Bt' 12.1
t=ExX'+Ft 12.2

With the respective inverted equations:
-B
!

X = X+ t 12.3
AF — BE AF — BE

-F A
= X+ t
AF — BE AF — BE

!

12.4

Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and
y,Z.

We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed ¢
(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective
inertials referential at the moment in which the origins are coincident and at the moment where:

t=t =zero 12.5

because of this in the equation 12.2 at the moment where t' = zero we must have E = zero so that we also
have t = zero, we can’t assume that when t' = zero, X’ also be equal to zero, because if the spreading

happens in the plane y'z’ we will have x’ = zero plus t'# zero.

We should rewrite the corrected equations (E = zero):

x = Ax'+Bt 12.6
t=Ft 12.7
With the respective corrected inverted equations:
, X Bt
X=—-— 12.8
A AF
,
I'=— 12.9
F
If the spreading happens in the plane y’ zZ’ we have x’ = zero and dividing 12.6 by 12.7 we have:
x B
==y 12.10
t F

where v is the module of the speed in which the observer O sees the referential of the observer O’ moving
alongside the x axis in the positive way because the sign of the equation is positive.

If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have:

x' B B
R U 12.11

where Vv’ is the module of the speed in which the observer O’ sees the referential of the observer O moving
alongside the x’ axis in the negative way because the signal of the equation is negative.

The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the
equations 12.6 to 12.9:
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x? =t =x7 =t 1.6
Applying 12.6 and 12.7 in 1.6 we have:
(Ax'JrBz")2 — ¢’ Ft? =x"=ct?

From where we have:

2 '
(Azx,2 )_Cztfz {FZ B 24Bx } —

B_2 _ 24Bx'
¢’ c’t

where making A? = 1 in the brackets in arc and {FZ - } =/ in the straight brackets we have

the equality between both sides of the equal signal of the equation.

B®  2ABxX' B° 2Bx
AppllyingA=1in | F’ ———=—— =1 we have F’ =]+—+— 12.12
c c’t c c’t'
. . B B ,
Appllying A =1in 12.11 we have ZZTZBZV 12.11

That applied in 12.12 suplies:

12 r ot
/ v 2V x

F= ]+—2+7=F(x',t') 12.12
c c’t

as F(x’, t) is equal to the function F depending of the variables x’ and t'.

Applying 12.8 and 12.9 in 1.6 we have:

From where we have:

2 2
3 2.2 X 5o 1 B 2Bx
X' —ct = —F|-ct|—— +
(Azj [Ff A’C’F? A’C’Fi
B’ 2Bx

1
where making A? = 1 in the bracket in arc and S T oo T = in the straight bracket we
F° A°ccF° A°c’Ft

have the equality between both sides of the equal signal of the equation.

Applying A =1 and 1210 in | ——— B 2BX |} ehave
' F? A’C’F’  A’C’Ft '
F:;:F(x,t) 12.13
]+i_&
¢’ 't

as F(x, t) is equal to the function F depending on the variables x and t.

We must make the following naming according to 2.5 and 2.6:
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% V' x! —
K':]+—+T:>F: K' 1214
c c't

K=l+—-"F=>F=— 12.15

¢’ ot \/E

As the equation to F(x’, t') from 12.12 and F(x, t) from 12.13 must be equal, we have:

2
V' V' x! 1
Fo iy e 2vE 12.16
c ct' v 2w
I+— -

2
c c't

Thus:

2 12 r !
N (= YRS 1247

c c’t c c’t
Exactly equal to 1.10.
Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have:
x=x"+'t 12.6
t=Ft 12.7

With the respective inverted corrected equations:

X'=x—-vt 12.8
,
'=— 12.9
F
We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae:
x=x"+'t 12.6
v!2 2v’x'
t=t'\1+—5+— 12.7
c c’t

With the respective inverted final equations:

xX'=x—vt 12.8

- 12.9

2
ve o 2vx
t'=t ]+—2 5
c c't

That are exactly the equations of the table |

!

B , . : v '
As v :F and V'= B then the relations between v and v’ are v :F or V'=v.F 12.18

We will transform F (12.12) function of the elements v, x’, and t’ for F (12.13) function of the elements v, x
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18:
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12 /) 2 _
Fe ]+v_2+2v2x _ ]+(VFZ) +2va vt)
c ct c o2

r
F

22 2 22 2 22
F:\/I+VF L 2mF V'F :\/1+2vxF V'F

c’ c’t c’ c’t c’
2wF? V'F? V'E?  2wF? 1
Fl=lt—F—— 2F ' +—— - —=I=F=
c't c c c't ; v: o 2wx
T
c c't

That is exactly the equation 12.13.

We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements v’, X’
and t’, replacing in 12.13 the equations 12.6, 12.7 and 12.18:

2 2 N\ 2 Y, 12 Wy 2 12
\/1+‘}2_‘2}x 1+L = _ZV(X-H/t) I+ j 2 zvxz_ zv 2
c ct cc\F c’FFt c’F° c¢ctF° c¢F

[ 12 r ot
F = ! :>F2(1 Y 2V'x j=1:>F: IRl

2 2,0

\/] V!Z 2V,X, C c’t
T 22 2 2
c’F'" ct'F

That is exactly the equation 12.12.

We have to calculate the total diferential of F(x’, t') (12.12):

dF = a—}'ﬂa’x'+a—Fa’t’
ox' ot'

as:

oF 1 OoF 1 Vv X

= —— and —=——F——5——
ox' NJK' 't ot' JK' et

we have:

12.19

1 v, 1 VX,

= dx'—
N N

where applying 1.18 we find:

dF

1 Vv 1 Vv dx
dF = dx'— —
JK' 't N

From where we conclude that F function of x’ and t’ is a constant.

dt'=o0 12.20

We have to calculate the total diferential of F(x, t) (12.13):

dF = a—Fa’x+a—Fa’t
ox ot

as:
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—_ = and —=————— 12.21
ox 3t 0 St t
K2 2
we have:
1 1 v x
dF———dx——37—dt 12.22
c't ctt
K2 K2
where applying 1.13 we find:
1 v 1 v dx
dF = ——dx————dt =0
3t 2t dt
K? K?

From where we conclude that F function of x and t is a constant.

The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and
time.

The time has its own interpretation that can be understood if we analyze to a determined observer the
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will
get a result without any use for the physics.

If in the instant t = t' = zero, the observer O’ emits two rays of light, one alongside the axis x and the other
alongside the axis y, after the interval of time t’, the rays hit for the observer O’, simultaneously, the points A,
and A, to the distance ct’ from the origin, although for the observer O, the points won’t be hit simultaneously.
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius
in relation to the axis x and that provide the same time for both observers (t; = t, and t'y = t'5), which means
that only one ray of light is necessary to check the time between the referentials.

According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight
line according to what is demanded by the fundamental axiom of the Undulating Relativity § 12, because of
this, the difference in velocities v and v’ is due to only a difference in time between the referentials.

!
X=X 1.2 V=2—X 1.4
t t
We can also relate na inertial referential for which the light spread in a straight line according to what is
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the

difference of time between the referentials.

According to § 1, if the observer O at the instant t = t' = zero, emits a ray of light from the origin of its
referential, after an interval of time t;, the ray of light hits the point A; with coordinates (x4, y4, z4, t1) to the
distance ct, of the origin of the observer O, then we have:

_2vx,

2
c't,
After hitting the point A; the ray of light still spread in the same direction and in the same way, after an

interval of time t,, the ray of light hits the point A, with coordinates (x; + Xo, y1 + Y, Z1 + 25, t; + 1) to the
distance ct, to the point A, then we have:

_X 2 2wx 2 2vx
x_dx_, M _Xo_ 1+v_2_ o 1+ v 2 / 2vux
t dt 11 lz ¢ c’t

and with this we get:

2 Jvx 2
t',=t, [1+Y5-52=t, 1+V—2—2V§’x
¢ c't, c c
2 Jvx 2 2 2 2vlx, +x
O+t =t, [1+Y5 -1+, 1+v—2—2"’2"x—(11+t2) 1+V—2—2V’2"x:(11+t2) 1+ 2( 1+%)
c't, c c c c c (ll+t )
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The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be
expanded to A, points and several observers.

-

0, 0, 0=0 0, X

t
t=t = zERoO
In the figure the angles have a relation y=¢'—¢ and are equal to the following segments:

1
p

O,to O=0' isequalto 0=0' to 0’y (0,<0',=vt,=V't"))

O,t0 Ojisequalto O'1to O, (0, <> 0, =v(t, +1,)=V(t',+t',)—>vt,=Vt',=0,<>0,+0',<>0',)
And are parallel to the following segments:

O, to A, is parallel to O, to A,

O’5 to A, is parallel to O’y to A,

X=X'isparallelto X,=X",

The cosine of the angles of inclination ¢ and ¢’ to the rays for the observers O and O’ according to 2.3 and
2.4 are:

ux_v
- 5% cosdp—v/c
u'x'= u); )4 — ux — C2 C :>COS¢'= Zd)
c
1+v7_2v751x 1+v7_2v7gx \/1+v2_2vcos¢
c c c c ¢ ¢
cosdp—v/c
cosg=<059=v/c 12.23
VK
e sen
And with this we have: send'= o 12.24
VK
u'x' v
u'x'+v' Uux c +; cosd'+v'/c
ux= > =>-== - =cosh= :
! [ N C ! [ N ’ !
\/1+"2+2”2‘x \/1+"2+2”;x \/1+"2+2"cos¢'
c c c c c c
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’+ '/
=COS¢% 12.25

send’
12.26
/K!

The cosine of the angle y with intersection of rays equal to:

cosd

And with this we have sen¢=

2

c _ c = = 12.27
VK JK' VK JK'

1y, 0! ’
[V YUY Veosh 1+ Y-cosd)
C C

cosy =

ysend  send’

= 12.28
cJK ¢ JK'

The invariance of the cosy shows the harmony of all adopted hypotheses for space and time in the
Undulating Relativity.

And with this we have: seny =

The cosvy is equal to the Jacobians of the transformations for the space and time of the picture |, where the
radicals

1!

2 12
VK = ]+v_2_2_\2/x and vK'=_|1 +v_2+ 2‘}2 Y are considered variables and are derived.
c

c't c c’t
1 00 -V
i Lt gt 0 10 0 e
coswszaxj Oyt 0 01 0 ct___c 88
Ox o(x,y,z,t) |-y/c? 001 (]+ﬁ—ﬂ) JK JK
| JK «/Ek ¢’ c’t
1 00 V' ot R
v'x v'u'x
_ox* _ 0(xy.zt) 0 10 0 ]+czt' ! c’
cosy=J'=""r = 0 01 0 = L= , 88
ox''o(x,y, 2t |y /e’ 001 (]+vr2+v,x,j JK JK'
| VK’ JEU T e

§13 Richard C. Tolman

The §4 Transformations of the Momenta of Undulating Relativity was developed based on the experience
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres

preserving the principle of conservation of energy and the principle of conservation of momenta, shows that
the mass is a function of the velocity according to:

)

2
C

m=

where m, is the mass of the sphere when in resting position and u = |L7| =1 the module of its speed.

Analyzing the collision between two identical spheres when in relative resting position, that for the observer

O’ are named S’y and S’, are moving along the axis X in the contrary way with the following velocities before
the collision:

Table 1

Esphere Sy Esphere S’,
u'x',=v' u'x,'==v'
u'y',=zero u'y',=zero
u'z',=zero u'z',=zero
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For the observer O the same spheres are named S; and S, and have the velocities
(uxl, ux,, uy, =uz, =Zer0) before the collision calculated according to the table 2 as follows:

The velocity ux, of the sphere S; is equals to:

ux = u'x'; +v' _ V4! A
= = = .
12 2v'u'x' 12 1o 12
]+V +71 ]+VT+2V2V ]+3V2
c? c? c c c

The transformation from v’ to v according to 1.20 from Table 2 is:

! ! !

V= \% _ % _ \%
\/I+V'2 +2v’u’x'1 \/1+1/2+2v'v' \/1+3v'2
2 2 2 2 2
c c c c c
That applied in ux, supplies:
!
ux, =2 —Y—|=2v
3
I1+==
c
The velocity ux, of the sphere S; is equal to:
u'x',+v' —V'+y
ux, = 2 22 T 2v+2v r( ,) =zero
! viu'x ! V'(—v
\/1+V2 +——=2 \/1+"2 +
c c c c
Table 2
Sphere S; Sphere S,
!
ux1:2—v3!=2v
% ux, =zero
[1+ 5
c
uy,=zero uy, =zero
uz,=zero uz,=zero

For the observers O and O’ the two spheres have the same mass when in relative resting position. And for
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of

this the momenta (p’1=p'2) null themselves during the collision, forming for a brief time (At') only one
body of mass

Y ’
my=m',+m’,.

According to the principle of conservation of momenta for the observer O we will have to impose that the
momenta before the collision are equal to the momenta after the collision, thus:

mux, +mux,=(m, +m, )w

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time (At) will also see the

masses united (m:ml +m2) moving. As the masses m; have different velocities and the masses vary

according to their own velocities, this equation cannot be simplified algebraically, having this variation of
masses:

To the left side of the equal sign in the equation we have:
u=ux,=2v
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m m m

U=ux,=zero

ma ma mO
\/1_(u) \/1_(%) \/1_(zer0)
CZ cz CZ
To the right side of the equal sign in the equation we have:
U=w
mO mO mO
m;= > > 2
J]_w) J!—(W) -
2 2 I3
c c

m

o

— — mO — mO
STy [y i
¢’ ¢’ ¢’

Applying in the equation of conservation of momenta we have:

mux, +mux, =(m, +m, )w=m,w+m,w

M - 0=—"10 — W+ d =W
4y w w

/1—— ,/]—— ,/]——
¢’ ¢’ ¢’

From where we have:

2v+m,.

21712122 _ Zm,,wz - v4 - w :
]2V \/]_W \/]_V \/]_W
\/ c’? c’ c’ c’
w=—x=X =
3v
1—
cZ

As w#v for the observer O the masses united (m:mj +m2) wouldn’'t move momentarily alongside to the

observer O’ which is conceivable if we consider that the instants At At are different where supposedly the
masses would be in a resting position from the point of view of each observer and that the mass acting with

velocity 2v is bigger than the mass in resting position.

If we operate with these variables in line we would have:

mux, +mux, =(m, +m, )w=m,w+m,w

m !
- 2 +m,.0= w+

e e
1 2V ¢’ ¢’ ¢

3

c

2
S Ry
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\/]_W
’ 12 2
(1+3‘;j j_ 1| ¢
c

2m,' _ 2myw
3V’ \/ w’
1+ — 11—
\/ ¢ ¢’
2m,' 2m,w

\/ ]— v’ \/ ]_Wiz
2 2
c c
From where we conclude that w=V" which must be equal to the previous value of w, that is:

w=y'=—Y E
3v

2
C

A relation between v and v’ that is obtained from Table 2 when ux, =2v that corresponds for the observer O
to the velocity acting over the sphere in resting position.

§14 Velocities composition
Reference — Millennium Relativity

URL: http://www.mrelativity.net/MBriefs/VComp Sci Estab Way.htm

Let’s write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity:

y—_X—vt y= XVt
V2| 141a V2 | 14.3a

c’ c’
V'=y 14.1b y=y' 14.3b
=z 14.1c z=2z' 14.3c

VX r, vx'

e e
== 14.2 = 14.4

1-Y =Y

2 2

c c

From them we obtain the equations of velocity transformation:

P UX—V u'x'+v
u'x'=——=— Ux=—-"-—"-—
]_vux 14.5a Jyyu'x’ 14.6a
2 2
c c
2 2
uy I—V—2 u’y',/]—v—z
wy=—+—C— | 1450 | yy=———C_ | 14.6b
—vux 14X
c c
2 2
uz,/]—v—z u’z’,/l—v—z
uz=—31—C_ | 145c | uz=——-<_ | 146c
I_WZX ]+vu2x
c c

Let's consider that in relation to the observer O’ an object moves with velocity:

u'x'=1510° km/s(:0,50c) )
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And that the velocity of the observer O’ in relation to the observer O is:
v=1,5.10"km/s(=0,50c).

The velocity ux of the object in relation to the observer O must be calculated by the formula 14.6a:

[ s 3
ux'+v _ 15.10°+1,5.10 =24.10"km/s(=0,80c).

1+L'2x’_1+1,5.105.1,5.105

¢ (30.10°)

ux =

Where we use c:3,0.]05km/s(:],000) :

Considering that the object has moved during one second in relation to the observer O (t=1,00s) we can
then with 14.2 calculate the time passed to the observer O’

5 5
=% t(]_"”x) ],00(1_1,5.10 .2,4.10 j
2 _ 0,60

2 sy
f= c _= CZ - (3’0'10 2) =t'=0,693s .
v [ (15.10°) V073
c’ c’ 1= =7

(3.0.10°)
To the observer O the observer O’ is away the distance d given by the formula:

d=vt=15.10".1,00=15.10" km .
To the observer O’ the observer O is away the distance d’ given by the formula:

054 0,60
V0,75

d'=vt'=15.1 =1,03923.10" km .

To the distance of the object (do, d’o) in relation to the observers O and O’ is given by the formulae:
d,=uxt=2,4.10".1,00=2,4.10° km.

060 _

NO75

To the observer O the distance between the object and the observer O’ is given by the formula:

d',=u'x't'=15.10". 1,03923.10° km.

Ad=d, —d=24.10°-1,5.10"=0,90.10" km .
To the observer O the velocity of the object in relation to the observer O’ is given by:

Ad _0,90.10° km

=0,90.10° km/ s (=0,30c)
t 1,005

2
Relating the times t and t' using the formula #'=¢, /1—v—2 is only possible and exclusively when ux=v and
c

u'x'=zero what isn’t the case above, to make it possible to understand this we write the equations 14.2 and
14.4 in the formula below:

t(]—vcosd)) t'(]+vcos¢')
ﬂ:c—z 14.2 t=c—2 14.4
-V =Y
2 2
c c
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!/
Where cos¢=-= and cosd)’zil.
ct c

The equations above can be written as:

t'=f(t.0) e t=1"(¢'.¢")

14.7

In each referential of the observers O and O’ the light propagation creates a sphere with radius ¢t and ct’
that intercept each other forming a circumference that propagates with velocity c. The radius ¢t and ct’
and the positive way of the axis x and x' form the angles ¢ and ¢’ constant between the referentials. If for
the same pair of referentials te angles were variable the time would be alleatory and would become useless
for the Physics. In the equation #'= f(¢,§) we have t' identical function of t and ¢, if we have in it ¢
constant and t’ varies according to t we get the common relation between the times t and t' between two
referentials, however if we have t constant and t' varies according to ¢ we will have for each value of ¢

one value of ' and t between two different referentials, and this analysis is also valid for = f"(¢',¢').

Dividing 14.5a by ¢ we have:

[ o COS(I)_X
e —— L <. 14.8
vux v
¢ 1--5 1-Ycosd
c c
! [
Where cosd):i:”—x and cosq)’:L:M_
ct ¢ ct' ¢
Isolating the velocity we have:
cosdp—cos¢’ ux —u'x'
v_loosb-cond) o v=—1 "7 14.9
¢ (I-cosdcosd) | '
2
c

From where we conclude that we must have angles ¢ and ¢’ constant so that we have the same velocity
between the referentials.

This demand of constant angles between the referentials must solve the controversies of Herbert Dingle.
§15 Invariance

The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this:

X 100 —v | x
¥y (010 0 |y
2 1=loo1 o | 15.1
] 000K |
That written in the form below represents the same coordinate transformations:
x' 100-v/c| x
¥y (010 O y
~17loo1 o |3 15.2
c'| 1000 VK |t
We call as:
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x' X
R ’ ’2 X 2
x'=x"= JZ/’ = x'3 , a:aij: 8(1)(1) 8 , x=x'= y = )C3 15.3
x z| | x
ct cx'4 000 \/E ct cx
That are the functions x"=x" (x-/ )zx” (x1 ,x2,x3 ext )zx” (x,y,z,ct) 15.4
That in the symbolic form is written:
4
x'=a . x orin the indexed form x'’ =Zocl.jx’ =>x"=0,x’ 15.5

j=1
Where we use Einstein’s sum convention.

The transformations to the space and time of table |, group 1.4 plus 1.8, in the matrix form is written:

X 100 v | x
y| |010 O |y
z| (001 0 |z 15.6
t| 000K | ¢
That written in the form below represents the same coordinate transformations
x 100v/c| x'
y|{ 010 O |
z| 1001 O z' 15.7
ct OOOx/F ct'
That we call as
X x! 100v/c x' x'!
2 ! 12
x=xt=| V1= 5| a=aty={00] o [ v=e={ 2 H X 15.8
X z x
ct| |ext 000K ct'| | ex'
That are the functions x* =x* (x'l )=x" (x'l , X2, x",ex' )=x" (x',y',z',ct') 15.9
That in the symbolic form is written:
x=a'.x" or in the indexed form x* 220% ' =x=a, x" 15.10
I=1
Being VK = 1+——2V’“ (1.7), JK'= 1+ 2” 2YX_(1.8) and VK JK'=1 (1.10).
The transformation matrices o = «;; and a'=a',, have the properties:
4 100—v/c|100Vv/c| [1000
_ r ’ 010 O 010 0 _0100__i
a.a—aijakl—Zaijaﬂ— 001 001 0 [Floo10 =/=0; 15.11
J= ooof 000K’ [0001
4 1 000 1 00 0 1000
0 100 0 10 0 |_|0100|_,_.Jj
aa —a/,alk Za/,alk— 0 01 O 0 01 0 _0010_[_5/( 1512
=l —v/c00K | v/c00NK'| 0001

Wherea' = a ;; is the transposed matrix of & = «; and a'" =a', is the transpose matrix of @'=¢a',, and

O is the Kronecker’s delta.
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4 100v/c|100-v/c 1000
o &, Joto o Joto o | |or00|_,_ &
a.a—ak,a,-j—Zaklalj—OOl 0 loo1 o |Floolo =1=0; 15.13
= 000VK' 000 VK | [0001
4 1 00 O 1 000 1000
' ' ' 010 0 0 100 0100 !
atatzalka‘ﬁ:Zalkaki: 0 01 0 0 01 0 :0010 :[251' 15.14
k=1 v'/cOO\/F —v/cOO\/E 0001

Where " =¢a', is the transposed matrix of @'=¢',, and a' = a ;; is the transposed matrix of o =«

and O is the Kronecker’s delta.
Observation: the matrices a; and o, are inverse of one another but are not orthogonal, that is: « ; #a'y,
and a; #d'y .

1 ) 1 .
The partial derivatives 8x_j of the total differential dx”z%dx" of the coordinate components that
X X

correlate according to x”zx”(x-’), where in the transformation matrix a=a,; the radical VK is

considered constant and equal to:

Table 10, partial derivatives of the coordinate components:

oS- S " S ro: S Iro: S e Sl

ox’  ox’ | ox! o’ o’ ox* ¢

ox" ox'? ox'? ox'? ox'’ ox'?

aj:a/: a]:o a2:] 3:0 4:0
X X X X Ox ox

ox' o'’ ox"’ ox'’ ox"’ ox'’

ox ox ox ox ox ox

ox" _ 8x"f _ 8)6'14 -0 |’ —0 ox'? —0 8)6': “JK

ox’  ox’ Ox ox’ ox’ Ox

The total differential of the coordinates in the matrix form is equal to:

—v/c| dx!

dx"! 100-v
dx'? _ 010 O dx?
cd* | 1000 VK | cax*
That we call as:
dx'"! ; 100-v/c dx!
. 12 . 4 . 2
A R RV, S O A 15.16
dx T ot dx
cdx'* 000 VK cdx*
R S , T
Then we have dx'= Adx=> dx" =ZA’Adxf =dx" =8L.dxf 15.17
= Ox”
k k
The partial derivatives % of the total differential dx* :%dx” of the coordinate components that
X X

correlate according to xkzx"(x"), where in the transformation matrix a'=a',, the radical vK'is

considered constant and equal to:
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Table 11 partial derivatives of the coordinate components:

oxt ox' | ox! iy ox' —0 ox' _ ox' _v'

axrl - axrl - axd aer axd - o't ¢

k 2 2 2 2 2
8xl:6x[: 8x1:0 6x2:1 6x3 —0 6x4 0
ox"  ox' ox' ox' ox' ox'

k 3 3 3 3 3
ox" _ox’ _ | ox 0 Ox Oax ] Ox 0

o'l ax | ox! B ox'? ox'? B ox'?
oxt ox? %:0 ox* _loxt ox*t _ X'
' et | ox! ox'? =0 ox"’ =0 ox* \/_

The total differential of the coordinates in the matrix form is equal to:

dx! 100v/c| dx"
dx?* | |010 0 | dv?
ded 71001 0 | gy 15.18
cdx* | [000NK' || cdx®

That we call as:

dx! ; 100V /c dx'"
_ k _ dx r_ !k_ax _ 0 l 0 0 r_ 1l dx’z
dx=dx" = dx3 , A—Al —a— 001 O , dx'=dx'"" = dx,3 1519
cdx’ 000K’ cdx"
4 ok
Then we have: dx=A'dx'= dx* =ZA'5‘ dx" = dx* =ﬁdx" 15.20
=1 X

The Jacobians of the transformations 15.15 and 15.18 are:

i a /1 12 13 14 IOO_V/C
J:ax-: X" X' x" X :01(1) 0 _JK 15.21

o' ol it 00 0

000 VK

. Ly s s 100v'/¢
g dworoxx ) 0100 i 15.22

axr/ a xrlyer ’xr3 ’xr4 0 O 0

000K’

2 1 2 ror ol
Where VK = [1+2 -2 0 5) k"= [1+¥+ 24X (3 6) and VK AK'=1 (1.23).
C

c c C

The matrices of the transformation 4 and A' also have the properties 15.11, 15.12, 15.13 and 15.14 of the
matrices ¢ and «'.

From the function ¢:¢(x" )=¢'=¢'[x" (x”)] where the coordinates correlate in the form x* =x* (x”) we

o ot ox” described as:
X X Ox
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O¢ _ 0P oxk _ 09 ox! n 0¢ ox2 4 0P ox3 n 0P ox+
ox''  Oxk ox"' Ox! Oox"' Ox2? Ox'' Ox3 Ox'' Ox#4 Ox"
o¢ _ 0P oxk _ 0P oxt . 0P ox2 n 0P ox3 n 0P ox*
Ox'?  OxF ox'? oOx!'ox'? Ox2 ox'? oOx3 ox'? Ox* ox"
0¢' _ 0¢ oxk _ 0¢ ox! n 0¢ ox? n 09 ox3 n 09 ox4
ox'3  Ox* ox'* oOx!ox" oOx2ox' oOx3ox" Ox4 ox"
0p _0¢ oxk _ 09 ox! 09 ox? 4 09 ox3 4 09" ox+
ox't  Oxk Ox'* Ox!'ox'* Ox2ox' oOx3ox'™ oOx* ox'

That in the matrix form and without presenting the function ¢ becomes:

_6x1 -7 ox! ox! ox! . |
Vi 2 3 i
6x2 6x2 6x2 6x2
. 6x]=0 6x2=1 6x3=0 6x4=0
0 | 6 0 o0 0 || o o o o |ex ox' ox' ox'
ox'’ Lox' ax? axd ax? | [ ax! ax? axd ax? | ﬁz() ox =0 ox’ =1 ox’ =0
axll axlz axl3 axl4
6x4 V' 6x4 6x4 ox? _ 1 (1, v , v'u'x’]J
,1 ENra 6x’2 ,3 o /_K'K o2 o2 |
Where replacing the items below:
ax Vi _ v
ax’l czx/F c?
o' =V
o' x/f
ot __1 (Pvz v'u’x'lj_ax'4 ( v2 vuxlj
o't «/K’k c? c? ot x/_k ¢t 2
Observation: this last relation shows that the time varies in an equal form between the referentials.
We get:
ox! —J ox! -0 ox! ox! v
axlj 6 12 6 !3 a 14 \/E
Joa? _, o o o’
a¢z[a o o aHa o 0 |t a? o’ o
o’ Laxox? axd ax? | Lax! ax? ax® ax? | ox’ =0 ox’ =0 ox’ 1 ox’ =0
axlj 6 12 6 !3 a 14
6x4_L6x4_08x _08x _lfiv vule
!l e? ax? ox' \/_k 2l ]

That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form.

From the function ¢'=¢'(x” )=¢:¢[x”'(xf)] where the coordinates correlate in the form x”'zx”'(xf) we

09" _ 909" ox""

o 2" O described as:
X X

have
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0¢' _ 0¢' ox'i _ 0¢' ox" n 0¢' ox'2 n 0¢' ox's n 0¢' ox's
ox! oOx" ox!' Ox"' ox' oOx'? ox! oOx'* ox!  Ox'4 ox!
0¢' _ 09" ox'i _ 0" ox" | 04" ox" 4 0¢' ox's | 09" ox'+
Ox2 Ox" Ox?2 oOx"'Ox2 oOx'2 ox2 Ox' ox2 Ox' Ox?
0¢' _ 0¢' ox'i _ 04" ox" n 09" ox' n 0¢' ox'3 n 0¢' ox't
Ox3 Ox" ox3 oOx''ox3 Ox'? ox3 Ox'3 ox3  oOx'4 ox3
0¢' _ 04" ox'i _ 04" ox" | 04" ox" 4 0¢' ox's | 09" ox'+
Ox* Ox" Ox4 oOx'"' Ox* oOx'2 ox4 Ox'"3 ox* Ox'* ox*

That in the matrix form and without presenting the function ¢ becomes:

@:] ox'! _ ox'! _ ox'! -
ox! ox? o’ ox*
£=0 ox'? —J ox'? —0 ox'? -0
og :[ 0 8 0 8 }{ 8 0 o 0| a A
ox/ Lo’ ox? axd ax? | Law! ax'? ow'd ax'? | £=0 ox' =0 ox' =] ox? =0
ox! ox? ox’ ox?
ox'? __ v ax'? —0 ox'? _ ox'? _1 (1, v’ vux]J
ax! 2K ax? ox’ ox? x/fk 2l ]

Where replacing the items below:

aL’1:—\}: —v'
ot JK'
ax'4 — -V :—_V’
ox! VK P
't _ 1 (Hvz vuxl]: ox? 1 (1' V2 V,u,x,lj
at VKU 2 2 )t V'l 2 2
Observation: this last relation shows that the time varies in an equal form between the referentials.
We get:
axll :] axll :() axll :() axll _ V’
ax’ a’  ad  at K
. o'’ -0 ox'’ —J ox'’ -0 ox'’ -0
6¢’{ 6 0 8 0 }{ 0 0 8 o | a! ol o’ at
o/ Lox! ax? o’ ax? ] Law! aw? axd an? | &’ -0 o' —0 ox'? iy ox'’ -0
ox! o’ o3 ox?
axl4 :__vr 8X’4 0 8X’4 _ 8X’4 _ 1 (], vr2 , V,u,x,]]
Lot o’ ox’ ox? x/ﬁk )]

That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form.

Applying 8.5 in 8.3 and in 8.4 we simplify these equ

ations in the following way:
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Table 9B, differential operators with the equations 8.3 and 8.4 simplified:

0 _0 v 0 0 _ 0 v 0
ox'' Ox! c¢? ox* 8.1 ox! Ox'' ¢?0ox'4 8.2
o _ o o _ 0
ox'? Ox? 81.1 | ox2 oOx'2 8.2.1
0 _ 0 0 _ 0
ox'3 Ox3 812 | ox3 ox'3 8.2.2
—0 —0 —0 7 —0

—JK =0 _Jg——=9_
cox'* rc@x“ 8.3B | cox* J_cﬁx’4 8.4B
0 , ux! 0 _ 0 ,u'x' 0 _
ﬁ‘FW—ZGI"O 8.5 ax'l T 2 ax% =zero 8.5

The table 9B, in the matrix form becomes:

15.23

I 1
{aaa—a}_[aaa—a 0
= 0

ox" ox'? ax'* cox’* ox' ax? ax® cox* |

15.24

1 0
[aaa—a}:[aaa—a 01
ox' ox? ox> cox? ox't ox'? ox'? eox't | 0 g

The squared matrices of the transformations above are transposed of the matrices A and A’.

Invariance of the Total Differential

In the observer O referential the total differential of a function ¢(x") is equal to:

dx'!
2
dp(x* =20 it =90 411 00 2. 00 42 00 s :[—aqf 24 99 —‘MJ dx, 15.25
Oox ox ox ox ox Ox Ox” Ox” cOx CZC
cdx

Where the coordinates correlate with the ones from the observer O’ according to x* =x* (x"), replacing the
transformations 15.24 and 15.18 and without presenting the function ¢ we have:

1 00 0 T100v/c] ax"
12
d¢:5_¢idxk:[ 00 0 54} P  FES N A 15.26
Ox Ox"" ox'" ox'” cox’ dx
—v'/c00VK' [ 000K || cax
The multiplication of the middle matrices supplies:
1 00 0 T1oov/e] | L 00 /e
0 01 0 (001 O |~ v dy! )
/e 00K [ 000K | |-/ 001+
c ax
Result that can be divided in two matrices:
1 00 V/e 0 00 V/e
0 10 0 (1)‘1)88 0 00 0
0 01 0 =0010+ 0 00 O 15.28
, 2V dx'" , 2v'dx"
—v'/c 001+ 7 0001 Vv'/c00 o
dx' dx'
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That applied to the total differential supplies:

0 00 Vv/c

1000 dx'!
0 00 O 2
1p=2% 4 [a ;. } 0100(.1 o 00 o0 ' 15.29
a k axyl axyZ axr3 Caxy4 00 1 0 2v,dxrl dx
01| |—v/c00 T cdx"
Cc ax

Executing the operations of the second term we have:

0 00 V/c "
0 00 0 |«
a 8 8 8 0 00 O dx’z __L’ a d ,1+v a d ,4 2V dx 8 dx,4
A2 A3 14 con | dx? T 2 At Il a4 A 4
ox"" ox'” ox'” cox ) ' dx . c”ox ox ¢’ dx'* ox
/c00 eyl Ko '

Where applying 8.5 we have:

V.8 i Ldxt 8 ). 2vdx o .,
c? ox'4 d l+v\ c? dx'4 ox'4 X c? dx'4 ox'4 di't=zero

Then we have:

0 00 V/e !

0 00 0 ,
{ 0 0 0 0 } 000 0 |9z 15.30
ox'" ox'? ox" cox' ) 2vdyt | dx

v/e00 = cav

With this result we have in 15.29 the invariance of the total differential:

o, 10007 dx” o
0 0 0 0 |0100] ax 0
0= ox o [Gx” ox' ox” cax"‘}OOlO dx” | o’ S =de 15.31
0001 | cgy

In the observer O’ referential the total differential of a function ¢(x”') is equal to:

dxrl

. ’ X ’ ’ r ’ ’ / ’ ’ ,2
d¢’(x”)=a—¢_dx”=%dx’1+%dx’2+%dx'3+%dx’4=[a¢ 00 ob 00 } . 15.32

ox"' ox'! ox'? ox'? ox' ox' ax'? ox'? eox'* ‘35’4

cdx

Where the coordinates correlate with the ones from the observer O referential according to x'"=x" (x-/ )
replacing the transformations 15.23 and 15.15 and without presenting the function ¢ we have:

1 00 0 J100-v/c]| ax'

aw,[aaaa 0100 0100 dx>
dp/=—"—dx'" =| L2 , 15.33

axrz axl ax2 ax3 cax4:| O 01 0 001 dx

v/c00JK [ 000 J_ cdx*

The multiplication of the middle matrices supplies:

100 0 T100-v/c] | L 00 —v/e
0100|010 0 | |9 3% O 5o
0010 (001 0 |7 " :
v/c00NK 000 VK | [v/c001- T

Cc ax

Result that can be divided in two matrices:
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1 00 —v/c 0 00 —v/c

1000
001 0 |40100l] 000 o
2vdx! 0010 2vdx!
v/c001- 0001 v/c00-—

2 4.4 2 7. 4
cdx cdx

That applied to the total differential supplies:

1000 dx'
, 0 00 O )
d¢':a¢,dx"':[ 0 0 0 54} 0000kl 000 o ]9
ox" ox' ox” ox® cox 2vdx' |||
0001 V/COO— 2 2 Cdx4
dx
Executing the operations of the second term we have:
0 00 —v/c dx!
0 06 97000 0 Jonl, s 0 .4 2vdx' 8
{——— } 000 O Y= vt - Tyt
ox' ox? ox? cox? 2vdyx' || 9 ¢’ ox* o' c? dx* ox?
v/c00-— 2 . 4 Cdx4
cdx
Where applying 8.5 we have:
1 1
v 0 g | ldxt &}y 2vdxl 0 gu_,.

c? ox* \ 2 dx4 oxt c? dx4 ox*
Then we have:

0 00 —v/c dx!
0 00 O
{iii 0 } 000 0 | |Zzeno
ox' ox? ox? cox* 2vdyx' || 9
2M4cﬁ4

With this result we have in 15.36 the invariance of the total differential:

o6 1000 d& o0

i 0 0 0 0 |0100] dx j

d¢'=—"—dx'"' =| ——— =—Ldx’ =d

¢ ox" [&Wf&%&&omo dx’ ox’ /
0001 | cay?

Invariance of the Wave Equation

The wave equation to the observer O is equal to:

vig L 08’ _0¢° 09> 0¢° 1 09 :[a o 0 a}
i 6()64)2 6(x1)2T8(x2)2|a(x3)2 c’ 8(x4)2 ox' ox? ax® cox?

coco~—
co~o
o—~oco
lLooco
®
|5
)
|
o

Where applying 15.24 and the transposed from 15.24 we have:
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|
<\

SO O

Vulaqﬁz{a o @ a}
v CZ a(x4)2 6x'1 axIZ 6x13 06x¢4

coo~
co—o
o—oco
L
coco =~
co—~ o
o —o o
%ooﬂ
e
)
be

The multiplication of the three middle matrices supplies:

_v’

0
0 0
1
0-

SO O

0

I, Y Il
2
C

oo~
SO~ O
oS— OO
L

100 =¥ - 10
C

010 0 |= gé

001 0 | |9

0004K'| |[=£00-1

Result that can be divided in two matrices:

_vl
1 00 " | 0 000
010 0 0 0+ 000 0
001 0 10 0 000 0
2v1111 0

Vo0-1=
c c?

vig L 0 [0 & 0 &
¢ 2 4\ - 1 12 13 14
ca&) Ox" Ox'” Ox"” cOx

000

8 2 u' /1

-V
C —_—
[aaaa}oooo x|l v o o Vv o
ox'' ox'? ax'? cox'* 000 0
_2VII! ’3
_40____ Ox
C

Executing the operations we have:

2V 0 0 Wu'x" 02
cr ox'ox't c? c? a(xm)z

Where applying 8.5 we have:
2v’{ u'x'' o0 \ 0 2u'x'' 0?2
2\ 2 x4 lox't o2 ¢ a(x!4)2

=zero

Then we have:
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0 coox"ox't ccox"ox'" ¢ ¢ 8(x’4)

15.40

15.41

15.42

15.43



_ o _
A
000 = 1 &
0O 0 0 0 000 0 ox'? — zero
axrl 8)(’2 8)(?,3 caxr4 000 0 0 =7
- 00 —2v'u'x" 8x7
c ¢l o
L cox'™ |

With this result we have in 15.43 the invariance of the wave equation:

0
. ox'!
i 10007 _0_ ,
vig L 00 {a o o o }0100 ot | _yry L 04
C2 a(x4)2 axfl afo axr3 Caxf4 88(1)_01 % 02 8(x/4)2
d ox
0
cox'* |

The wave equation to the observer O’ is equal to:

Vi

L1 0¢7 _o¢” og? of° 1 o¢” =[ o & 0 @
c? 6(x'4)2 _a(x'l)z Ia(x’z)z Ia(x’3)2 c’ a(x"‘)z ox'' ox'* ox’ cox'?

Where applying 15.23 and the transposed from 15.23 we have:

1 ox!

10

2. 1 09> [a 0 o o |0}
v cza( '4)2_ ox' ox? ox® cox* 00
X Yo

)

%
é?gg 100 0 100% roo 2
001 0 8(1)‘1)8 010 0 =8(1)(1) 8
YooK [|000-1[20L O 11 2y
c 000K | (200145
C

Result that can be divided in two matrices:

% %
100 = 100 0 000 p;
010 0 (0100 +000 0
001 0 1 10010 000 01
XOO—1+2WX 000-1 3002vux
C C2 c C2

That applied in the wave equation supplies:
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SOoOo—O

S~ OO

SO O

—_

15.44

15.45

15.46

15.47

15.48

15.49



o]

v ox'

, 10007 |°%% ¢ || &
vig L 09" [o 0 o 2o Jlo1oo| 000 0 |57
cza(x'4)2_8xlax28x368x4 0010171000 0 0
000-1] | v q2vux' || 55

c c 0

Lcox” |

Executing the operations of the second term we have:

1

000 Y [

c |
[iiia}oooo at|_v o 0 vo o 2vux &
ox' ox? ox’ cox* || 000 01 0| o't lax'axt P 8(x4)2

KOOZvux o

T

ot

Executing the operations we have:

2v 0 0  2vux! 02
c? Ox! Ox* ¢? ¢? a(x4)2

Where applying 8.5 we have:

2v{—ux1 0 \8 =2vux1 0?
2\ c2 oxt/oxt 2 ¢? A(x*)?

=zero

Then we have:

0

v | ex!

000 = 175
o0 o 2 Jooo 0 |ar|_,.,
ox' ax2 ax® cox* | 000 0 o |7

3002vux1 o’

A -

| ox*

1 o0¢°

Vil 0¢" _[a o 0 a} Vi

c? 8(x’4)2 “Lox! ax? ox? cox?

coco~
co~o
o—~oo
ILooo
2 |o®
w [

Invariance of the equations 8.5 of linear propagation

Replacing 2.4, 8.2, 8.4B in 8.5 we have:

o ux! 0 _ 0 v o ,1Wx'+) = a
Ox! 2 Ox* oOx"' c2ox't 2 JK' \/_ax’

=zero
4

Executing the operations we have:
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O jux'! 0 _ 0 Vv 0 ux" 0 Vv 0
ox! c¢? ox* ox"' crox't ¢ oOx't c?ox't
That simplified supplies the invariance of the equation 8.5:

=Zzero

0 qul 0 __0 Iu'x'l 0
ox! ¢2? ox* ox'' c¢? ox'4

=zero

Replacing 2.3, 8.1, 8.3B in 8.5 we have:

o ux' 0 _ 0 v o, 1) =
Ox'l 2 ox"t Ox' c2ox* 2 JK ‘/_8x4 zero

Executing the operations we have:

0 ,u'x't 0 0O ,v 0 ,ux!x 0 v 0

T = T T =Zero
ox'"' ¢ ox't Ox! c?ox* c¢? Ox4 c?oxt

That simplified supplies the invariance of the equation 8.5:

0  ux" 0 _ 0  ux' 0O
ox'"' ' c? ox't ox!' c¢? ox*

=zero

The table 4 in a matrix from becomes:

px 100-v/c| px'
px’2 _ 010 O pxz
3171001 0
px px
| E'/c 000 \/E E/c
px' | T100v/c] px"
px*|_|010 O px’2
- 001 0 3
px | px
E/c 000\/? E'/c

[y 100—v/c|| Jx!
J'x*| 010 O Jx?
J'x 71001 0 Il

ep' | 1000 VK | cp

[ ! 100v/c| J'x"
JxZ _ O 1 O 0 Jlx/2
J3 171001 0 | gy
cp | |000VK | ¢p

Invariance of the Continuity Equation

The continuity equation to the observer O is equal to:

Jx!
Op _oJx' ok’ oI’ Op _[ d 8 0 0 } Jx

V.J+ . £ 2 7
Jx

ot ' ot &’ I6x4 lox! ox? o’ coxt
cp

Where replacing 15.24 and 15.56 we have:
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15.53

15.54

15.55

15.56

15.57



1 00 0 [[100V/c|J'x"
- - 112
v.Jaa’iz[al 0.9 64} 0 01 0 1oy o |95 |=zero 15.58
ox* Lox" ox'* ox" cox’ J 'x'
~v'/c 00K’ oooJF
The product of the transformation matrices is given in 15.27 and 15.28 with this:
1000l | o 50 e Jix"
G+ |0 9 0 0 1010011 o oo o ||J%" 15.59
oxt Law! o ox' cax't ||| 0010 ' X
0001 |—v/cO00=—=—|| cp'
Executing the operations of the second term we have:
0 00 Vv/c .
0 00 o /X
{a o o0 0 } 0 00 o |Jx|__vén! vop' wu'x" op'
ox' ax'? ox"? cox'? 2v’ et || ¢t ax't ox! ¢t
—V'/c00—F— C,O’
Where replacing Jx''=p'u’x"" and 8.5 we have:
L' OO 111 ' OO
viu'x /? : ,( u'x 8' )pfl2vux /?:zero
ct ox't c? oOx'* cr ox'*
Then we have:
SR B RO
{ PwEwE 4} 0 00 0 Xz 15.60
ox'" ox'? ox'” cox' 't || X
—V'/c 005 cp'
C
With this result we have in 15.59 the invariance of the continuity equation
A 1000 J'x'; A
<= o [0 0 0 o |o100|sx?| o5, O
VJ+—= =V.J'+— 15.61
+8x4 [Gx'l ox'* o' c@x"‘} 0010} Jx7 +8x’4
0001} cp'
The continuity equation to the observer O’ is equal to:
op' 1 2 3 p! J’x';
V.J'+ 9 _9J'x +6Jx +5Jx + i [ 098 0 0 }J' :3 =zero 15.62
o't ax'! ox"? ox” o ax™ Lox" ox'? ox” eox )| J
cp'
Where replacing 15.23 and 15.55 we have:
1 00 0 [[100—v/c| Jx'
- = ! 2
V.J’+$4=[£&%®%C§4} 8 (1)(1) 8 8(1)(1) 0 ﬁg =zero 15.63
v/c00+K 000 J_ cp
The product of the transformation matrices is given in 15.34 and 15.35 then we have:
o 1000 8 88 _VO/C Jx!
V. /’4:[iliziz 54} 010011 0 00 0 [} A] 15.64
ox"* Lox' ox? ox’ cox 2vux! ||| X
0001} [v/c00-—=— cp
C
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Executing the operations of the second term we have:

ox'

c

2

ox*

0 00 —v/c |
000 0 |~ 1 1
[iii 0 } 0 00 0 Jx* |_ v dJx vop 2vux' Op
ox' ox? ox? cox? 2vux' e axt
V/C 00— cp

2
C

Where replacing Jx!=pux' and 8.5 we have:

vux! Op (uxl 0 ) 2vux! Op —ero

c? ox* \ 2 x4 c? Ox*

Then we have:

0 00 —v/c 1
Jx

000 O
} Jx?

000 O 5 |=zero
X

2 1
v/e00— vz;x cp

c

220 ¢
ox' ox? ox® cox’

With this result we have in 15.64 the invariance of the continuity equation:

5 1000 Jx;
=35, 0p' 0 0 0 0 |0100]Jx S
V.J'4 = =V.J
ox' [6x1 ox* ox® c@x“} 00104 jx’

0001 cp

Invariance of the line differential element:

That to the observer O is written this way:

(ds) =(a’x1 )2 +(a’x2 )2 +(a’x3 )2 —(cdx4 )2 = [dx1 dx? dx’ cdx4]

(1)‘1)88 10007100 X | |100 =

0100 ¢ 010 0

001 0 010 0 |=

Y 00/ 0010007 o [Joo1 0

cQOVKTL000-1 560 vk %00—1‘2220’32
Cc ax

V' v
Loo = 10007 1000 <
010 0 0100 |,[000 0
001 0 “lootro (000 0
Vigo_j=2vdxt | [000-1] |V oo -2v'dx"
c Cde/4 c Cder4

That applied in the line differential element supplies:
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1000 c dx’;
gt 302 503 4110100 000 0 dx'
ds) —[dx ax'“dx"cdx" || 007 0 1t o000 s 15.71
0001 | —2V'dx’' cdx™
—00 2 54
c cdx'

Executing the operations of the second term we have:

v
000 . dx’; 1
[ ax? av® cat 888 S =M +edy “‘(V ' 22 le4 dx’4j—zero
x
— 14
v 0 0 22v dx"! . cdx
c” dx
Then we have:
v!
000 . dx’;
[dx’ldx’2 dx"” cdx'* 8 88 8 1 Z);,3 =zero 15.72
’ G I N 14
v 00 22V dx4 cdx
¢ c” dx

With this result we have in 15.71 the invariance of the line differential element:

00| 4
(ds)2 = [dx’1 dx'" dx" cdx'* (1) 8 in :(dx’1 )2 +<dx’2 )2 +(dx’3 )2 —(ca’x’4 )2 =(ds’)2 15.73
0

1000 dx’;
! ’ ’ 2 ’ ’ ! ’ 0100 d'
(ds') (dxl) (dxz) (dx3) (cdx) [dxldxzdx3cdx4] 001 0 d);d 15.74
00011 gy
Where replacing 15.15 and the transposed from 15.15 we have
10009007 100="1 ax
010 0 0100 [ e
(ds')? =[ax'dx*dx’cdx*] 0 01 0 0010010 0 [ %% 15.75
= 004K | 000-1]001 O | =
c 000VK
The multiplication of the three central matrices supplies
%
60 9 1ooo0]100=> Loo =
0010 91000519 |-[010 0 15.76
- J—OOIOOOIO_OOI 0 1 )
o QONKJO00-10 600 VK| | =2 001420
c cdx
Result that can be divided in two matrices
-V A%
boo == 10007 (%% =
010 0 10100 000 O
00f 0 [5l0010[*000 0 1577
-y 2vdx 0001} | —-v 2vdx
001+ 0055
cdx c cdx
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That applied in the line differential element supplies:

%
1000 000 c dx;
(ds’)2:[d)cld)62dx36’61bc4 8(1)(1) 8 + 8 88 8 dx3 15.78
000-1] | —v o 2vdx || cax’
c crdxt

Executing the operations of the second term we have:

—v
000 - dx; o 1
1,253 541 000 0 dx® | _—vdx cdx af=v 1, 2vdx 4|
[dx dx“dx’cdx 000 0 1 R +cdx [c dx + 2dx4cdx ]—zero
Voo rdx | cdx’
c c’dxt
Then we have:
-V
000 = d!
17253 5,41 000 0 dx” |_
[dx dx=dx’cdx 000 0 o |mEere 15.79

With this result we have in 15.78 the invariance of the line differential element:

1000 dx;
(ds’)2 =[dx1dx2dx3cdx4 8 (1)(1) 8 Z; =(dx1)2 +(dx2 )2 +(dx3)2 —(cdx4)2 =(ds)2 15.80
0001 caxc*

In §7 as a consequence of 5.3 we had the invariance of Eii=FE'ii’ where now applying 7.3.1,7.3.2, 7.4.1,

7.4.2 and the velocity transformation formulae from table 2 we have new relations between Ex and E'x’
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below:

Table 7B
E'y'— ExNK Ex— E'xVK'
(1_V) 7.3B (1+ v j 7.48
ux u'x'
E'y'= EyJK 731 | BV=EYNK 741
E'z'= EzNK 732 | Ez=EZNK 7.4.2
B'x'= Bx 7.5 Bx=B'x' 7.6
1 1 v 1 1 v’ 1 [
B'y'=By+—5Ez 751 | By=By=5Ez 7.6.1
' v _ [ V, ror
B'z'=B —C—ZEy 752 Bz=B z+c—2E b% 76.2
ux ,o,oou'x'
By=-—Ez 7.9 B'y'=-——E'z 7.10
C C
ux , o, u'x"
Bz=—3Ey 791 | BEF=EY 7.10.1

sy
ux ux

With the tables 7B and 9B we can have the invariance of all Maxwell's equations.
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Invariance of the Gauss’ Law for the electrical field:

8E’x’ OE'y" aE o

8y' . 7 5_0 8.14

Where applying the tables 6, 7B and 9B we have:
( v 0) ExNK aEy\/_ EzVK ,0«/_

ox c? ot )(1- v/ux) oy Oz &
Where simplifying and replacing 8.5 we have:
[8 'v(_l 8)_| Ex OBy Ez_p

ox \uxox ) |(1—v/ux) dy oz &,
That reordered supplies:
[2(1 v)—‘ Ex 6Ey Ez_p

ox x ) |(1-v/ ux) dy &z g
That simplified supplies the invariance of the Gauss’ Law for the electrical field.
Invariance of the Gauss’ Law for the magnetic field:
OB'x' i oBY i aB,Z!ZZ@l’O 8.16

ox' oy o

Where applying the tables 7B and 9B we have:

0, v o Y, 0( v B
(ax 2 8t)Bx'8kay' EZ) 6ZKBZ czEyj—O

That reordered supplies:

OBx aBy GBZ v ( O0Ez OEy 0Bx ~0
ax  dy oz ¢\ oy oz ot

Where the term in parenthesis is the Faraday-Henry’'s Law (8.19) that is equal to zero from where we have
the invariance of the Gauss’ Law for the magnetic field.

Invariance of the Faraday-Henry’s Law:

aE!yl a !x!: aB!Z/

R = 8.18

Where applying the tables 7B and 9B we have:

) T G

That simplified and multiplied by (1-v/ux) we have:

6Ey( v \_OEx_ aBz( )
o i) y o\

Where executing the products and replacing 7.9.1 we have:
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OEy OEx__ 0Bz v (OEy uxOEy
ox Oy ot ux\ ox c? ot

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

OE'z' OE'Y'  OB'x'
_ 8.20
o' o7 ot

Where applying the tables 7B and 9B we have:
OE
OEz = O re__ 9Bx
oy 0z ot
That simplified supplies the invariance of the Faraday-Henry’s Law.
Invariance of the Faraday-Henry’s Law:

OE'x' OE'z __0B'y 6.2

oz ox ot'

Where applying the tables 7B and 9B we have:

0 ExNK (0, v 8) 8( v )
{ EzN K =—v K —| By+—FE.
oz (1-v/ux) \ox c2 o z ot y+c2 ‘

That simplified and multiplied by (l—v/ux) we have:

OEx 8Ez(l v\ v oEz( vj: aBy(l v ) vaEz(l vj
oz  ox \ ux} ¢ ot U ux or \ ux} ¢ Of U ux

That simplifying and making the operations we have:

OEx 0Ez_ OBy v (0Ez OBy
0z Ox ot ux\ ox ot

Where applying 7.9 we have:

OEx OEz_ 0By v (0Ez ux 6Ez)
0z Ox ot ux\ ox ¢ ot )

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Ampere-Maxwell’s Law:

0B'y" 0OB'x' OE'Z'
. — J'z'+
axr ayr /uo z go /uo atr

Where applying the tables 6, 7B and 9B we have:

8.24

0,v o v .\ 0Bx 0
| By+—FE: = VK —=EzNdK
(6x e az)( v kE g, SHe e i R 5 B2

That simplifying and making the operations we have:
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OBy 0Bx _ Jore y Oz, 1 v20Ez 1 2vux0Ez v OFz v 0By 1 v20Ez
o oy Ho oMo Ter e Bt ¢ ¢ ot ¢ ox o2 Bt P Ot

Where simplifying and applying 7.9 we have:

OBy 0Bx Jete, OFEz 1 2vux0Ez v 0Ez v (-ux 8Ezj
ox ay el M5 et e ot ¢ ox c2\ c2 ot

That reorganized supplies

OBy 0Bx
Y O _ Uz
ax ay /u +80 ILI 0

OEz v(ux@EzléEzj
ot c2\c? at  oOx

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law:

Invariance of the Ampere-Maxwell’s Law:

oB'z' 0B'y' OE'x'
J'x'+ 8.26
A

Where applying the tables 6, 7B and 9B we have:

9, N\ of ~ 0 ExJK
ay(Bz —Ey 3 KBy. Ez) o (Jx—pv ey pg VK == ot (/i)

Making the operations we have:

0Bz 0By _ .V( Ly OEz_ »,)is (1 v2 2vux\OEx 1
oy Oz Hol 2y oz FoC™P réoblol 2 c2 ) ot (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law and multiplying by (I—L) we have:
ux

aBz_oBy
oy Oz

OEx v ( 0Bz OBy ,uJ\ v OEx vz(lﬁEx\l 1 v20Ex 1 2vuxOEx

= J T !
HolXFeokh ™5, w\ &y 0z o elma e a e a

Where replacing Jx=pux, 7.9.1, 7.9 and 8.5 we have:

0Bz_0OBy _ Jyse gy OEx v (ux OEy ux OEz v 0Ex v>(-10Ex\, 1 v’ 0Ex 1 2vuxdEx
oy Oz Ho ot ot ux\ ¢? Oy Icz oz 0 ¢ Ox Iczkcz ot Icz cr ot c? ot oot
That simplified supplies:

0Bz 6By
8y oz

OEx v (OEy OFz , ) v OEx 1 2vuxdEx
L o2 ' HoCpP |73 2 o2
o 2\ dy @ ) ¢* ox 2 ¢ o

=HoJX+E0 1y

Replacing in the first parenthesis the Gauss’ Law we have:

0Bz OBy ..., OEx vOEx v OEx 1 2vuxOEx
THTE TG T ey 2 ax o 2 o

E

That reorganized makes:

@—@= Ly Jx+e

oy 0z

O0Ex 2v( OEx  ux 8Exj
™5 2\ ox 2 o
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law:

Invariance of the Ampere-Maxwell’s Law:

O0B'x' 0OB'z’' OE'y'

— =u J'y'+ 8.28
oz’ ox' H,J Y TEH, ot'

Where applying the tables 6, 7B and 9B we have:

OBx (0, v 0 v 0
; Br—Y Ey = VKL EvJK
oz \ox 2 azj( S y) Holy+eoty N K5 By

Making the operations we have:

OBx 0Bz OFy 1v20Ey 1 2vuxOEy v OEy v 0Bz 1 v?OEy

Jy+ . .
oz ox HoVTEHTE T o 2 2 o 2 Ox 2 ot ¢l o

Where simplifying and applying 7.9.1 we have:

OBx 0Bz OEy 1 2vuxOEy v OEy v (uxOEy
J .
o o MM T o o c2\c? ot

That reorganized makes:

OBx 0Bz OEy v (uxOEy OEy
o ax MM Te T e e o

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law:

Invariance of the Gauss’ Law for the electrical field without electrical charge:

OF'x :a J :a z =zero 8.30
ox' oy o7

Where applying the tables 7B and 9B we have:

( v 9\ ExvJK 8ny/_ EzJK _
ox c2ot)(1- v/ux) oy Oz

zero

Where simplifying and replacing 8.5 we have:

[a ,{—16)1 Ex | OEy Ez
ax  \uxox ) |(1—v/ux) oy oz

=zero

That reorganized makes:

[Q(l ; j—l Ex 00y, ke =zero
o\ ux ) |(I=v/ux) oy oz '

That simplified supplies the Gauss’ Law for the electrical field without electrical charge.
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Invariance of the Ampere-Maxwell’s Law without electrical charge:

OB'y' 6B'x':€ OE'z'
axf 6)}! UILIU at!

8.40

Where applying the tables 7B and 9B we have:

0,v o LV ) OBx 0
(Gx o atj(By. CzEz) 5 _goyORath«/E

Making the operations we have:

83)}_@:8 OFz 1v20Ez 12vwux0OEz v 0Ez v OBy 1 v20Ez
ox Oy Moo T e Bt ¢ ¢ ar ¢ ox o Bt Pl at

Where simplifying and applying 7.9 we have:

OBy 0Bx e OFEz 1 2vux0Ez v OEz v (-ux 6Ez)
ox oy oMo T ¢ At e ox 2\ c2 ot

That reorganized makes:

OBy oBx_ , OEz v ((uxOEz aEzj
ox ay el c2\e2 ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

0B’z 0By OEX
ayl aZ! 0#0 at!

8.42

Where applying the tables 7B and 9B we have:

g, Y\ of . 0 ExJK
ay(B Ey) \Byl : ) o/Jo\/_ 5 lv/)

Making the operations we have:

0Bz aBy 8Ey+6Ez e (1|v2 2vux \OEx 1
oy Oz oy Oz St T ) ot (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by (1 - v/ux) we
have:

OBz OBy gy OEx v(0Bz OBy\ v &Ex v?( 1 dEx) 1v20Ex 1 2vuxOEx
oy oz 075 uxk o 0z ) crox c2\ux ox ) crer 0t ¢ ¢ Ot

Where replacing 7.9, 7.9.1 and 8.5 we have:

0Bz OBy gy, OEx, v(uxﬁEy ux0Ez) v OEx v*(—10Ex\, 1 v dEx 1 2vux OEx
oy oz Jalrm uxkc2 2z ) crox c\er ot ) crer ot ¢ 2 ot

That simplified supplies:
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@_5&:8 OEx v (OEy 0Ez) v OEx 1 2vuxdEx
oy oz M e ay ez ) et ax o e ar

Replacing in the first parenthesis the Gauss’ Law without electrical charge we have:

0Bz OBy . ~OEx_v OEx_v OEx_1 2vuxOEx
oy 0Oz oMo T ax 2 x e ¢ o

That reorganized makes:

0Bz OB
gz_a_zyauo Jx+&, g

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

OEx 2v( OEx  ux 8Exj
Ot c2\8x e ot

Invariance of the Ampere-Maxwell’s Law without electrical charge:

0B'x' OB’z OF'y'
= 8.44
oz ox oty

Where applying the tables 6, 7B and 9B we have:

OBx (0 v o v _ 0
5% oo atj(Bz czEy)_goyo«/EatEyR

Making the operations we have:

8Bx_%:g OFy 1v20Ey 1 2vuxOEy v OEy v 0Bz 1 v2OEy
0z Ox otho Ot c2c2 Ot ¢ ¢ Ot ¢ dx ¢ Ot crc? o

Where simplifying and applying 7.9.1 we have:

OBx 8Bz:€ OEy 1 2vuxOEy v OEy v (uxOEy
oz ax M o 2 ar e ox e2\e? o

That reorganized makes:

O0Bx 0Bz _ OEy v (uxOEy OEy
AL Sl
0z Ox ot c2\c* ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

§15 Invariance (continuation)
Afunction £(6)= f(kr — wt) 2.19
Where the phase is equal to 8 = (kr - wt) 15.81

In order to represent an undulating movement that goes on in one arbitrary direction must comply with the
wave equation and because of this we have:

LLV_ (x2 +y2 +22)} af(9)+ﬁ 2\‘azf(e)—kz azf(é’) = zero 15.82

7 66° 26>

(x2+y2+z

2 r 00 r?

r

That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn'’t.
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In order to overcome this problem we reformulate the phase @ of the function in the following way.

A unitary vector such as

n :cos¢f+c0s0§+cosﬁl€ 15.83
X X z z

where cosp=—=—, cosazzzl, cosff=—=— 15.84
r ct r ct r ct

has the module equal to n = |ﬁ| =+n.n = \/cos2 p+cos’ a+cos’ f=1. 15.85

Making the product

2 2 2 2
~ Ts - | +y +
n.R:(cos +cosaj +cos fk )(xz +yj+zk ):cos¢ix+cosay+cosﬂz=u=r—:r 15.86
r r

—

we have r =7ii.R = cos ¢x + cos ay + cos Pz that applied to the phase & supplies a new phase
® = (kr —wt)= (kﬁﬁ —wt)z (k cos ¢ + k cos ay + k cos fiz —wt) 15.87

with the same meaning of the previous phase =0 .

g w
Replacing 7 =7.R = cos ¢x + cos ay + cos fz e k=— in the phase & multiplied by —1 we also get another
c

phase in the form

® =(_1)(kr_wt)=(wt_kr){w(t_iﬂ {W(Z_COSW *"OSW‘“&H 158

C C

with the same meaning of the previous phase (— 1)0 =0.

Thus we can write a new function as:

cos@gx+cosay+cos
f(@):f[u{t ecosay tcosf Zﬂ 15.89
c
That replaced in the wave equation with the director cosine considered constant supplies:
o f(d)w? o f(d)w? o f(d)w? o f(d)w?
f—(2)—200s2¢+f—(2)—200s2a+f—(2)—200s2,8—f—(2)—222670 15.90
ob- ¢ ob- ¢ d° ¢ ob- ¢

that simplified meets the wave equation.

The positive result of the phase @ in the wave equation is an exclusive consequence of the director cosines
being constant in the partial derivatives showing that the wave equation demands the propagation to have
one steady direction in the space (plane wave).

For the observer O a source located in the origin of its referential produces in a random point located at the
distance r:ct:w/x2 +y2+z2 of the origin, an electrical field E described by:

E = Exi + Eyj + Ezk 15.91
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Where the components are described as:

Ex=E,.f(®)
Ey=E, .f(®) 15.92
Ez=E_.f(D)

That applied in E supplies:

E=E (@ +E, /@) + E, /(@) =[E7 +E, ]+ E,]/(®)=E,/(®). 16.93
with module equal to E :\/(E V+£, P +E, ] f(@)=E=E, f(®) 15.94
Being E, =E i+E  j+E_k 15.95
The maximum amplitude vector Constant with the components Eyo, Eyo, Exo 15.96
And module E, :\/(Exo F+£, P +(E,) 15.97

Being f(CD) a function with the phase @ equal to15.87 or 15.88.

Deriving the component E, in relation to x and t we have:

OEx _ . of (@)od E of (@)o(kr—wt) . of (@)kx . 0f (®)kx

—xo —xo :Exo :Exo 15.98
Ox oD ox oD ox oD r oD ct
OEx _ E of () _ E of (@) d(kr—wr) _ E 6f(<D)(_W) 15,00
ot oD ot oD ot oD
that applied in 8.5 supplies
aﬂ+x—/2taﬂ =zero=>FE —af(®)82+x—/2tEm _af(CD )822 zero=>E _8f(®)(82+x_/21‘82j =zero
ox ¢ ot ob ox c ob ot ob \ox ¢ ot
E —af(q))(ag+x—/ztagjzzem:>a£+x—/ja£= ro 15.100
oD \Ox ¢ ot ox ¢ ot

demonstrating that it is the phase @ that must comply with 8.5.

oD x/tod kr—wt) x/t d(kr—wt) kx x/t X w
—+—Za—:zer0:> p +— =zero=—+——(-w)=zero=—| k—— |=zero

ox ¢ t X c ot et c? ct c

w . .
as k =— then E, complies with 8.5.
c

As the phase is the same for the components E, and E, then they also comply with 8.5.

As the phases for the observers O and O’ are equal (kr—wt):(k’r’—w't') then the components of the
observer O’ also comply with 8.5.

0(kr—wt)+ x/t O(kr—wt) _ 0(k’r’—w’t')+ X'/t o(k'r'—w't') — sero 15.101
0x c’ ot ox' c’ ot’
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The components relatively to the observer O of the electrical field are transformed for the referential of the
observer O’ according to the tables 7, 7B and 8.

Applying in 8.5 a wave function written in the form:

Y =) = o — cos(kx — wi )+ isin(kx — wt) = cos ® +isin @ 15.102

where [ = \/—_1

Deriving we have:

a—IP:—ksen(I)-i-kicos(D end a—IP:wsenq)—wicosq) 15.103

ox ot

or N _ ke'® and N _ —we'® 15.104
ox ot

That applied in 8.5 supplies:

b4 b4
%+x_£tﬁa_l = zero = (— k sen® + kicos ®) + x—/zt(wsenCD —wicos®) = zero
X c c

that is equal to:

(—k+¥jsin®+(ki—mjcos® = zero

2

c't c't
or a_\I! + x_/t@_\lf =zero = (kel@ )+ x_/t(_ WeiCI> )= zero
ox % ot c?

where we must have the coefficients equal to zero so that we get na identity, then:

xw xw
—k+T=Z€7"03k:T
ct ct
.xXwi xw
kl——zzzem:>k=—2
ct c't

(keiq))-f- x—/2t(— Weiq))z zero =k = xw
¢ c't

Where applying w = ck we have:

xw  xck  x
k=—=—=—=c
c’t ct t

Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c.

X
If we apply w=uk and v="—we have:

xw  vuk c
k=—=—=Du=—.

c2t c2 v

A result also gotten from the Louis de Broglie’s wave equation.
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§16 Time and Frequency
Considering the Doppler effect as a law of physics.

We can define a clock as any device that produces a frequency of identical events in a series possible to be
enlisted and added in such a way that a random event n of a device will be identical to any event in the
series of events produced by a replica of this device when the events are compared in a relative resting
position.

The cyclical movement of a clock in a resting position according to the observer O referential sets the time in
this referential and the cyclical movement of the arms of a clock in a resting position according to the
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times
between the referentials in relative movement thus, relate movements in relative movement.

The relative movement between the inertial referentials produces the Doppler effect that proves that the
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with
the relative movement that is, it is enough to replace the time t and t’ in the formulas 1.7 and 1.8 by the
frequencies y and y’ to get the formulas of frequency transformation, then:

=K = y’:y\/E 1.7 becomes 2.22

t=t'JK' = y :y’JF 1.8 becomes 2.22

The Galileo’s transformation of velocities #'=1u —Vv between two inertial referentials presents intrinsically
three defects that can be described this way:

a) The Galileo’s transformation of velocity to the axis x is #'x'=ux—v. In that one if we have ux = ¢ then
u'x'=c—vandif we have u'x'=c then ux =c+Vv. As both results are not simultaneously possible or else
we have ux =c or u'x'=c then the transformation doesn’t allow that a ray of light be simultaneously
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because

each observer can only see the ray of light running in its own referential (intrinsic defect to the classic
analysis of the Sagnac’s effect).

b) It cannot also comply to Newton’s first law of inertia because a ray of light emitted parallel to the axis x
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the
moment in which t =t = zero will have by the Galileo’s transformation the velocity c of light altered by = v to
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity
because there is no external action acting on the ray of light and because of this both observers should see
the ray of light with velocity c.

c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation
between the referentials in movement as it is required by the Doppler effect.

The principle of constancy of light velocity is nothing but a requirement of the Newton’s first law, the inertia
law.

Newton’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating
Relativity that doesn’t have the three defects described.

The time and velocity equations of tables 1 and 2 can be written as:

2
t'=t l+v—2—£cos¢ 1.7
c C
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12 '
t=t’\/l+v—2+2—vcos¢' 1.8

I} C

y= 4 1.20
V2o
2 +

C C

1+

cos¢@’

The distance d between the referentials is equal to the product of velocity by time this way:

d=vt=Vv't' 1.9

It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the
proportion between time and velocity, keeping the distance constant in each moment, to any propagation
angle.

The equations above in a function form are written as:

d=ev,t)=¢ (V1) 1.9
t'=f(v,t,9) 1.7
v’=g(v,¢) 1.15
(= 1) 18
V=g (v.9) 120

Then we have that the distance is a function of two variables, the time a function of three variables and the
velocity a function of two variables.

From the definition of moment 4.1 and energy 4.6 we have:

B
p=—u 16.1

c

The elevated to the power of two supplies:

2 2

u ¢’ 2
u__-c<c o, 16.2
¢’ E°

Elevating to the power of two the energy formula we have:
2

m,c 2
2 2 2 2 4
E'=|—_— | =E°-E ”—szoc
- ¢
2
c

Where applying 16.2 we have:

2
EZ—EZZ—2:m§c4:EZ—Ezépzzmjc“:>E=01/p2+m§cz 4.8

From where we conclude that if the mass in resting position of a particle is null m, = zero the particle

energyisequalto E=cp. 16.3
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That applied in 16.2 supplies:

2 2 2 2
u C 2 u C 2
ST P = T o p =u=c 16.4
¢ F c (cp)

From where we conclude that the movement of a particle with a null mass in resting position m, = zero will
always be at the velocity of light u =c.

Applying in E = ¢ p the relations E=yh and c=y\ we have:

ho . _
yh:ykp:p:x and in the same way p =; 16.5

Equation that relates the moment of a particle with a null mass in resting position with its own way length.

Elevating to the power of two the formula of moment transformation (4.9) we have:

2
"=p? E—4v2—2£vpx

Where applying £ =c p and pxzpcosd):pﬂ we find:
c

2
| 2
pl=p’ +_(cp4) -2 pvp = p'=p,|l+ _vztx = p'=pJvK 16.6
c ¢ ¢

Where applying 16.5 results in:

il
VK :> — = —\/ = A= orinverted A = 2.21
=P 4/ K VK’

Where applying ¢ = y4 and ¢ = y'A" we have:

V'=y4/K orinverted y =)'vK' 2.22
In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase.
17 Transformation of H. Lorentz

For two observers in a relative movement, the equation that represents the principle of constancy of light
speed for a random point A is:

'2+y'2+Z'2—CZt'2=X2+y2+22 —c’t? 17.01

In this equation canceling the symmetric terms we have:
Nesta cancelando os termos simétricos obtemos:

x? el =x? —ct? 17.02
That we can write as:
(x'—ct'Nx"+ct")=(x— ct)(x+ct) 17.03

If in this equation we define the proportion factors 77 and u as:

(x’—ct’)zn(x—ct) A
{(x’+ct’)=y(x+ct) B 1704
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where we must have 7.1 =1 to comply 17.03.

The equations 17.04 where first gotten by Albert Einstein.

When a ray of light moves in the plane y'z' to the observer O’ we have x' = zero and x = vt and such
conditions applied to the equation 17.02 supplies:

2
0-c’t?=(vty -’ > t'=t,|1-V 17.05
C

This result will also be supplied by the equations A and B of the group 17.04 under the same conditions:

(0—ct,/]—v—jj=77(vt—ct) A

17.06
2
(0+ct,/]—v—2j=u(vt+ct) B
c
From those we have:
17.07
Where we have proven that 7.1 =1.
From the group 17.04 we have the Transformations of H. Lorentz:
x'z(”;“)er(“;”)ct 17.08
ct’:(’u;n)x+(n;’u)ct 17.09
X:(”;“)x'+(’7;“)ct' 17.10
Ct:(n;ﬂ)x,+(77;ﬂ)ct, 17.11
- n+u pu—n n—u.
Indexes equations 5> 2 and 5
\% \% \% \%
o= 1+ch 1 c_ I1+>+1 c _ 2 :>77+y: Ji 17.12
v v 2 2 2 |
1= 1+ Y +Y  _ve s
c c o2 o2
-Y sy o _v_ ;v v 3 _v
ﬂ_n: c — c _ c c = c :)'LIZUZ c 1713
1+ 1= v -V v v
c 11— 11—
c c o2 o2
1+ 1-Y 1+ Y Y 2v B v
n—u= c _ c _ c c__ c :>772/J: c 17 14
- 1+ ;v 1.V v’ v’
c c c == =5
c c
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Sagnac effect

When both observers’ origins are equal the time is zeroed (t = t' = zero) in both referentials and two rays of
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and x’
with a wave front A; and another in the negative direction (counter-clockwise index u) of the axis x and x’
with a wave front A,.

The propagation conditions above applied to the Lorentz equations supply the tables A and B below:

Table A
Equation Clockwise ray (¢) | Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x.=Ct, Condition X, =—Ct,
17.08 x'.=uct, 17.08 x' =-nct,
X' =X, X', =nx, X' Ax = pux +1x,
17.09 ct'.=uct, 17.09 ct',=nct, ct'_+ct',=uct, +nct,
x'.=ct', x', =—ct',
Table B
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x' =ct', Condition x',=—ct',
17.10 x,=nct', 17.10 x, =—pct',
X =nX'; X, = HXy X+, =nx'+ux',
17.11 ct,=nct', 17.11 ct,=puct', ct.+ct,=nct' +uct',
X, =cCt, x,=—Ct,

We observe that the tables A and B are inverse one to another.

When we form the group of the sum equations of the two rays from tables A and B:

D'=ct' +ct',=uct_+nct A
{ © ot ¢ ! 17.15

D=ct_+ct,=nct'+uct', B

Where to the observer O’ D'=A <> A_ is the distance between the front waves A, and A; and where to the
observer O D=A <> A_ is the distance between the front waves A, and A..

In the equations 17.15 above, due to the isotropy of space and time and the front waves A, <> A_ of the

two rays of light being the same for both observers, the sum of rays of light e times must be invariable
between the observers, which we can express by:
D'=D=ct' +ct',=ct_ +ct,=>2t'=3t 17.16

This result that generates an equation of isotropy of space and time can be called as the conservation of
space and time principle.

The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the
conservation of space and time principle given by 17.16:

68/149



Hypothesis A:

If the space and time are isotropic and there is no movement with no privilege of one observer considered
over the other in an empty space then the propagation geometry of rays of light can be given by:

et |=let’,| and |ct,|=|ct| 17.17
This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time
conservation principle given by 17.16.

The hypothesis 17.17 applied to the tables A and B results in:

ct' . =uct' A
Quadro A cTHEE
ct',=nct', B
17.18
ct.=nct C
Quadro B e =Mt
ct,=uct, D

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in an empty space
then the geometry of propagation of the rays of light is given by:

et |=|ct,|=|cd 17.19
That applied to the table A and B results in:

ct'_=uct A
Quadro A c
ct',=nct B
17.20
ct=nct' C
Quadro B ©
t=uct', D
2
ct' . =u-ct' A
T H R 17.21
ct'u=772ct'c B
Summing A and B in 17.20 we have:
ct' +ct', —2ct(772'u):D':D(77 ’uj:D' 17.22

=y t'=
\/1_7 \/1_7

This result doesn’t comply with the conservation of space and time principle given by 17.16 and as D'#D it
results in a situation of four rays of light, two to each observer, and each ray of light with its respective
independent front wave from the others.

Hypothesis C:

If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space
then the propagation geometry of the rays of light is given:

et |=let,|=lct] 17.23

That applied to the tables A and B results in:

ct'=uct A
Quadro A c
ct'=nct, B
17.24
ct.=nct c
Quadro B c
ct,=uct' D
ct.=n’ct, A
) 17.25
ct,=u'ct, B
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Summing C and D in 17.24 we have:

tl
ct.+ct, :2ct'(77+7’u):D=D'(77+'u Z

D'
_j:Dz—ﬁ:ztz—ﬁ
2 . VZ L V2
C2 C2

This result doesn’t comply with the conservation of space and time principle exactly the same way as
hypothesis B given by 17.16 and as D'#D D'#D it results in a situation of four rays of light, two to each
observer and each ray of light with its respective independent front wave from the others.

17.26

Conclusion

The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we
can conclude with the geometry of propagations.

The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of
the observers not changing the front wave A, relatively to the front wave A; because the front waves have
independent movement one from the other and from the observers.

The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not
compatible with the hypothesis B and C.

For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the path of the rays of light be of 27R:

ct'.=ct',=ct'=27R 17.27

For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and
the counter-clock ray of light At =t_—t, that can be obtained using 17.24 (C-D), 17.27 and 17.14:

v
ZER( c 4rRv
At=t_—t, =t'(n-p)= = 17.28
c t _L2 o /C2_V2
2
C

§9 The Sagnac Effect (continuation)

The moment the origins are the same the time is zeroed (t = t' = zero) at both sides of the referential and the
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and
X" with a wave front A, and the other one in the negative way (counter clockwise index u) of the axis x and X’
with wave front A,.

The projected ray of light in the positive way (clockwise index c¢) of the axis x and X’ is equationed by
x.=ct, and x'_=ct'_ thatapplied to the Table | supplies:

I

1 — Ve | A — ’ Ve — ’ ’
ct'.=ct, ]—7 =ct'.=ct K. (1.7) ct.=ct' | I+ - =ct.=ct'_K'. (1.8) 9.11

v v v' v’
v’ =—CI>V'C=—C (1.15) v =—2FE v =—'c (1.20) 9.12

C K C ’ C K
S (o)
c c

From those we deduct that the distance between the observers is given by:

d.=v t. =v'_t', 9.13
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Where we have:

(J—EJ(HVC):KCK';J
C C

The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by

x,=—Ct, and x' =—ct',: that applied to the Table | gives:

t' =ct ]+& t' =ct K. (1.7
ct',=ct, C:>cucuu(.)

v =

r —
=>v',=

\%
—1 (1.15)

4 K
(e) "
c

V'
Ctu :Ct’u(l— Cu

I
v = Vu

(-2
c

=V

j:>ctu —ct' K', (18)  9.15

r
_VU

L=
K',

(1.20)

From those we deduct that the distance between the observers is given by:

_ T
du _Vutu _Vutu

Where we have:

2

We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations

!

9.1510 9.18.

\%4
cuszuK'uzl

With the propagation conditions described we form the following Tables A and B:

Table A
: Clockwise ray of . Counter clockwise ray of .
Equation light (c) Equation light (u) Sum of the rays of light
Result Result
Condition |x_=ct, Condition | x, =—Ct,
1.2 x'.=ct_K,_ 1.2 x',=—ct, K,
x'.=x_K,_ x' =x,K, x' +x',=x_ K_+x,K,
1.7 ct'.=ct K, 1.7 ct',=ct,K, ct' +ct',=ct_K_+ct,K,
x'.=ct', x', =—ct',
Table B
. Clockwise ray of , Counter clockwise ray of .
Equation light (c) Equation light (u) Sum of the rays of light
Result Result
Condition |x'.=ct', Condition |x',=—ct’,
1.4 x.=ct'_K', 1.4 x,=—ct' K',
x.=x'_K', x,=x"K', X . +x,=x'_K'.+x',K',
1.8 ct.=ct'_K', 1.8 ct,=ct',K', ct.tct,=ct' K'_+ct' K',

x.=ct,

We observe that for the rays of light with the same direction the Tables A and B are inverse from each other.
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Forming the equations group of the sum of the rays of light of the Tables A and B:

{D’zct’c+ct'u:ctCKc+ctuKu A 016

D=ct_+ct,=ct'_K'_.+ct',K', B

Where for the observer O’ D'=A <> A_ is the distance between the wave fronts A, and A; and where for
the observer O D=A, <> A_ is the distance between the wave fronts A, and A..

In the equations above 9.19 due to the isotropy of the space and time and the wave fronts A, <> A_ of the

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable
between the observers, which is expressed by:

D'=D=ct' +ct',=ct_ +ct,=>2t'=3t 9.20

This result that equations the isotropy of space and time can be called as the space and time conservation
principle.

The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18.

Hypothesis A:

If the space and time are isotropic and there is movement with any privilege of any observer over each other
in the empty space then the propagation geometry of the rays of light is equationed by:

{ctc:ct'u:>tc:t'u:>vczv'u:>Kc=K'u A oo
ct,=ct.=>t,=t'.=>v, =V _=>K,=K'_ B

With those we deduct that the distance between the observers is given by:

d.=d,=v t =Vt =v t,=v,t, 9.22

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct.=ct,=ct

V. =V,=V B 9.23

v.t.=v,t,=vt C
With those we deduct that the distance between the observers is given by:
d.=d,=vt=v'_t'_=v',t', 9.24

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.
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Hypothesis C:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct'.=ct',=ct’ A
v =v', =V B 9.25
v' t'.=v', t=v't C

With those we deduct that the distance between the observers is given by:

d.=d,=v't'=v_t_ =V, 9.26
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of

light are compensated in the referentials.

In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the rays of light course must be of 27R:

ct'.=ct',=ct'=27R 9.27

Applying the hypothesis C in 9.11 and 9.15 we have:

1
t =t'_K' =t =t'(] +%) 9.28

V'
t,=t' K' =t, :t'(l—?j 9.29

For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of
light and the counter clock ray of At=t_—t, that can be obtained making (9.28 — 9.29) and applying 9.27

making:

At =t —t =pf [+ \_pf -V =2Vt _47RV’ 9.30
c c c c co?

2V't' _ Zvctc _ 2Vutu
C - C -

the propagation of the clockwise and counter clockwise rays of light in a circumference showing the
coherence of the hypothesis adopted by the Undulating Relativity.

In 9.30 applying 9.12 and 9.16 we have the final result due to v_ and v,:

The equation At= is exactly the result obtained from the geometry analysis of

o ' 4nRv 47nRv
At=t,_—t,=2VE 4RV TV TV, 9.31
c c c’—cv, c +cv,

The classic formula of the Sagnac effect is given as:

47Rv

At=t_—t = CES) 9.32
c’ v
From the propagation geometry we have:
Ar=2VEt 9.33
c

The classic times would be given by:
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:27Z'R

t 9.34
c
¢ =278 9.35
c—v
g, =27R 9.36
c+v
Applying 9.34, 9.35 and 9.36 in 9.33 we have:
At:2v27zR:47zRv 937
c c o2
AtC:ZV 27R _ 427er 038
c (C_V) c’—cv
At _2v 27R _ 47Rv 939

TSy s

The results 9.37, 9.38 and 9.39 are completely different from 9.32.
§18 The Michelson & Morley experience

The traditional analysis that supplies the solution for the null result of this experience considers a device in a
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the X’
direction (clockwise index c¢) and another vertical in the direction y'. The horizontal ray of light (clockwise
index c) runs until a mirror placed in x’ = L at this point the ray of light reflects (counter clockwise index u)
and returns to the origin of the referential where x’ = zero. The vertical ray of light runs until a mirror placed in
y' = L reflects and returns to the origin of the referential where y’ = zero.

In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of
light track is given by:

ct'.=ct',=L 18.01
For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:

L, L _ 2L
zt'xr =t'c+t'u=g+z=? 18.02

In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’
axis is:

L L 2L
Ho =t 4 =Ep=EE
2 Y T ¢ ¢ ¢

_ _ 2L . : . o .
As we have Xt'. —Zt'y, = there is no interference fringe and it is applied the null result of the

18.03

Michelson & Morley experience.

In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise
rays of light.

Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience
obtaining a result that complies completely with the Sagnac effect.

Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9.
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Applying 18.01 in 9.19 we have:

D'=ct'+ct',=ct K.+ct,K,=>D'=L+L=ct_K_+ct,K, A 18.04
D=ct_+ct,=ct'_K'_+ct' K',=D=ct_+ct, =LK' _+LK',=I(K'.+K',) B '
From 18.04 A we have:
p=2r=ct|1-2¢ 1+ '=21,= 18.05

= —th —? '|‘C'tu +? = D'= L_th_vctc+Ctu+Vutu .
Where applying 9.26 we have:

o7 _ _ 2L
D—2L—ctc+ctu:>2tx—tc+tu—? 18.06

In 18.04 B we have:

v’ v’
D:ctc+ctu:LK]+ cj+(]— “ﬂ 18.07
(e} (e}

Where applying 9.25 B we have:

D=ct_ +ct,=2L=Yt, =t_+t :%L 18.08

u

The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise
rays of light compensate itself in the referential of the observer O resulting in:

St =Yt =Y, =2?L 18.09

Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have:

St EYE, 18.10
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§19 Regression of the perihelion of Mercury of 7,13”

Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction law:

5_—GM,m, . —(667.10"")1.95.10")328.107). —k

F= 19.01
r’ ¥ r
The sub index "o" indicating mass in relative rest to the observer.
To describe the movement we will use the known formulas:
F=rr 19.02
_dr dr) dr. d¢
=Y = (W)z—rr+r—¢¢ 19.03
t dt dt dt
2 2
I 7 d
W =iiii= @ + r—¢ 19.04
dt dt
_ di_d’F_d’(7) |d’r (dgY |, [ drdg 40
dt dt dt dt dt dt dt dt
The formula of the relativity force is given by
= d| mu m, . m, u du m, [ w . (.du\u
= = = =a+ = 1| 1 7 la+ — 19.06
dt\/lu \/1” S qu i dt

In this the first term corresponds to the variation of the mass with the speed and the second as we will see
later in 19.22 corresponds to the variation of the energy with the time.

With this and the previous formulas we obtain:

e ety
c dt dt dt dt

F=—?—r 19.07

dr| d°r ( ¢j ¢ ,drdg  d ¢ I (a’n d¢
+—— +r
dt| a? "\ dt dt dt ar ¢’ dt

{(]_é)[ i;” (d¢j H@[di ] @( 2drd¢ d ¢J} Izdr};Jr
- " c ) dt dt dt| dt dtdt  dr’ || dr
_(]—u2/02 = 2 2
. ]_ Jdrdg d¢ . gﬂ_{@) A4 ydrdg d¢ de j
dz dt “a? | Nal a2 ar dt dz dt " dz

+

19.08
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In this we have the transverse and radial component given by:
2\ 2 2 2
R R E P NEAEC ) N Py P
(1_u2 /62)i ) d? \dt dt| ar "\ dt di\ dtdt " ar’ dt

N
(1—142 /02)5 AN\ dedr di ) |de| a \dr di\“drdr " dr )| dr

As the gravitational force is central we should have to null the traverse component I:"é:zero so we have:

= o /2'{(1 ](2drd¢ d ¢]+{dr[d2 [d¢j ]+rd¢[ drd¢ d ﬂ} ¢}(3=zer0 19.11
(J_MZ /62)’ diar ai | \aila?\ar di “drd " ar | dr

From where we have:

£y

drd¢ d d'¢ —rdrd¢ drdg .d’¢| —ldr|d’r (d(ﬁjz
_reney 2r——+r’'— 3 77
dt a’ " ar & dt dt dtdt drt ) ¢ dt|dt dt
= 7 = 5 19.12
2] | 5| R
dt’ \dt dt at \ dt
From the radial component F‘, we have:
2
4 drdd &
~ m d’r d¢ u’ dr dt dtdt dt’ )| 1dr|.
F=r 0t I-— |+ : —— F 19.13
(1=u?/c?) | dt ar ) N Tay (d¢ ¢ dt
e\ dt
That applying 19.12 we have:
d¢( r drd¢j
2 2
- d; (dgﬁj AN dr " di\cdt di Izdr p o1
(]_uz/cf)’ dt dt c dt {] (drj } c dt
dt

That simplifying results in:

)

= 0 - 7 19.15
\/l—uz l:]_lz(drj }
c c\dt

This equaled to Newton's gravitational force results in the relativistic gravitational force:

e [d¢j
~ m dt’ at) |, -GM m . —k .
: _—OGMm, . _—k . 19.16

; \/1_”2 ] I[drj T
c’ A\ dt
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As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written
as:

E=E, +E, = constant. 19.17

Where the kinetic energy (Ey) is given by:

E =mc’—m,c’=mc’ L 19.18

And the potential energy (E,) gravitational by:

_ _GMomo ___k

E 19.19
r r r
Resulting in:
E=m c* 1 -1 _k_ Constant . 19.20
o 2 r
1-4_
2
c
As the total energy (E) it is constant we should have:
dE _dE, dE,
—=—"+—r=zero . 19.21
dt dt dt
Then we have:
dE, mu du
= 3 19.22
u
1=
c
dE  k d
p_" ar 19.23
dt  rodt
Resulting in:
dE _dE, dE, mu du kdr mu du —kdr
—=—+—r=zero= 7t =zero= T 19.24
dt dt dt NS de 1t Nodt 7 dt
u u
I—— I-—
c c
This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in:
= m, _ 1l kdr. —k.
F= —G————li=—F 19.25
u cridt r
1=
c

In this substituting the previous variables we get:

78/149



m {dz r(@j}ﬂ[zdrd;é d¢j¢ 1 kdr(dr _¢¢j _k; 1026

/] dar \ at dtdt  di )| Erldl\de  dt’ ) r
C

From this we obtain the radial component 17“, equals to:

2 2
F= e dr (dﬂ 12 kz (ﬂj :_f 19.27
f dr\ dt cri\dt r
] 2
C

That easily becomes the relativistic gravitational force 19.16.

From 19.26 we obtain the traverse component 13& equals to:

2
Fom, (Zdrd¢+rd¢ 1kdrd¢ 1008
’ \/ W\ Cdtdt dr ) Crdtdt
cZ
From this last one we have:
o NN
dedt _df =1z 19.29
rz@ m,c’r’ dt c
dt

As the gravitational force is central it should also assist the theory of conservation of the angular moment
that is written as:

L=7Fxp=constant. 19.30
L=Fxp=Fx Pl T (ﬂﬁrr%éjz ( ¢): 7, 2d¢k 19.31
\/1 u’ \/1 uzkdt dt ; }]
c’ c’ 02 c’
[="% = 2d¢k =Lk = constant. 19.32
I dt
CZ

dL d( k) d(L)IQ +Ld(/3):d(L)lgzzem:>iL)zzem 19.33
At dt dt dt dt

Resulting in L that is constant.

dk
In 19.33 we had —=zero because the movement is in the plane (x,y).
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Deriving L we find:

2
d—in 7, 2d¢ —]2 e 3du 2d¢ 7, (Zrﬂﬁﬂfzd—? =zero 19.34
di di| [ di| &, oodiodi | w\" didi | di
- ( u] -4
c 1= c’
c
From that we have:
2
2rﬂ@+r2 d—?
dt dt dt —u dul
= ———— 19.35
,,27(]5 I dt c
dt e’

Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we
have:

a2
drdi | drt) di|d’ \dt)| dr\/]7_ ~u du | 1035
249 {1 1(dr 2} mc’r’dt\ ¢ (l_uzjdtcz '
p -4 cz

From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16.

For solution of the differential equations we will use the same method used in the Newton's theory.

1
Let us assume w=— 19.37
r

ow -1
The differential total of this is dw:a—dr:dw:—zdr 19.38
/2 r

dw —1dr dw —Idr
From where we have —=—— 19.39

d¢rd¢ dt P dt

dp L u
From the module of the angular moment we have ?: ]——2 19.40
r m, r c
dr L dr
From where we havi = —_ 19.41
dt myr d¢
dr —Ldw |, u’
Where applying 19.39 we have _:_d_¢ 11— 19.42
dt m
d’r_dg di d(~Ldw
That derived supplies — = 1 19.43
e’ dtdpdi\ m, dg
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Where applying 19.40 and deriving we have:

dzr_ L

/1 uzi —Ldw /1 u'| -r J uz_dzw
g cdg\ m, de ) omir’ c’

L d¢2

ar’ _mor

In this with 19.36 the radical derived is obtained this way:

a2k k1]
af =)

~k dw( | u j
That applied in 19.44 supplies:

-1 udu_ k dr(] u’
Ni-u? /3 E dt moczrzdtk c’

szj

52kl
d¢’ c mc’ kd @ ¢’

-1 u du k dr(
NIy mc2r2d¢k

m.c d¢k

-

2
2\/1 u2
C

Simplified results:

_ Lk [, zgy L[, u\dw
_ijZFZ = m2r2k c }d(é

Let us find the second derived of the angle deriving 19.40:
—ZL dr uz

g dl L [ Ldf|
2 2 2i
dt dt\myr ) mydt myr dtk

In this applying 19.42 and 19.45 and simplifying we have:

i ”jz
C

d'r_
dr’

2
myr

d’r
dr’

“

Lk dw(
m302r4 d¢k

d¢_ 2L dw( u
ar’ m2r3 d¢k

Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have:

&

The equation of the relativistic gravitational force 19.16 remodeled is:

-
dt’ dt 02 c\dt) \my’

In this applying the formulas above we have:

L'k I ( uzwdzw

; u’ dwd(
¢’ d¢d¢L

1(-Ldw

Lk (Y[
mc’r’\ )\ dg

mjrzk] 02}d¢2
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L u’ \/ u’
r 1 =/l
(morz \/ c’ ] c’

czkmo d¢

2
|1 u”
cZ

2
my

19.44

19.45

19.46

19.47

19.48

19.49

19.50

19.51

19.52



]_u_2 d_w ’ I J wd'w I J uz_ ]
mc’r’\ C\dg) mir cdg mr’ c’
Lk u’ \ dw ’ r wd'w T u -k Ik ](
el R el IR (LR R IEL | L
mcr c $) mr cd¢” mr ¢ myr
r ; wd'w I ; uz_ -k
mjr2 o’ d¢2 mfr3 c’ mor2
d’w 1 mk

d¢2 rd¢2Tr2 s S[LMJ‘l
>\ dt
2 K 2
(dzw] 2d'w 1K 2"

K (arY ( dgY
z BE&
(dzwj 2d°w 1 K c*|\dt dt
df’) " rag r mw(‘*”f mzrg(dcéj

>\ dt
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)

2 2
2.\ 2 2 kfﬂ
(dw] 2dw] k Y

t
d¢2 rd¢ mzr‘?(d¢j mjrg(wjl’ m02},8(61¢j4
dt dt dt
(arY
, k" dr
(dsz 2d'w 1 K \dg K
dag) rag 7 m5r8("’¢’j4 mjrg(awﬁjz mjczré(wjz
dt dt dt
) k[ dw
(dzw] 2d°w 1 K A\ dg K
¢’ ) r d¢ mjrg(CMI mjrg(wjz mjczrﬁ(cwjz
dt dt dt
K (dw
(dszz 2d%w ! K 2\ dg K
de’

rdg’ mzrg(dgzsj" m5r4(al¢>j2 mjczr6(al¢j2
>\ dt dt dt

In this we will consider constant the Newton's angular moment in the form:

L:rZﬁ

dt

That it is really the known theoretical angular moment.

d*w 2d2w 1 Kok (aw K’
dg’ ) rd¢ r m’L' mL\dg) mcrL

_dzw +2d2w2w+w2: K K (d_wz K w
¢ d¢’ m ' mc’C kd(ﬁ m.c’l’
2 2 2
L S Nl R
2 2
d¢ d¢ d¢

Where we have:

k2
RIS
mc’L

kZ

B=
m I
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The equation 19.54 has as solution:
1 1
W_g_D[I —gcos(¢«/1 +4 +¢0)]:>W_5_D[1 —scos(gQ)] 19.57

Where we consider ¢ =zero.

It is denominated in 19.57 O’ =1+A4.. 19.58

The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass
with the variation of the energy in the time, because both as already described, participate in the relativistic
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable
and indivisible in the electromagnetic theory.

From 19.57 we obtain the ray of a conical:

r—i— &b =>r= &b 19.59
_w_l—gcos(¢«/1+A) _1—gcos(¢Q) '
Where ¢ is the eccentricity and D the directory distance of the focus.
Deriving 19.57 we have d_w:QsL@ 19.60
d D
2
That derived results in d W:Q200S(¢Q) 19.61
d¢’ D
Applying in 19.54 the variables we have:
2 ? 2 :
d VZV +2d—V2VW+A daw +(A+])w2 —B=zero.
dg d¢ dg
Q4COS2(¢Q)+2QZCOS(¢Q)’71—ECOS(¢Q) +AQ2sen2(¢Q)+(A+l{1—8cos(¢Q)T_Bzzem 1962
D’ D | & D’ )
Q4COS22(¢Q)+2QZCOS2(¢Q) ZQZCOSZZ(¢Q)+AQ_2_AQZCOSZZ(¢Q)+(A+]{]—8cos(¢Q)T_Bzzem
D gD D D D eD
Q4cos2(¢Q)le cos(¢Q) 2Q cos (¢Q)+AQ2 AQ200s2(¢Q)+ (A+I) 2(A+1)cos(¢Q)+(A+1)cos2(¢Q) Besero
D’ D’ D’ D’ D’ &’D’ D’ D’
(Q4—2Q2—AQ2+A+1\C"S2(Z¢Q)+ 20" 242 )COS(@WQZ:(ZI”Z) B=zero 19.63
) b D D D) D DD

In this applying in the first parenthesis Q2:1+A we have:

(0" =207~ 40 + 4+ 1)=[(1+ AY — 201+ A)- A(1+ A)+ A+ 1|14+ 24+ 4 —2-24— A— 4 + A+ I)=zero
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In 19.63 applying in the second parenthesis Q2:]+A we have:

20° 24 2\ [2(+4) 24 2
= =zero
eD &eD &eD eD eD  &D

The rest of the equation 19.63 is therefore:

40 (4+1)

7 Tp —B=zero

The data of the elliptic orbit of the planet Mercury is [1]:

Eccentricity of the orbit £=0,206 .

Larger semi-axis = a = 5,79.10"°m.

Smaller semi-axis b=a~/1-£° =5,79.10"\[1-0,206° =56.658.160.305,80m
eD=a(1-£" }=5,79.10"(1-0,206° )=55.442.955.600,00m.

_ali=¢?)_579.10"(1-0,206°)
e 0,206

=269.140.561.165,00m .

The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are:
PT=3,16.10"s.

PM=7,60.10°s.
The number of turns that Mercury (m,) makes around the Sun (M,) in one century is, therefore:

3,16.107

N=100 -
7,60.10

=415,79 .

Theoretical angular moment of Mercury:

2
r =(r2%] :GMaa(1—52):6,67.10‘”1,98.10305,79.10’0 (1—0,2062):7,32212937427.]030

(oMm, Y (GM, Y (6.67.007" ] (1.98.10 )

er e (0.10°F (7.32.10) o

7" ’
B:(GM0m0)2 _(GM,) :(6,67.10 ”) (1,98.1030) 3251077

mgL* r (32.10"f

O=N1+A4=11+2,63.10" =1,000.000.013.23

Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have:

2 -8 2 -8
AQ I(A+1) 520510 (1,000.000.013.23) L 265107 +1 325,10 =8.976.10~%°

D’  &'D? (269.140.561.165,00)° (55.442.955.600,00)°

Result that we can consider null.
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables
we have:

40 (4+1)_,_(GM, )|
DZ

+

GM,Y 1 aMm,) | (GMm,)
&0 DY (chof) }520{“(&1:02)} ( L"O) —Eere 19.71

2 2
e’ (GMO )2 {]+ (G]y]:)z) :|+L4CZ |:]+ (GJYLOZ) }—czgzDz(GMo )2 =zero
c c

2 2
((24;2) +L¢’+ L’ ((fyLOZ) ~’¢’D*(GM, ) =zero

&L’ (GM,) +&’ I’ (GM )’

(oM, )

2
C

&'’ (GM,)) +&’ +I'+ 7 (GM ) —c’e’D*(GM )’ =zero

4
c'L"+\+e“ \GM ) L +e"————c“e“D“(GM, ) =zero 19.72
2.4 ( 2X 0)2 2 Z(GMZO) 2.2 2( 0)2
c

2

—(1+&* YoM, ) i\/[(]+gZXGM0 I -4c7| & (GJ(\:% f —c’s’D*(GM, )’

L=
2¢?

L —(1+e2Xom, Y £\(1+e2 Y (GM, Y —47 (GM, ' +4¢" &2 D* (GM,

2¢?
L2_—(1+52XGM0 V(14267 +6* \GM, ) 467 (GM, ' +4c*e” D’ (GM,
B 2c’
LZZ—(1+52XGM,, Va(GM, ) +26°(GM, ) +&' (GM, ) 467 (GM, )’ +4¢*e° D (GM,
2¢?
r —(1+e7 YoM, Y £y(GM, ) +5*(GM, ) ~25° (GM, )' +4¢*s* D (GM, )

2¢?

7 _—(1+gzlGM,, )2+\/ (I—gZ)Z(GMO Y +4c's’D’(GM, )
- 2¢°

—7.32212927328.10™" 19.73

This last equation has the exclusive property of relating the speed c to the denominated relativistic angular
moment that is smaller than the theoretical angular moment 19.66.

The variation of the relativistic angular moment in relation to the theoretical angular moment is very small
and given by:

30 30
:7,32212927328.]0 —7,32212937427.10 —138.10° -1

= 19.74
7.32212937427.10°° 72.503.509,00

AL

That demonstrates the accuracy of the principle of constancy of the speed of the light.
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in
A¢:27z415,79(5—1}2272’415,79(—0,000. 000. 013.23)2—3,46. 107 rad. 19.75

Converting for the second we have:

-5
Ag= 346.10 .]80,00.3.600,00=_7,]3,,. 19.76
T

This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and
is shrouded in total observed precession of 5599. "
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§8§19 Advance of Mercury’s perihelion of 42.79”

If we write the equation for the gravitational relativity energy Er covering the terms for the kinetic energy, the
potential energy E, and the resting energy:

_ 2 1 2 moc2
E,=mcCc’|—+—-1|+E +mc =—————=+E_. 19.77
u’ : u’ ‘
1-— 1-—
c c

Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the
radius tends to infinite, the speed and potential energy tends to zero, resulting then:

moc 2
E,=———+E_=m_cC 19.78
R u2 P o
1-—
C

Writing the equation to the Newton’s gravitation energy Ey having the correspondent Newton’s terms to the
19.77:

2
mou” k

Ey = —-——+ moc:2 = moc:2 19.79
2 r

2
m_u -k
Where °2 is the kinetic energy, — the potential energy and moc2 the resting energy or better saying
r

the inertial energy.

From this 19.79 we have:

mu’ k 2 , _mu’ k 2k 2GM mg »  2GM,
__+moc :moc = =—=u = = —>u = 19.80
2 r 2 r m.r m.r r
Deriving 19.79 we have:
dE, d(mu® k )
=— ——+m.c” |=zero
dt dtl 2 r
m 2udu k dr
—+——=zero
2 dt r-dt
pdu_ -k dr_=GMs dr
dt mor2 dt r’ dt
pdu_~CMo dr
dt r® dt
du —-GM,
u—=— 19.81
dr r
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Making the relativity energy 19.78 equal to the Newton’s energy 19.79 we have:

moc2 mou2 k 2
E,=F, > —>—+E_= ——+m._c 19.82
u’l 2 r
1-—=
c
2 2 2
m.c +E_p _my,u® GMm, m.C 19.83
m, 1_i m, mg2 mer m,
2

E
p=—- 19.84
IT‘lO
We have:
2 2 GM
c—+q):u___o+c2
l—i 2 r
o2
2 GM 2
p=2_To 7S 19.85
2 r 1_i
o2

1 u’
~1+ > 19.86
u’ 2c
1-—
o}
We have:
2 GM 2
R e
2 r 2c?

That simplified results in the Newton’s potential:

2 2
GM —GM
p=— 2t = e 19.87

2 r 2 r

Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78:

m.c u- GM, c
Ey=—F——=+m | —— +C—— 19.88
U2 2 r U.2
1-— 1-—
C C
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in
the Newton’s theory:

—-d
a= 4
dr

= = —_ O+C —
dr dr| 2 r u’l
1-—%
c
a_—d u’ GM, L) d|_ ¢
dri 2 r dr . u’
C2

Where we have:

—dfu® 6M, ,| -d[E, L
_— = +cC =d— — |=zero. Because the term to be derived is the Newton’s energy
r

dr\ 2 r m,
. . EN u2 GMO 2 . . .
divided by m, thatis — = 7——+ c” that is constant, resulting then in:
m r

In this one applying 19.81 we have:

-1 GM,
a= - 19.89

3
u’ \2 o
1-—%
C

The vector acceleration is given by 19.05:

2
2 24| .
5= Q_r(d_ﬂ f+|:2£d_¢+rd_¢j|¢
dt? dt dt dt  dt?
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The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (t)
thus we have:

d’r  (dg\’ -1 &M,
a= -1 — = > 19.90

dt? dt ( U2jz r
1-—
C

Being null the transversal acceleration we have:

drd d’¢ |-
2—r—¢+r—¢j p=zero 19.91
dt dt dt
2
2£d—¢+rd—¢3:zero
dt dt dt
. . > dg
That is equal to the derivative of the constant angular momentum L=r Tt 19.92
dr. d( ,d drd d’?
—:—(r2—¢):2r—r—¢+r2—f:zero 19.93
dt dt dt dt dt dt
Rewriting some equations already described we have:
1
W=—
r
ow -
dw=-—dr=dw=—dr
or r
dw -—-1dr dr , dw dw —-1dr
—=—F—o —=-r —and —=——
d¢ r° d¢ d¢ d¢ dt r°dt
dr_d¢dtdr Ldr -L .dw_ dr__ dw
dt dtdg¢dt r’d¢ r° d¢ dt d¢
d’r d(dr) dgdt d dw) L d dw) -I'd°w
—=—| — |=—~——|-L— = —| - L— |=—— 19.94
dt® dt\dt dt d¢ dt d¢ ) r°d¢ d¢ r° d¢

From 19.90 we have:

3u? | d’r  (d¢) | -GM,
1- 2 P = 2
2C dt dt r

In this one we 19.94 the speed of 19.80 and the angular momentum we have:

[ 3 (M ]| -1 d*w (LY GM,
1- 2 2 ;T = =T
e r r° de¢ r r

36M, 1) d'w 1) GM,
1- 2 SR
c” rA\d¢g” r L
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(1 3GM, 1)01 W (1 3Gm, 1)1 GM,
c? de’ ¢ r)r I?
d’ W 3GM, d'wl 1 3GM, 1 GM
2 2 —tom— 2
de c® d¢’r r & r L

d’w _d'wl 1 1
T ——A—2—B—zero
d¢ d¢°r r r

d’w d’w 5

5 —A 2erw—Aw —B=zero
dg¢ dg¢
dw dw 5

> —A 2W—Aw +w—B=zero
dg dg
Where we have:

:3GMO BzGMO

c2 L2

The solution to the differential equation 19.95 is:

w ZL[].—ECOS(¢Q+¢O)]:> w ZL[1—8005(¢Q)].
eD eD

Where we consider ¢ =zero
Then the radius is given by:

1 D D
r=—=—————-—"r=

w 1-gcos(dQ) _1—gcos(¢Q)

Where ¢ is the eccentricity and D the focus distance to the directory.

Deriving 19.97 we have —

dw Qsen(¢Q) dzw _ Q° cos(#o)
¢ D d¢2 D

Applying the derivatives in 19.95 we have:
d’*w d’w

;A
d¢”  d¢

0’ cos(¢g) 3 AQ’cos(do) 1 [
D D

w—Aw’ +w—B=zero

0” cos(¢o) 3 20” cos(4)

D &D
0’ cos(dQ) _AQ°co s(4Q) n A0 Cos(m)gcos(@)—
D &D? &D’
A

e’D?  &D £’D? eD  &D
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: [1—ecosm)]—g%[1—zecos<¢o>+azcosz<¢9>]+[

—22gcos(¢Q)— A &’ cos2(¢Q)+i—igcos(¢Q)—B =zero

19.95

19.96

19.97

19.98

19.99

1- 8cos(¢Q)] [1 gcos()f +—D[l gcos(gQ)]-B=zero

:| B=zero

i—iDgcos(¢Q)



2
cos(4Q) QZ— 1 +AQ cos’ ) Acos (¢Q)_ A 2l B jero
D D’ e’D* D
cos(¢Q) Qz_ _q +AQ cos’(¢0) Acos’(0) A L B
AD AD’ Ae’D® RAeD A
cos(dQ) Q2 Q2 1 Q cosz(¢Q) cos’(dQ) 1 1 B
0 |2 o St ———+ ——=zero
8D 8D A D gD AeD A
2 2 2
&2(@)(@2_1%&(4@(@__@_ 3_gj_%+i_§:mo 19100
D D A ¢ &b A eD” AeD A

The coefficient of the squared co-cosine can be considered null because Q~1 and D’ is a very large
number:

2
M(@kl):zero 19.101
D

Resulting from the equation 19.100:

2 2
2 1) 1 1 B
cos(go)(@” ", 2 1 P sero 19.102
D |A & & &) &D° AsD A

Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously
the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following
equations:

Q° Q* 2 1 1 1 B
= = 4+ —— =7ero and - 2+———zzero 19.103
A &b & A D AeD A

These equations can be written as:

1 1 1(1 2

[a=b]lm>—-—=—|—-— 19.104
A &b Q" \A &b
1 1 ¢DB

[a=c]=>—-—="— 19.105
A & A

1 1
In these ones the common term a = — —— must have a single solution then we have:
A &D

1(1 2 &DB
[b=c]=> | =-=|="— 19.106
Q’\A &) A

With 19.96 and the theoretical momentum we have:

3GM, GM, 5 eDGM
= B= L' =&DGM eDB=

2 2 © 17
c L

==1 19.107
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It is applied in 19.105 and 19.106 resulting in:

1 1
[a=clo>=-—=—
A ¢ A
1(1 2 1
b=cl=>—|2-=|==
Q°\A &b A
From 19.108 we have the mistake made in 19.105:
1 1 1 1
———=—=—"]Zero
A & A &D
1 -1

- == =-1,80.10" =zero
eD 55.442.955.600,00

From 19.109 we have Q:

1(1 2 1 5 2A B 2 3GM,
S| ———=|=—=>0Q =]l-——=Q0" =1—— >
O°\A &b A &D &D ¢

It is applied in 19.104 resulting in 19.110:

&D

1 1 1(1 2)_.1 1 1 (1 2
e el e e
A & 0°\A &) A &D (1_2Aj A &

From 19.112 we have:

—-> ——XZEero

0=1-—=¢

6cM, _ [ 6l667.107 f1,98.10")
eDc? (

That corresponds to the advance of Mercury’s perihelion in one century of:

ZA¢=A¢.415,79:(L— j.1.296.ooo,oo.415,79=42,79”

Q

Calculated in this way:

In one trigonometric turn we have 360x60x60=1.296.000,00"seconds.

The angle ¢ in seconds ran by the planet in one trigonometric turn is given by:

1.296.000,00
Q

$0=1.296.000,00= ¢ =

If 0>1,00 we have aregression. $<1.296.000,00.

If ©<1,00 we have an advance. ¢ >1.296.000,00.
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The angular variation in seconds in one turn is given by:

_1.296.000,00
Q

Ag —1.296.OOO,OO=(L—1]1.296.OOO,OO.

Q
If Ap < zero we have a regression.
If Ap >zero we have an advance.

In one century we have 415,79 turns that supply a total angular variation of;:

ZA¢:A¢.415,79:(l— j.1.296.000,00.415,79=42,79”
Q

If ZAd) <zero we have a regression.

If ZA(I) >zero we have an advance.

§20 Inertia

Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of
the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires
that the spherical electromagnetic waves with speed c issued by a source located at point O' is always
observed by O', regardless of time, with spherical speed ¢ and therefore the uniform motion and rest are
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object
located in O’ will always be centered on the object itself and a beam of light emitted from O' will always
remain straight and perpendicular to the spherical waves.

Imagine another point O what will be the beginning of the coordinates of the observer which has the
same properties as described for the inertial observer O'.

Obviously two imaginary points without any form of interaction between them remain individually and
together perfectly meeting the law of inertia even though there is a uniform motion between them only
detectable due to the presence of two observers who will be considered individually in rest, setting in motion
the other referential.

The intrinsic properties of these two observers are described by the equations of relativistic
transformations.

Note: the infinite universe is one in which any point can be considered the central point of this
universe.

(§ 20 electronic translation)
§20 Inertia (clarifications)

Imagine in a totally empty infinite universe a single point O. Due to the uniqueness properties of O a
radius of light emitted from O must propagate with velocity c. If this ray propagates in a straight line, then O
is defined as the origin of an inertial frame because it is either at rest or in a uniform rectilinear motion.
However, in the hypothesis of propagation of the light ray being a curve the movement of O must be
interpreted as the origin of an accelerated frame. Therefore the propagation of a ray of light is sufficient to
demonstrate whether O is the origin of an inertial frame or accelerated frame.

Now imagine if in the universe described above for the inertial reference frame O there is another
inertial frame O' that does not have any kind of physical interaction with O. In the absence of any interaction
between O and O' the uniqueness properties are inviolable for both points and rays of light emitted from O
and O' have the same velocity c. It is impossible for the velocity of light emitted from O to be different from
the velocity of light emitted from O' because each reference exists as if the other did not exist. Being O and
O' the origin of inertial frames the propagation of light rays occurs in a straight line with velocity ¢ and the
relations between times t and t' of each frame are given by table I.
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§21 Advance of Mercury’s perihelion of 42.79” calculated with the Undulating Relativity

Assuming ux=v

(23) u'x'= u>2<—v = V;V Su'x'=zero
\/1+vz_2vz,zzx \/1+x12_2v2V
c c c c
Ux=v Ux'=zero

(117) dt'=dt 1+——2V“X_dt,/1+——2"v:>dt' dt 1——

2
(1.22) dt= dt'\/l+v'2 2R g 172 200) g v
C

c? c?
2
dt'=de [1-2 dt=dt' [1+ —2
c
2 e
l——2 l+—2:l
c c
V' , \%
VE—— V=17
v v’
1+7 1-Y
c c
dt>dt' v<v' vdt=v'dt
o -] - o
(1.33) 7= : v = 2V >v=—rL -
|} | A o | Y 1 ]
\/1+V2+2V‘éx \/1+V +2V20 1+
c c c c
(1.34) V'= v = —Vv =V
\/1+v2_2vux \/1+X/2_2vv \/ _vf2
2 2 2 2 2
c c c® c c
‘7: _‘7' _”|: ‘7
V'2 V2
1+7 1-7
c c
F=rf=-7 F=-rf=-% | =|r|=
dr=drr+rdr=—dr' dr'=—drr—rdr=—dr
rdr=drrr+rrdr=dr rdr'=—drrr—rrdr=—dr
- N - 2 2
g=df _dui) _drp,,dd; v2=x7x7=(£j +(rd—¢j
dt dt dt dt dt dt

. SN A 2 2
grodz_dCrf) :{drf+rd—¢¢) v'2=x7'x7'=(£j +(rd—¢j

at'
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21.09

21.10

21.11



5.4V _dT_ dz(ff):{dzr

dt dt? dt’ dt

é,:dv a7 d (—rr)

(2 ozt o)

de' dt?  dt?

dt'2 r(dt'”f (ddi'jf' dt@¢

o T
2
1_7
-2
5o dC?) _ d( v_|_dt d( V|- hyvid|_ ¥
avae| [ dt‘dtL\/ i ¢ at| [
2 2 2
2 i 2 4= 2
G-V _ v 1 | v dv _gd| v
at' c (l_v) c-dt dt c
2
2 | 2 2 21
- YA ' / T 22 2(—
__av' _ 1+V2 1 . l—v—Zﬂ—vl( _v_j ( 22vdv)
dt' c (1_vj c-dt 2 c c” dt
2 )t
~__dv'_ l+V_’22 1 _ l_v2 av 1 vdvv2
dt c (l_vj ¢fdt || dte
C2 c2
o _adv'_ /1+v_'22 1 g 1 1_v§ 1_V_jdv 1 dvv2
dt' c (l vj v c c” dt \/l_v2 dtc
c? <’ o
=_ _ dv v* 1 v \dv , dv ¥
—a=- =1t s\\i—=2 TV 2
at' c 2\, c”)dt dtc
%4
%)
[ g _moa' — _mo d‘;’ —_ mo Ir(l_vzjdv dV \%2
dt dtc
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= 2
F:Lﬂl—v)dedvv} (=19.06) 21.16

N _ ] _ — . 2 — =
Fr=-nig=—e =T dV_p_ T {(1—"—2)61—‘/“/@12} 21.17
\/1+v'2 \/1+v'2 dt (1—‘%)2 c”)dt dtc
c c 2
B, =|F'(-dF)=[Fdr=["£tar 21.18
r
I AT R e e LA AR N 8 v \dv . dv 7 | = =k =
Ek—IF .(—dr)—JF.dr—J —(—dr)—j g{(l CZJE—FVC‘]TZ c2}dr—J'?r.dr 21.19

, 2 dt
V!
1+ 5
C

_ 1, dr' m, dr v |_[(—k » ;=
Ek_‘[\/l —dv f'_J‘ 3[( ) E+Vdvd_i§}_‘[_2r.dr

' dt
E G
c

Ek:J‘mod‘_;"; ZJ' M 3{(1 czjdvv+vdv—} J—r dr
\/1+ 2

N

Ekz_[moV'dV' = L Hl—v—jjvdv+vdv2—j}=j;—]§dr

§ 2 2 2
1+7 2 2 C C r
C2 1—7
c
Ek:jmov'dv': myvdv _ _—kdr dEk:mov'dv': mvdv kd 2120
2 3 2 2 37 2 '
1+ (Ve T 1+ Vel
c’ 2 e
c c
12 mcz
E,=mc? [1+L=—= =X tconstant 21.21
c? v r
C2
2 o2
E,=mc? 1+ K _constant Er=—F= ~X_constant 21.22
c® r v:
1_7
C2
2 2 2
mc
Bp=—tl K g2 Y K Bp=—t _K_p? 21.23
R 2 T 5 . R @f o o
1-v 1-Y)
c c
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L _ %, k1 H="E a=—k G G 21.24
\/1_‘,2 mc® mcr mcC mc®  mcC c
2
c
3
L _-p+al %:(HJrAij 21.25
v r ( 2)2 r
o 2
E:fxﬁ:rfx(%ﬂrg—%) 2d¢(f~ d)=r 22¢J€: 21.26
t t t
[=PxP=Fx—"V _=prpx— =L |_ Qf+rd¢'Z =1 2d¢(r ¢) 2 ¢]§ 21.26
2 12 d tl dt‘ v 2 dt! \ t
1+% 1+% \/1+V2
c c c
f:rzg—(ﬁ];:L]:: = constant L:r2j—(i 21.27
mv'dv' mvdv —k —K A =
dEk— '2: = 2§ ?drz?r.dr 21.20
1+ v© 2
2 ()
c
B _po—_ M dV_—k.df_—k:o
dt 2y dtorfodr r
1—-
( czj
p=—M2 __—Kp 21.28

F__m 3{[d2€_r(d_¢j2}g+(2gd¢ d¢j¢} =k 21.29
2)2 dt dt dtdt dt’ r

p=zero 21.30

/ o\ dedt  dt
[-2)
2
C
_ m |\ dr (dpY|. -k .
Fo=—o 2L =8| p==Xp 21.31
2\, dt dt r
=
2
C
d¢_ 1 dr__;dw r_-Ldw P _2r dw 21.32
dt r? dt d¢ dt?  r? de¢? dt? r*d¢
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- 2 2 —k ;
F=—"Tb |=Ddw j = 21.33
- 2)2“ v
C
1 ( IFdw_I7|_—GM
( 2)2kr d¢* r° r?
C
1 (dw, 1( 2) —GM
2\ d¢# r \ r? r?
-2y
C
2
— 1 Jdw,1) 6% 21.34
2\ d¢ r L
[-2)
2
C
1\ [, 1) _GM
(H+A—j e¥ =20 21.35
r)\d¢" r) L
2
(H+3Aljd—vg 1)-9%
rA\d¢” r) L
dW+H +3Adpg1+3A—=GD§°
d¢* r r r* L
HMH{ +3AMW+3A Gl\gozzero
A A T
H=—"2_ a=—*k MM G =" 21.36
mc moc mc c L
HM+HW+3AMW+3AW —B=zero 21.37
dg’
_ (90) 2 _ P
=L- L h+ecos(po) dw _ ~0senigo dw_ 0"cosl¢o) 21.38
r &D d¢ D d¢ D
2 2 2
H_Q+E(¢Q)+H—[l+gcos(¢Q)]+3AQ%S(¢Q)LD[1+5COS( )]+3A{ D[1+gcos(¢Q)]} —B=zero 21.39
& &

—Q2H%¢—QZ+HLD+HL£COs(¢Q)—@%¢—Q)[l+gcos(¢Q)] 34 b+2€cos(¢Q)+e cosz(¢Q)]—Bzzero
&

&D &D

8D

ot cos(¢Q)+HL+H coslgo) 30*acos(go) 3p%aco S(¢Q)gcos(¢Q)+
D D

gD D gD D

3a .
+ == 25 ¢5Q
52D &°D cosf )

(p0)-B=

gD

zZzero
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_o’gEl ¢Q)+HL+HCOS(¢Q)_3Q2A COS(¢Q)_3Q2ACOSZ2!¢Q)+
D &D D eD D D

N 3A +6A cos(¢Q)+3Acos,22(¢Q)_
D

> B=zero
D gD D

_yycoslho) ,  coslg0) 307acodlgo)  eacoslgo)

D D e D & D
—3Q2ACOSZ(¢Q)+3ACOSZ(¢Q)+HL+3—A—Bzzero
: D’ eD &I
(—Q2H+H—3Q2A+6—A\COS(¢Q)+(—3Q2A+3AM+HL+3—A—B:zerO
eD eD) D D eD &0
2 2
(—3Q2A+3A)ﬂ@+(—QZH+H—3Q—A+6—A\COS(¢Q)+H L 32 B _sero
34D eD &D) 3AD 3AeD 3A&D° 3A
(l—QZ)COSZ(w)Jr(_QZH+£—Q—2+L\COS(¢Q)+ H 1 _B_zero 21.40
D? 34 3A €D &D D 3AeD &°D* 3A

2
szl (l—Qz)me—szzero 21.41

D

A2 2
(ﬂ+i_9_+i\cos<¢9>+ H , 1 _B_,r0 2142
34 34 & &) D 3AeD &0 3A
J—)COS¢Q —zero=>—H -1-—21 2—£=zero
D 34D &°D° 3A
2 2
D 34 34 &D &b
2 2
QH+£ Q +A=zero thi—i:zero 21.43
34 3A &D &D 34eD &°D° 3A
[a:b]:>£+L:L(£+L) [azc]:>£+L=@ 21.44
34 e&D Q°\34 ¢&D 34 &D 3A
2
E eDGM  €DGM
o°=1 H= R2=mocz=1 EDB=——2= °o=]
mc” mcC L EDGM,
[a:b]:£+izg(i+;jjizzem S O N S S SRS
34 &D 1\3A ¢&D gD 34 &D 3A &D
[bzc]j%(iJrLj:_«?DB 21.45
O°\34A ¢&D 3A
eDGM_ &DGM
&DB= o= °o=1 21.46

L'  &DGM,
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[bzc]ji(i+ij=L
Q’\3A &D) 3A

Q2=H+6—A

&gD

Q:Q(H) The regression is a function of positive energy that governs the movement.

E
g=—tr _TC 0?=1+04 Regression
mc® mc? &D
=plmtslo 1 (L+AjjAzzero
34 &D (1 +6A) 34 &D)  &D
)
2 2
3Agp(ﬂ+£_9_+ijzzem 3A82D2(L+ 1 _ﬁjzzero
34 3A &D &D 3A¢D &°D° 3A
H= ER A:GMO B:GMO
mc? c? r

—Q’HeD+HeD—Q°3A+6A=zero
—QX~3A+¢£D)-3A+£D—-0?3A+6A=zero

0 3A—0%°cD+&eD—0Q%3A+3A=zero

—0’¢D+¢&D+3A=zero

HeD+3A—&D(eDB)=zero

HeD=—-3A+¢&D

0*=1+32
&D

This regression is not governed by the positive energy
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21.06

-5 . 21.50
< 1+%
c
2
12 -1
Vv2)2 2 2 (Edvvj
c? ¢’ dt'
av' v
V'2 dt' C2
2
_'\/1+V_'2_ 1 av V'
2 2 v 2
c v dt'c
s
c
yav' v'
dt' ¢
volav'_ av' v'
dt'  dt'c’
21.51
21.52
'2 pd | A g |
- (1+V—2j av._ s dv V. 2153
22 c”)dt dt'c
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Ekzjﬁ.dfzjﬁ' .(—df')zj\/lfib22‘;d j — 1 W 'szt' c;h; V2:|

Ek =J.L2dv_
b
C

¢ (ch

S2)2 c dt’ dt'

E, J dvv % 1+— AV'V" vdv‘vv J.—kdr
v =
7 [1+%)

12

E, IdeV

2\
- v
\/ c? (1+c)

3

\/1_vz ( V.2j2
: [1+2
C CZ

= :J‘ myvdv _( mv'dv’

E, Imvdv J~ myv'dv'

8 ()

3
2

'2 J—
~ Kl%r%jdﬁ’ﬁ'—v’dv’%} = r—];dr

(251

J‘ K qp mvdv _ mv'dv' —k

—mc /l—— —mc ——+constant
1+ V'2

2 —mc?
E,=-mc? 1-Y_ _K_constant ER:—O—E:constant
> r v2 r
1+
o2
-mc® ok mv¥ g -mc®  k
B=mE K o2, K I C S
v r r / 0
1+L2 1+£_f
c
— E
1 —= By k21
v mc® mcr
\/“cz
He Ey A= k :GMOmO:GMO
mc? mc® mc®
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3
L __pial 1 3:{H+Al)
' I 2\, r
1+7 v )2
< %)
L'=%P'=—rix (drf+ d¢¢?j = 2d_¢(fx¢f)= 2d_¢]§
da¢ 4t dt' dt'
D= xi'=—rix——Y _=rp 1 £f+r—¢$ 1
v A dt v
C2 C2 C2
f':rzd—(']s];:L']E L':rzd—¢
dat' at
dE, = mOVdV: myv' dv3 =_—]2<dr=£2fdf'
\/ _Lz V'2 5 r r
o (e
dEk:Flﬁl: m, vdV'_ﬁAdf'zﬁf»,
dt' g2y dtrfdr
(chj
o moé' _k =~
o
v )2
(“&j
P M ] dzr_r(dgé) ,dr dé d’¢ Jlok
oy | Lae? at Zarrar T ae r2
(1+c2j
o — 3(2dr dg | d¢2 p=zero
¢ 2 2 arar - ae
(1+ )
c
2
j — (dzr_r(d_¢) ok 2
£ 3 2 Y -2
( V'2j2|~dt dt r
1+7
c
2
1 |7dr _ 98 |a_=CM, -
Slae? \ae) | 2
22
%3
c
d¢_r dr__pdw d’r _-1° d'w d’p_
dt' r? dt' de dt”  r° de’ dt”

217 dw

r’ d¢
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1 (dw+1j GM, 21.70

3 2
—(H+Alj (d W+lj:GMO 21.71

dW+H +3Adpg1+3A - —_GD;[O

d¢* r d¢” r r I

H

d W+Hw+3Ad Ww+3Aw +GMO =zero
d ¥
= o a=%% ="k 21.72
mc ] I'
d <Y1 Hw +3A§ aW  +3Aw+B=zero 21.73
_ ( ) 2 _ P
w=l=L[l+gcos(¢Q)] dw _—Qsen 90 d pg= Q coi¢Q) 21.38
r &D d¢ D d¢ D

qu—Q)+H [1+<c:cos¢Q)+3Am¢—Q2 L [1+£cos(¢Q)]+3A{ [1+8COS(¢Q)]} +B=zero 21.74

D

—Q2Hﬁ¢—Q)+HL+HLgcos(¢Q)—@%¢—Q)[l+gco s(¢Q)]+2—‘22[l+2gco s(¢Q)+gzcosz(¢Q)]+B=zero
£

D &D &D &D

_QZHCQSD!¢Q!+HL+HCOS(¢Q) 30°acos(go) 30°a COS’§¢Q)ECOS(¢Q)+

&D D &D D &D

+3A 3A —==-2¢co s(¢Q) (p0)+B=zero
&°D

&°D?
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_QZHCOS!¢Q!+HL+HCOS(¢Q)_3Q2A cos(¢Q)_3Q2Acoszzf¢Q!+
D D

D gD eD
3A 6A COS(¢Q)+3ACOSZ(¢Q)+BzzerO
g D gD D Iog

2Hcos(¢Q)+Hcos(¢Q) 30°A COS(¢Q)Jr 64 cos(go)

D D gD D gD D
_32aS0s#0)  5pc05Tf0) 1 | 32
D

> 2+B:zero

D’ eD &D

> 2
(_Q2H+H_3Q A+6_A\CoS(¢Q)+(_3Q2A+3A)msz¢—Q)+HL+32—‘22+B:ZGI‘O
&

eD &b) D D &D

2 2
(—3QZA+3A)%@+(_Q2H+H_3Q_A+6_A\COS(¢Q)+H 1 . 3a

eD  &D) 3AD 3AeD  3A&D’

(1_Q2)cosz(¢Q) ( QH H Q 2\cos(¢Q H 1 B

D’ 34 3a e &) D 3aeD D7 3

0°~1 (1 Qz)ﬁ@:zero

D’

+—=zero

(QHHQ \cos(qﬁQ H , 1 ,B
34 34 & eb) D a0 £ 3a

cod) _,epom H 1 B __ .
D 3A&D gD 3A

co ¢Q;«r&zero:> QH H Q
D 3A BA gD &D

—=Zero

2 2

3A 34 &D ¢&D 3A&D ¢ D 3A

la= b]:>£+izi(H +A) [a=c]=> L +L =
34 eD Q°\34 &D 34 eD

—mgC eDGM,  eDGM,
0*=1 H=—2 -TTC _ 4 gpB=S""0 %0
mc®  mc I*  &DGM,

[a b]ji‘i’i_l(H + 2 j:i—zero [a:c]:>__l+L:_

34 &D 1\3A ¢&D &D 34 ¢&D

[b= c]:i(iJri):_@

0°\34 &D 3A
cpp_ EDCM, _eDGM,
I*  &DGM,
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+—=zero

_ &DB

3A

1

3A

=

L

&D

+—=zero
3A

=zZero
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[b=c]:>i(i+ij=—i Q2:_H_6_A
o°\34 &b 3A D

Q:Q(H) The advance is a function of negative energy that governs the movement

E. -mc?
H=—R T __q 2 =—(— )— :>Q2 _b4 agvance
mc®  mc? &D
[a b] 1+L_—1 (_1+ 2):>L—zero
34 &D (1_6Aj 34 &D) D
&D
B GM GM
H=—"E a=""¢ B=Z2¢
mc c L
e 2
OH H_ O 2_.or0 H 1 \B_,ero
34 3A gD eD 34eD &°D° 3A
2 2
3A8D( OH, H_0O j—zero 3A82D2(L+L+£j=zero
34 3A 8D &D 3AeD &°D* 3A
—(Q°HeD+HeD—(Q?3A+6A=zero HeD+3A+¢D(eDB)=zero
eDGM EDGM
eEDB= 0 — °=1 HeD=—-3A—¢D
I¥  &DGM,

—~QX~3A—£D)-3A—&D—-Q?3A+6A=zero

O?3A+0°¢D—D—0?3A+3A=zero

0°¢D—gD+3A=zero Q2:l—3—A
&D
This advance is not governed by negative energy
—Q*HeD+HeD—(Q3A+6A=zero
—~QX~3A—¢£D)+HeD—0*3A+6A=zero
O?3A+Q%eD+HeD—0Q?3A+6A=zero
0°¢D+HeD+6A=zero Q2:—H—6—A
&D
"2 2
(ﬂ+i_9_+i\cos(¢9)+ H .1 . B_ ..,
34 3 &D eb) D  32AeD &£D° 3A
H,H_ ¢ 2\cosl¢Q) H 1 . B
3A&°D? —O°H _o + +—=|=zero
3A 3 eD ep) D 3aeD D7 3a

"2 2 212 212 212
8D( O’H3AsD  H3AD _(Q°3AED , 2. 3Angcos(¢Q) L H3A&’D?  3A£’D? | B3As’D

3A 3A &b &b D 3AgD &°D?
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eD(-0*HeD+ HeD—0%3A+ 6Am¢—Q} +HeD+3A+&D(eDB)=zero
D

2
DGM, DGM E —mcC
epp=22 _EDGM, _y H=—2 =T __1
¥  &DGM, mc®  mc

ED(—Q2H8D+H£D—Q23A+6A COS;¢Q)—5D+3A+5D=zero
(—Q2H5D+H5D—Q23A+6A)ﬂ@+3—‘4:zero
D D

3a
&D

=1-

1—— HeD+ HeD— (1—3—AJ3A+6A}COZ¢Q A _ero

gD gD

H8D+H8D +H€D 3A+3A3A+6A)COS¢Q +32_zero
&D D &D

— HeD+H3A+ HeD—3A+ 24 +6A\COS(¢Q) 3A_sero
e ) D &D

\cos(¢Q) 3a

H3A+ +3A ===zero
) €D
2
H= ER z_moc =—l
mc®  mc’
2
(—3A+9A +3A\COS(¢Q)+3—Azzero
&0 ) D &D
2
94 cos(go) +34 - zero cos ¢Q —=zero
&D D gD D 3A
2 A2 COS(¢Q) _
O’HeD+ HeD Q3A+6A)— Z=zero
E.
_,. 6A
&D
(1—— H8D+H8D (1—6—AJ3A+6A}COS¢Q A _ero
&D D &D

H8D+H8D +H8D 3A+3A6A+6A)COS¢Q +32_ero
&D D D

1847 +6A) cos(#0) , 3a

gD D gD

—HeD+HO6A+HeD—3A+ =zero
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(H6A+ 184° +3A) COS(¢Q)+3—A=zero

&D D &D
2
E —-mcC
H= R2: 02 =-1
mc mcC

(_6A+ 18A° +3A\ COS(¢Q)+3—A:zero
D ) D ep

3A &D D &D

LK—%H&AZJ—CO S(¢Q) +3—A} =zero

(_1+6_Ajcos %), 1 _sero
gD D gD

D &D D &ED

_(1_6_Ajﬂ@+Lzzero _chos ¢Q)+L=zero

&gD

(-0*HeD+HED-03A+6A Coi¢Q)+%:zero
&.

2
E, —mcC _
2

= -1
mc? mc?

0’=1 H=

(eD-eD—3A+64)

coslgo +34 - zero
D

gD

(3A)&(¢Q)+3_Azzero &@Q)—kLzzero
D gD D &gD

oA =1 g?=1-32
&D &D

‘—QZM@+L|<< ﬁ@+%<<<<<< cos(éo) 4L
D &D D &D D

3A

*=1-
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Energy Newtonian (Ey)

R =zero
dt r- myr m,

dg_ 1 dr__ dw d’r _-I d’w
dt r? dt d¢ dt?  r? d¢

—— == =zero
d¢) r° myr m,
: 2E
dw +L2_2_k2l_ N =zero
d¢) r° mIL'r mlL
: 2E
dw +L2_2_k2l_ N =zero
d¢) r° mIL'r mlL
’ 2E
dw | L2 _ 2k2 N _roro
d¢ m,L m,L
2E
X= 2k2 = N2
m,L m,L
2
aw |y —XW—Yy=Zero
d¢
WZL:L[1+8COS(¢Q)] @:4_)_@5617 (Y
r &D d¢ D

d’ _ 21 dw
dt? 3 d¢

d2w _—0*cos(g)
d¢? D

[M@T+{ L [1+3cos(¢Q)]}2—ngD[l+gcos(¢Q)]—y:zero

D &D

Q—i[l—cosz(¢Q)]+ L [1+28cos(¢Q)+gzcosz(¢Q)]—xL—xL8cos(¢Q)—y=zero
D gD gD

&°D?
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2 2
%—%co 32(¢Q)+ﬁ+ﬁ2gcos(¢(2)+ 521D2 gzcosz(¢Q)—§—x%¢—Qz—y =zero

Q_2_Q20082(¢Q)+ 1.2 cos(¢Q)+cosz(m)_i_xcogm)_yzzero

D? D? &> &b D D? D D

cOSZ(¢Q)_Q2COSZ(¢Q)+ 2 COS(¢Q)_XCOS(¢Q)+Q—2+L—A—Y=ZGI’O
D2 D> &b D D D &D° eD

2
(1_Q2 )COS (¢Q)+(L_Xj%¢_Q)+Q_z+L_£_y:Zero

D2 8D D 82D2 ED

cos2(¢Q)
0 ~1 (1_Q2 )72 =zero

D

(L_X\COS(¢Q)+L+ 1 _i—y:zero

&b D D> &°D° ¢&D
2 ) 1.1 x
< _xl|=zero —+————"—"——y=zero
(gD D? &°D* &D
ok 2F
X:_2 y= N2
mI m L

GM_m
2 _x=zeromx=-2="2K 1 G _p_pey
&D eD mI & mlI
212 212 212
&D +8D —‘9DX—52D2y:zero
D?>  &D* &D
&’+1—-eDx—&’D’y=zero
2F 2E 2¢DE,
£Dx = ED-2 = gDx =2 & D’y =g’D* L =g N — i
eD mI? meDGM,  k
26DE
2+1-2-E20 = zer0 ENZL( 2—1)
2&D
1_1 2 -k
I-L-¢ E, ==X
a gD( ) Y2a
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§22 Spatial deformation

tz% £>¢
1..&&,
c2
t=t,+t,=—L—+-L_=2L_ 1 =2
c—-v c+v C[l—v) c
2
C
2L'
o 2
p=2L__1 ____c —=>1=11-% '>1
C

This is the spatial deformation.

The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with
velocity relative v on reference frame the observer O.

Now compute to the observer O' the distance d'=vt' between O <> O':

=yr=yal
c

Thus we obtain the velocity v: d'=v2L = v = czd" .

Now compute to the observer O the distance d =vt between O <> (O':

d=vt= V(tl +t2): V%;2
1-V_
( CZJ

2
Thus we obtain the velocity v: d = vi% —Sv= @(1—12] :
2

c

The speed v is the same to both observers so we have:

2
Where applying the relation =1 l—V—2 we obtain:
c

ed'___cd (1—V—§J:>d':d . d>d
21! 2L'\/1—VZ c c '
C2

Where the distance d and d’ varies inversely with the distances L and L.
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In general, we obtain (14.2, 14.4):

d(l—vuxj d'(l+ vu'x
d'_—cz d= C’2
o P) or o P
1-% 1-V-
c’ c’
PR |
u'x'=zero d= C2 d=_d -
1—? 1—?
d'[1+V§j
ux'=c d= 02
-
d,[Hd—z_V)}
ux'=-v d= =
2
1_L
C2
d[l—i)‘”;} 2
— v__ C " v
Ux=v d'= d'=d,[1-+=
1-v ¢
2
c
d[l—vg:j
ux=c d'= 02
1-&
0
_ " [ c’ w—_ d
ux=2zero d= > d'= -
l—? 1—%

114/149




§23 Space and Time Bend

Variables with line t',v',x',y',r' etc...They are used in §21.

Geometry of space and time in the plan xy —>y | x.

y=£(x)

y=[as=[JaF a7
Ids':f(c t')

dx=cdt' dy=ds'=~/dr" .d7"
fzxi+y§=ct’i+!ds’3 F=x'i+y']
df=dxi+dyj=cdt'i+ds'] dE'=dx'i+dy'J

drzﬂzédéﬁld}/

r r r
> N ~ 1A I A~ ~ ~ > A N
‘-/::dr:dxi%dyj':Cdti%dSj:ci+vrj “/:r:dr:dxi%dyj
dt' dt' Jdt' dat’ dat’ dt' dt' dt’
ax _ ﬂ;ﬁ:vr C=vCcosQ v'=vsen@
dt’ dt' dt'
dy ds' ,
rgp=Y _dt' _dt'_1ds' dy_d(dy\_1 d(lds’):leS'
dx dx ¢ cdt dx’  dx\dx) cdt'\cdt') & dt”’
dt’
G=C+v' E=ci P=v'7
5-dv _dc  dv’ dC _ oo av _av' =z
dt' dt' dt' dt' dt' dJdt’

ds’ =dr.dr=(dxi+dyj)dxi+dy)=(cati+ds F\cdt'i+ds' j)=dx’ +dy’ =c*dt” +ds"

ds=+/c’dt'’*+ds"” ds'=+/ds’ —c’dt”
2 2
v=-d5_ |c? +(d_s) =vci+v' >c v=ds - (@j —c? =yv’-c’

at' at' at' at'
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K=[2P —>p=Z theoretical curve
ds
2 2
dy 1.d’s'
d 2 2 ’2
X
bs bs (dyj 14 (ds)
x dt’
1
c dt'
1d°s
c’ dt”
do 1 [ds) 1 d°s'
_do_dx_ — cSA\dt') . cFdt”?
ds ds 2 3
1 (ds’)
1+ 1(ds
ax \/ 2 dt' |:1+2[dtj :|
1ds'd’s' 1 dv
ds ds' do , AP c’ dt' dt'? ¢’ dt'
dt' dt'ds s 2 \2
[l+1 dS’j} (1+V j
2 r 2
c \dt c
1 - dv' 1 dv
. ps 2 r _ pos v
‘7!K:‘71@_ c dt3 K:%: c” dt
ds 2\2 S ' 2
2 %)
c c
d 'dv' .
dE, = i Z: TV V3: k’édrz%rdr’
v 2\ r r
<L ()
c
2 —_
C *de’
m =v'=
dE _ _ o 2 ’ AR .
k—fr g'l=—2FC df =%rdr =£2rv'
at’ 2\ r dt' r
(7
c
dE, - P .
L=F" x7':moc2v’ﬂ= k2 '
dt’ ds r
0 . e [0 A
ds r ds mc'r

§ 23 electronic translation
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§24 Variational Principle

m,c
E =—= 2=k+constant 21.21
r
1-Y-
2
2 2
m,v 2 mgc
B, =——+mc?, [1-=—=2 =K, constant
l—ﬁ ¢ 1-¥Y= r
c? c?
2
m.v 2 2 m_v
o mocz,/l—V—ZJrk =m,c? p=d m,c?, 1= 0
LV ¢t r dv c _v?
c? o2
2
L:—mocz‘fl—v—2+k Lagrangeana.
¢t r
m,v? 2 e ,
—L=m_c“ What is the initial energy of the particle of mass mo.
Y
s

2
pv—L=m,? L=pv-m,c?=—m,c?, /1—V—2+%
C

Variational Principle

tZ
AQﬁO=S=IL[X(t),X(t),t]dt x=9X_ux This is the velocity component in x axis.
dt

t1
t2
SS:SIL(X,X,t)dtzzero Variation of the action along the X axis.
t1
Building the variable X'=x+¢€1 in the range t;<t<t, we have seen this when €—>zero=>x'=x and
where £#zero we will have the conditions:

%:zero n:n(t) n(t1 ):zero n(t2 ):Zero %z 7€ero M= %
X K=xten %=ﬂ %:ﬁ %:zero %=zer0

tZ tZ
Then we have a new function I(S)zJG(X+8n,X+8h,t)dt:J.F(x',)'(',t)dt and where:

4 t

t, t,
g=zer0>x'=x >X'=x >F=L= [F(x'X"t)dt= [ L(x,thit

t £

tZ tZ
8;tzero—)x';tx—)X'iX—)F;tL:IF(x',X',t)dt;tJL(X,X,t)dt
tl t1
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So we have I(a)sz[x'(s),X'(a),t]dt that provides derived:

4

_[ x X't dXd J‘@F x',X t)dx dt I ndt+_[ ndt=zero

t,

d(oF \_d(oF)  oFdn_, oF. _d(@F ) d(a_Fj
dt(ax'nj dt(@x j” odt o dilen™) “adox

9%y dt+ ndt ndt+ d oy -4 &y ldt=zero
J ox Latlox™)"arlox

j oF dt+_[d( ax'“) j dt( )ndt zero

t,

OF ) _oF
Jd[ax'n) ax'nl

t

OF OF
=Zemlta)-Zom(,

I dt( ) J.[aF. (i(g;ﬂndtzzero

1

(t, )=zero

de ox' dt\ox' ox' dt\ ox'

1

81( ) I[ oF _d ( oF ﬂndt ZerO=>N#ZET0—>— oF_d ( oF ):zero

e=zero—>x'=x—>x'=x—F= L:>aL d(a]f):zero
ox dt\.ox

[ 2
%:%(%) This is the X axis component L=-m_c? 1—Z—2+%

Slome gt A e )

O . O
%[%):%{gx( m Cz\/%ﬂ This is the X axis component
ABPEE RO z
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1‘?2
0 m c2 l_V2 myv [] 2 o2 a2 ol m,v
] -
1_(7 \/I_ZZZ \/X2+y +7 \/1 v?
c

“Wen ey feleral
c? ¢t | c? 2 (l_vz)
C

X3 M, F(l v2j~+ dv
3 . %L 2 X thc 1 X axis
(%)
_k_’t: m, l_ 1 2)___'_ dvy |
03 E %L . y thc j Y axis
%)
—k%f<= M, r1 V2)Z+VdVZ k za
r %I_ d C XIS

. SO WA W ) S —k»
i ] kr e (x1+y]+zk)>—r—r—2r

m, F( v2) d } m ;
1 X+V vV X i+ o |_(1 ) dVy mo 2.
v ] Rl G e [
1 RGACha
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c c c
dx [j_v? [j_v?
dj _meX |\ my, |dk [_vi, % (vdv m, {dt : c? 1_ci2 ;
i = ) at o avriln % (vdv
2 l—zj S5 t (1—V2j -v vt d
c ¢’ c? c? c? 2
dl m.x _dX\/l_Vz\jl_Vz
o m 2
_ m, |dtV ¢ 2 % (vadv)|_ M [(;_v2\dx,  dvx
2 ! dt
V2 %L c?)dt  dtc?



m, v2 dv x v2\a, odvy dv X { [_=k;
Kl . )X1+thc 1+(1 .~ )yj+vd 2]+(1 o jzk+vd e k} r2

Y dv(.s, 2 -0\ —ka
0 Kl ZZJ(X1+YJ+Zk%; df[’(x1++yj+zk)}r—2r

ﬁ=if+y3+il§—(‘iit(x1+yj+zk (g V=Xi++yj+2zk
= m, |— veldv,.dvv [_—k=
F= 1 + —= =21.16
2 SL( c2jdt Vdte? } 2
1-Y—
( cz)
=_omy [ v2\dy  dv v |_—k:
F= 0 - |V, ydV V=X =21.19
;L( czjdt thcz} 2

§ 24 electronic translation

§24 Variational Principle Continuation

12 m,C
By =m,c’, |1+ Y = —2 ~ K constante 21.21
c 1_L2 r
c
12 m, v’ 2 m,c’
E, = m,c’ 1+V—2= = +myc’,|1-Y = =2 kK { constante
C v C vi T
-V 1-v2
C c
12 m,v* 2 m,c’
E, —X=m,c 1+V—2—k: oV ymyel f1-Y ko M k_k_k,ionstante
r c r 2 c r 2 r r r
1=V 1=V
c? c?
12 sz 2
B —Kome? 1+ ¥ ko MoV f 02 1Y K ¢2 — constante
2
r c r 2 c r
1=V
o2
12 2 sz
T'=m,c* |1+ T=-m.* [1-Y E =-k pv=—""-2
> 2 p 2
C c r v
2
c
m v m V' P 2
pv=——_=v=v—=L_—=vp p=p' 1+‘é2 p'=p 1—Z—2
I
C C
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E, =T Ex=pv-T T=pv-T T=p'Vv-T
L'=T'+E, L=T-E,
Er =E, +E, =L'=pv-L
L'=pv-L L=p'v'-L' L+L'=pv=p'v
_dT' _ d 2 2 mgv' dr _ d 2 2| mev
p_W_W[mOC 1+‘;—2]— °V’2 =myv P=4y dV(—moc I—Z—zj— °V2 =myVv
1+ 1--5
C C
df'=dx'i+dy'j+dz'k =—dxi—dyj—dzk =—df 21.08
pdf'_dx's dy dz'p -1 (dxg dys dzg) -1 dF_ -V
dt' dt dt'’ dt | v2 dt dt dt dt Vz
e
! :@ -1 dX: —Vx — —X
*odt v dt [ v2 [ v2
c? c? c?
. _dT_ d 2 2 mex' dr _d 2 2 mex .
Px @ g(moc 1+\;—2J - 2 - MoX Px = dx dx(_moC I_ZZJ_ : 2 = TMoX
1+Y 1-Y

r'=x'i+y'j+z'k=—xi—yj—zk=-7

1

X'=—X y=-y 7Z=—7Z
ox' oy' oz'
ox By oz
24 () e
ox dt\ox
oL d(@_L):(?x'aL dt’d(a_Lj: o
ox di\ox) oxox' didt\ex) o0 L=pv-L
ox'OL_dt'd(oL\__ 0 (1)l d( o )
B% Ox' dtdt'(&k) APV L) o2 gol-mox')=zero
1+ 3
C
O [t 1\ m, dx'_ vap’ wov', ol m, dx'_
——\p'v'-L')4 =- HL o+ =
) A e K M M e TR
1+ 5 1+ 5
C (¢}
%—zero V' _zero L'=m 02‘/1+ﬁ—k
ox' ox' 0 ¢t r
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8X'T 1 V|2 dt,zzero r =r.r=
+02
' 12
L' _ 0y 2 1+ -k :i(_k):_ki(rl):
ox' ox' c r) ox'\ r ox'
8L'. mo dX' x' mo"'
ax' 1 Vv2 dt' r3 1 V'2 =ZC1ro
1+ 5 1+ 5
C c
X —=—&& kX kL jkZ k=K
LY r r r r r
2
c
moX' 5 Moy i M2 p_ M _—ky
12 12 r2
1+Y- \/1+V \/1+V \/1 v
\/ 2 CZ 2 C2
m.a'  _|. -
1+
C2

(-7)(-7)= )('2+y'2+z'2 =x*+ y2 +z?

§25 Logarithmic spiral

2 2
HEWY 4 Hw 1349 Wy 1 3Aw? ~B=zero

dw _~Qsen(¢Q)

1_1
w===——1+¢cos
. 8D[ (6Q)] i >
W:l: 1 :eiad) d_wz_ae_a¢
r e do

HaZe ™ +He ™ +3Aa%e %™ +3A(c ™) ~B=zero
Ha’e ™ +He ™ +3Aa’e >**+3Ae > ~B=zero
(1+a2 JHe ™ +(1+a BAe 2 ~B=zero

(1+a> BAe 2 +(1-+a” )He ™ —B=zero

(1-+a> BAW? +(1+a® )Hw—B=zero

B
l1+a

3AW? + Hw — = 7Zero

2
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k(=D oo X x
ox' r°r r
Koy ok pkrzhe
Mo? ki = 21.19
V2 r*
C2
r=e% 21.37
2 _ 2
d w_ Q" cos(¢Q) 5138
do D
2
d'w ‘;V =a’e ™
do



r 2
3a) - Hi L H2+12AB} +H{——ii H2+12AB}— Bz)zzero
A (i)z_,_z(—_jL 12, 12AB J{L 12, 12AB jz _
\6A) ~ \6AJ6A 1+a®) | 6A 1+a’
~H>, H |42, 12AB __ B
+H Iy - =
oA oA (ea?) [ead) O
3A{(i)2+2(i)L H2+12AB+ 1 (H2+12ABH_
6A) ~Leatoa\ " (1+a2) 36A20  (1+a2)
-H’, H [p2,12AB__ B _
oA oA (ea?) ([rad) O
2
sa B2, -H [[p, 12AB , 1 (4 12ABH_
{36A2 a2\ (1+a?) 3670 (i+a’)
-H>, H |[2,12AB__ B _
6 oA\ (xad) [xad) O
W’ . -H [z, 12AB , 1 (Hz+12ABj_
12A7 6A (1+2>) 124 (1+2%)
-H>, H H2+J2AB B _
6a oA\ (+a?) (lrad) ¢

H> . 1 (y2,12AB) H> B
12A 12A0  (1+a?)) 6A (1+a’

=Z€ro

H> , H* B _H’ B
12A 124 (1+a®) 6A (1+a?)

=Z€ro

§25 Logarithmic Spiral (Continuation)

2
(jlw+l]:GMo 21.71
T
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(H+Alj d’w +1 | +B=zero
r) | dp? r

[H3+3H2Al+3HA2%+A3%j(dW l}rB zero

r r )\ d¢* r
H' +3H A1+3HA LA %;H3+3H2Al 3HA® L+ A* L 2zero
r r r
(H3+3AH21 [ }rB zero
(H3+3AH2 { }rB zero

) 2
H3—<(11¢V2V +H3w+3AH2((11T‘;VW+3AH2w2+B=Zer0

[l+gcog(¢Q)] d_W:_QLn(d)Q) d2W — _Q2 COS((I)Q)

1 21.38
eD dd D d¢? D

W:l:
r

H{_QZ CI(;S(¢Q)}+H3 8}) [1+ecos(¢Q)]+3AH? {Q+S(¢Q)} 5 [1+&cos(¢Q)]+

+3AH? }) [1+SCOS(¢Q)]}2 +B=zero

332€08(0Q) 113 1 143 1 2| —Q*cos(¢Q) 2| —Q*cos(9Q)
~H%Q D — T4 H 8D+H Dscos(¢Q)+3AH { 5 LD+3AH { 5 LDacos(d)QH

+ 3AH2{ 2;)2 [1 +2¢cos(Q)+&2 cos? (¢Q)]} +B=zero
g

—H3Q2 COS(¢Q)+H_3+H3 COS((I)Q)_ 3AH2Q2 COS(¢Q)—3AH2Q2 cos’ (¢Q)+
D eD D eD D D?

3AH [1+28COS(¢Q)+8 cos2(¢Q)]+B zero
g’

—H3Q2 COS(¢Q)+H_3+H3 COS((I)Q)_ 3AH2Q2 COS(¢Q)—3AH2Q2 cos’ (¢Q)+
D eD D eD D D?

3AH2 3AH 2800S(¢Q)+3AH g”cos” (¢pQ)+B=zero
e’D?  ¢’D?

_HQ? cos(¢Q) LB cos(¢Q) 3AH’Q’ 008(<I>Q)_3 AH2Q? cos’(¢Q) N
D eD D eD D D?

L3AH? | 6AH? cos#Q) 35 py2 05" (0Q) cosz(tbQ)
D

5 +B=zero
&’D eD
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~H'Q?cos(¢Q), W' . H? cos(¢Q) 3AH’Q’cos(¢Q) 3AH’Q’ cos’(¢Q)
3AH2 D 3AH%D 3AH D 3AH%D D 3AH>  D?
. 3AH> |, 6AH cos(¢Q), 3AH2cos’(4Q), B _ .
3AH2%’D? 3AH:D D 3AH. D 3AH?
-HQ’ cos(¢Q) . H cos(4Q) Q’ cos(¢Q) _Q2eos (d)Q)
3A° D 3A8D 3A D D D D’
1, 2cos(¢Q) cos’(4Q), B _
&D? ¢D D D 3AH?
cos’(§Q) _2¢05*(¢Q) HQ” cos(9Q) | H cos($Q) Q° cos(9Q)
D? D2 3A, D 3A D eD D
L2c08(0Q. H 1 . B _ .
"eD D 3A8D g’D? 3AH?
(1-Q2)ees 0Q), ( HQ* 1 Q, 2)eos(0Q, H , 1 , B _
D? 3A 3A D &D) D 3A8D ¢’D? 3AH?
H= Ex _ —mc? — 1 QZ:I—%
ch m,c? eD
1) 6Q) [ (=DQ% €D Q" 5 Jeos@Q), D 1, B
" p? 3A° 3A €D aDJ D 3AeD eD” 3A(-1)’
( _Q2|eos (<I>Q) Q1 Q2 )eos(dQ) 1 L1 . B
D2 3A 3A €D eD] D 3AeD p? 3A
(1-Q? cos’(9Q) (Q° 1 Q" 2 Jeos¢Q) 1 . 1 eDB__
D> 3A 3A €D D) D 3AeD ¢2p® 3AeD
aDBz—SDGiVI‘) =1
L'
(1_Q2 cosZ((bQ)Jr Q1 Q2 )eos(¢Q) 1 S S
D> 3A 3A ¢D eD) D 3AeD ?p? 3AeD
(I—Q2 Cosz(j)Q)+ Q—Z—L—Q—Z-i-i COS((1)Q)+ L _ero
D 3A° 3A eD €D D 2 D2
2_1_6A
Q= eD
2
(1_6AY|cos (9Q) [ 1 (j_6AY_ 1 _ 1(;_6A), 2 cos(0Q) 1 _
[1 (1 SD)J D> +[3A\ sD) 3A SD[I sDjJrsDJ D o2pr o
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5 = 2 va 1 4 1 YA

(1 1+6A]COS (4Q) , ( L6A_ 1 1 16A, 2\c0s(9Q) 1
3A° 3AeD 3A sD eD eD sD) D SDZ

eD D
[6 )cos (9Q), ( 2, 6A , 1)c0s(4Q), 1 _
eD) p? D p’ D) D op

=ZCro

(6A)(8D)COSZ(¢Q)+( 1, 6A \cos(dpQ) 1

D’ eD gzDZJ D gD2

R T Eh e S O

cosz(d)Q) 6A COS(¢Q)
(6A)=—5— D’ (1 sDj D sD

=ZCro

COS(¢Q):_(‘1+2SJ \/( 1+ng ~46n. L

D 2.6A
6A (6Aj _24A
1) +2(-1
COS(<1>Q) \/( ;A Jep \en) ~ep
D 12A
[ 6A) \/1 124 (6A)2_24A
COS(¢Q) eD eD eD
D 12A
(1_6A)i |_36A , 36A”
cos(¢Q) \ D eD  ¢*p?
D 12A
(1 6A) \/1 36A ,36A°
cos(¢Q) _ eD 82D2
D 12A
\/1 36A 36A ~ [{_36A 36A2 ~ zer0 A:Gl\zlo
eD  ¢’p? eD D c
2 —-11 30 2
36A 36 (GM j B 36 [6,67.10 1,989.10" | _ ) ss 107
2 - 2 e
D'\ o* ) (55.442.955.600)°| .99792458.10"

cos($Q) _ (1-08 = 1- 382

D 12A
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( 6Aj 1_36A |_6A . [1 136Aj 1_6A 4 (1 ISA)
cos(¢Q) _ eD __ eD \ 2eD/)__ D eD

D 12A - 12A 12A
_@_ _18A _6A 1, 18A 12A
1 1 1+
cos(¢Q) _ eD/)__ eD gD _eD _ 1
D 12A 12A 12A €D
——COS(¢Q)+L=zer0
D eD
zero<r(pQ)<owo—->M, #zero—>Q= 1—%%—M+Lzzero
eD D eD
( Q2 cos ((I)Q) __L__ 2 \COS(¢Q) 1 —=zero
D> 3A 3A D D) D ¢p
r:w_)Mozzero_>Q21 Q_ 1_% _i % — l_i M =1
eD eD CZ eD 02
1o 60) (), (Ll L, 2)e) 1
3A 3A eD €D D eD
(LYol 1y ol 1Ly
¢eD) D 2p> D gD
r=oo—>M0=zero—>Q=l—)w=L=L[l+8cos(¢Q)]=M+L=zero
r=o €D D
The presence of Q in the formula r=1($pQ) S -1 D M- , allows it to also describe a spiral.
1+&cos(¢pQ)

£ GraphFunc Onli
Math Utilities Help

ri(t) = [3/(1+0.2*cos(0.02t)
(=
3=
ré(t) =
5(t) =
Xmin Xmax Ymin Ymax
fs 3 Fs 3
[View20 Jv|polar — [v]w+
m [Multie Grahs T~ |
T fom
‘ ‘:[ cac|

fix) =
1°(x) = First Derivative of f(x)
1" (x)= Second Derivative of f(x)
Fom[ T
Find Area | 0
Arc Length | 0

Tangent

Zoom In ‘ Zoomoull Reset

o
- ’) g GraphFunc ...
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§25 Logarithmic Spiral Continuation I1

2 2 2

D e D
_12A
zero<1($pQ)<oo—> M, #zero—> Q=+ —ED_
1—6A
eD

1_12A—’ i 1-12A (I—IZA —’
1| __eD [|cos’@Q) | 1| eD | 1 _ 1| eD |, 2 [cos®Q) 1
1_6AJ D2 3A| 1_6A | 3A sDL1_6A sDJ D D2
L eD L eD eD

=ZCro

6A _(1_12A)|c0s*@Q) [ 1 (1_12A_1 (;_6A)__1 (;_12A), 2 (1_6A\|cosdQ), 1 (1_6A)_,;
_1 eD | sDjJ D2 '_3A(l sDj 3A\1 sDj sDkl sD)'sDkl sD)J D '52D2\1 sDj_ ere

(1 6A_1,12AY08%(0Q) (1 1 12A 1, 16A_ 1, 112A, 2 2 6AYCOS0Q), 1 1 6A_,..
eD D) D2 \3A 3AeD 3A 3AeD eD eDeD D eDeD) D &2D? £2D2eD

(@\COSZ@Q) J{ 1 )cos(¢Q) 1 1 6A_jero
eD) D2 eD) D  &D? £D’eD

_(_1j+ \/[_1)2_46A( 11 6A)

cos(¢Q) _ eD/ V\ ¢D eD\e2D? ¢2D?¢eD
D 76A
eD

L1 24A( 1 1 6A)

cos(dQ)_ D Ve2D?  ¢D \2D? £2D2eD
D 12A
eD

1+J 1 _24A 1 _24A 1 6A

cos(9Q) _eD Ve2D?  ¢D £2D?  &D g2D? gD
D 12A
eD

141 [_24A_ 24A6A

cos(¢Q) _eD " eD eD eD eD
D 12A

eD

141 [j_p12A | 144A2

COS(¢Q)= eD €D eD  gD?
D 12A
eD

141 [1_12A)2
COS(¢Q): eD €D eD
D 12A
eD
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111(1_12A)
cos(¢Q) _eD €D eD
D 12A

eD

1i(1_112A)
COS(¢Q): eD \eD €D €D
D 12A
eD

1_(1_112A)
COS(¢Q): eD \eD €D €D
D 12A
eD

1 1, 112A

cos(¢Q) — eD gD eD gD
D 12A

eD

1 12A

COS_(d)Q): eD €D

D 12A
eD

cos(dQ) _ 1

D eD

——COS((I)Q) +1 —zero
D eD

o)
zero<r(¢pQ)<oo—M,#zero—>Q= eD _, €O +-L =zero
(9Q) Q 6A D D

eD

1-12A oM
2_ eD ~1 6A 2:1_6_A A= 0
Q 1—6A eD Q eD ¢’
eD

eD=a(l-£2)=57.909.227.00000]l - (020563593 |=55.460.469.56840

_GM, _6,6740831.10-".1,9891.10%

A =1.477,089.535.42
¢? (2.99792458.10%f
1-12A
Q= [—=2D -0,999.999.920.1 Q=./1-9A -0,999.999.920.1
1_6A eD
eD

1,276.789.102.53*

1.296.000,00

$.Q=1.296.000,00=¢= Q<1 Advance Q>1 Regression
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Ap= é—ljl.Z%.OO0,00 Ad>zero Advance

Adp= 1 —11.296.00000=0,103.549.893.544"
1-12A )2
eD
1—6A
eD
Adp= %—1 1.296.000,00=0,103.549.876.997"

5]
|\ €D

N=100-LPT :100365,256.363.004
PM

87,969

=415,210.316.139

Ad<zero Regression

> Ap=AON=0,103.549.893.544 x 415210.316.139=42,994.984.034.7"

> Ap=AdN=0,103.549.876.997 x 415210.316.139=42994.977.164.2"

By definition £>7Zero

zero<r(pQ)<wo—>M,#zero—>Q= r=0—>M,=zero>Q=1
——COS(¢Q)+L:zer0—>8= 1 M+L:zero—>8:_—l
D eD cos(0Q) D D cos(0Q)
Se If Q=1
_ 1 P |
[S‘cos@—n)} { cos<¢>}
Energy Newtonian (Ey)
2)eos (9Q) ,(, 2 \os(dQ), Q° 1 _
(l—Q )?+(X—5)T+§+82?—£—Y—ZCTO

r:oo—>Q=1—>WzizSLD[I+SCOS(¢Q)]=%+SLD=ZGTO

2
- %L)[_L}(x 2]( 1)=Q L Xy sero
( Q eD eD eD D) D* &D* D Y

2
1—- 2( 1 ) X 2 :Q - X _y=zero
( Q g?D?) eD ¢’D* D ¢D* €D Y
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1 Q@ x. 2 Q.1 x

1 1 T y=ZCI‘O
gD’ £D° €D ¢D’ D’ ¢D° D
Q Q. 4 2
: : =Z€ero =1
&D’ D* ¢D* €D Y Q
1 1, 4 2x _
. ] =Zero
¢D’ D* ¢'D* €D Y
22 212 242 242
82D2 } 812 }482D2 2xe D°_2p%y —zero
eD” D D eD
—1+&” +4—-2xeD—&’ D’y =zero
x=—2 y=2Ex I>=¢DGM 1_=1(g2-y)
eD m,L a €D
—1+82+4—2L8D—82D2y226r0 —1+82—82D2y=zer0
€
—1+82—82D22LNz=zer0 —1+82—82D2A:zer0
m,L m,eDGM,
1462 —eD—2EN__sero L(82—1):—2EN
M m, eD k
-k
Ex=—"
N7 0a
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§26 Advancement of the Periélio of Mercury of 42,99 "

Supposing ux=v

(2.3) u'x'= u>2<—v = VZ_V =u'x'=zero
\/l+v2_2v1,21X \/1+V2_2V2V
c c c c
Ux=v ux'=zero

(1.17) dt'=dt,[1

/ 2
2vux_dt YV S ge=dt 1_V_2
c
2+m:>dt dt' 1+2-
c c
dt= dt"/ —2

2
(1.22) dt= dt'\/1+ _ U G 14

2
de'=dt 1-%
c

2
-5 1+5 =1

C C
1)
vV SV
,2 Vz
1+— -V
C C2
dt>dt' v<v' vdt =v'dt'
133) 7= v -V g =V
( . ) V= V'2 V' X - V'2 2v'(0 V= V'2
1+ +5— 1+ 5+ 1+
C C C C C
(1.34) V'= —V = —Vv =V
vS  2vux v: 2vv v
5= I+ )
C C C C C
L - 7
" v oo v?
F=rf=-7" P=—rf=-F |H=|7|=

dr=drr+rdr=-dr drf'=—drr—rdr=-dr

rdr'=—drrr—rrdr=—-dr

2 2
godf_dif) drp, 045 v=o7=(92] +( %)
dt dt dt dt dt

rdr=drrr+rrdr=dr

ﬁ,:d_f‘:i_)d —rf :{drf+r dé ¢j

at' at at' at'

21.01

21.02

21.03

21.04

21.05

21.06

21.07

21.08

21.09

21.10

21.11



s dv_d’F_dirf)_ {dzr_r(d_¢j

dt dt> dt? dat® \dt

é.:dv ar d(—rr)
de' de?  dt”

dv _ d -V dt' d

Fes-2
dtdt = dt’

. [,dr d¢ @
dt'2 r(dt'ﬂ( [2dt'dt' dt'2j¢

P |
t

12 '
dt dt \/1+V dt dt

JH
5.0V v 1 | vPdv
dt c? (l+v'2j ¢ dt'

1
% 22 2 2,
_ﬁ'l(1+%j (23' dv.'j
2 c c” dt

v |_ v d|_ =V
V'2 c” dt' V'2
c c

2]
pd 1+V—2
at' c

1 dv' v'
V'

c? dt' \/1+V'2 dt' &

12 | | pd |
v av' \/1 ZZ 1 - Vﬂi‘; ;/2
\/1+V
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21.13

21.06

21.50
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e —m, (1+V_'2jdv ,dVV
pll efJde - dte
(l+c2j
- .  ma m  dv = —-m
F=ma=—F—2—=—-20 =F'= ) 3{(14_
C'2 CZ 1+?

B =[Far=[F (-d2’)=| ;—ff(— dr')

Ek:IF.dfzjf'.(—df'):I\/%zsz -[—" [[ '2]dt.

1-
2

21.52

dv'  _,dv'v
jdt' v } 21.53
21.54
VZ‘; VJ I—kr( dr') 21.55

A e v} Xt

. dt dt' dt' r’
2 g
c
E,= dvv= T 3 (1+—jdvv VdV'VV J‘ k
2\2 c
1-= (1+Vj
c c
myvdv m, ( v*
Ek_J- = QL l+? dv'v'—v'dv' '[—dr
2

B, J-mvdv J- myv'dv'

7| 1+
\/1—" A
C’2 1+?

myvdv _ mv'dv' ——kdr

myvdv mvdv
g = [ = [ jk aE, =2 - 2156
v 2 _v 22 r’
\/1 ) 1+—' \/1 > (140
c o2 C o2
=-mcC 1{l—— T c’ ——+constante 21.57
2 -mc®  k
E,=-mc’ 1—V—2——:constante E,=——=2———==constante 21.58
¢ r vo r
1+
c
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2 12 _ 2
p=__MCc k_ 2. _k E mc ﬁ——m 2
1+75 1+
c c
- E
1 - R —+ k2 1
V' mc mc’r
\/“ 7
=_tr A__k _GMm, _GM
moc2 moc2 moc2 2
3
N ___L_?=4?+A;)
V' r 2o r
1+ (ij
C C2

L'=7'xv'= —rfx{—(dr f+rd—¢¢;ﬂ :rzd—¢(fx¢?): r2d—¢]<;
t'

dat' dt' d dt'
L'=F'%y'=—Fx —V 2=rf>< 1 2|_(ﬂf+rd—¢ Aﬂ:;er_¢(fx¢f):r2d_¢]§
\/1_v \/1_VL de dt |_v’ dt dt'
2 2 2
c c c
f':r2d—¢]§:L']§ L':r2d—¢
dt' das
dE, = mvdv =TV dv'3 ——fdr—%rdr
\/1_‘72 1 e T r
¢ (e
dEk =F'¥'= m Vldv' _ﬁfdr ﬁf*'
dt' 2y, de rfar
2 3:%f
S r

= m
F'= 02 3
v )2
(1+ C2)
Fvv — — I,

_|d’r_ (dé drd¢g _d¢ k2
{Lw2 (dt’)}: (dt‘dt‘ dt'2j¢} r’

(2 dr d¢ ¢j¢ Zero

(1+V' f\ arae g’
C
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21.60

21.61

21.62

21.63

21.63

21.64

21.56

21.65

21.66

21.67



2
—L—(d—¢) =X p 21.68
dt' r

__pdw d’r _-1° d’w &’ _ 21" dw 2169
d¢ dt¥  r° d¢’ de?”  r’ dg '
}_-@%
2
r
%) —GM,
=—

—I1¥\_ —GM,

I2 I2
—G—Mzo 21.70

Ll
;jz GM; 21.71
Ll
§25 Logarithmic Spiral continued

1|_6M, 21.71
r L|2

_-GM,

- L12

—-B H=—CR A=SMe B=

m,c c
+B=zero

136/149

_GM,




[H3+3H2Al+3HA2%+A3Lj(d W l}rB zero

r r )\ dy* r

H +3H°AL3HA’ LA’ Lap’ 1307AL 3HA' L+ A" L =zero
I r r r r r
(H3+3AH21)[dW l}rB zero
r ) d¢* r

2
(H3+3AH2w{(ilT\;V+W]+B:zero

2 2
H3—‘(11¢‘§ +H3w+3AH2‘31T‘;'W+3AH2w2 +B=zero

_1_ 1 dw _ —Qsen(¢Q) d’w _—Q*cos(¢Q)
w==— [1+€cos(¢Q)] . D e = = 21.38

The first hypothesis to obtain a particular solution of the differential equation is to assume the infinite radius
r=o0 , thus obtaining:

w= : :loo = }) [1+&cos(dQ)]=zero=>&cos(pQ)=-1 ((112(1)\;, = _Q2 C];S((I)Q) = _Q28§];S(¢Q) Z%

2 2
H3—‘(11¢V2V +H3w+3AH2iT‘;VW+3AH2w2 +B=zero

dzwzQ_2 H= Egr _—M, c? -
dy> €D my,c?  m,c?

W=Z€T10

a 1)( )+( 1 (zer0) + 3A(~ 1)( j(zero)+3A( 1 (zero)’ + B=zero

2
—(Q—)+B=zero SDQ +eDB=zero
eD eD
~Q*+1=zero Q=1

This result shows that in infinity the influence of the central mass is zero M_=zero .
The second hypothesis to obtain another particular solution of the differential equation is obtained by
observing that the angle (¢Q) of the equation £cos(¢Q)=—1 indicates the direction of the infinite radius

r=o where the influence of the central mass is zero M =zero and Q2=1 therefore the direction of the

center of mass is given by the angle (¢Q+Tt) that replaced in the equation scos((I)Q):—l results in the

new equation scos((I)Q-i-n):—l that indicates direction opposite the direction of the infinite radius which is
the direction of the center of mass.

gcos(pQ+m)=-1 cos(¢Q+m)=—cos(¢Q) g[—cos(¢pQ)]=—1 gcos(dQ)=1
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wolo 1 1 _2 d’w _—Q’cos(¢Q) _ —Q’scos(9Q) _-Q’

L ~opl s R D=0 42 D ) eD
w=-2_ ﬂ:__Qz H= Ep _—myc? -1

eD d¢* D m,c2  m,c2

2 2
H3—‘31¢‘;V +H3W+3AH2‘1T‘;VW+3AH2W2 +B=zero

(- 1)( j+( 1)( )+3A( 1)( DZL% j+3A(—1)2(8%j2+B=zero
IEERRC EARER I

2
Q_2 3AQ 2 +3A 4 +B Z€ero
eD ¢D eDeD D’

SDQ 2¢D 8D6AQ +8D12A +eDB=zero eDB:SDGM eDGM 1

eD eD D’ D’ L? eDGM

Q2 9 6AQ 1 2A
eD eD

+1=zero

2
Qz—l—ﬂjtlz—A:zero

eD eD
5 1_12A
2_6AQ _,_12A 2= €D
Q 1 Q
eD eD 1—@
eD

Applying the results of the second hypothesis in the differential equation:

2 2
H3—‘(11¢‘;’ +H3w+3AH2‘(11T‘;’vv+3AH2w2 +B=zero

[1+2c0s(0Q)] dw_~Qsen(¢Q) dw _~Q’cos(9Q)

€ - 21.38
eD dé D d¢? D

W:l:
r

H3|:_Q2 CI(;S(¢Q):|+H3 8}) [l+8COS((I)Q)]+3AH |:Q+S(¢Q):| D[]+gcos((l)Q)]

+3AH? %[Hscos(d)Q)]}z +B=zero
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332€08(0Q) 113 1 143 1 2 ~Q%cos($Q)
-HQ D —r=<J+H +H Dscos(¢Q)+3AH{ O }

L +3AH2{ Q COS(¢Q):| SCOS(¢Q)+

eD D

+ 3AH2{ 2;)2 [1 +2¢ecos(¢pQ)+€2 cos? (¢Q)]} +B=zero
€

Q2 eos#Q) B} s cos(90Q) 3AHQ? cos<¢Q) Qe (9Q),
D sD D eD D?

3AH [1+2800S((|)Q)+8 cosz(¢Q)]+B Z€ero
g’

_p3qgreosleQ) cos(¢Q) , H* _ y3008(¢Q) 3AH?Q’ COS(<I>Q) _3AR2Q? S 0Q) (¢Q)
D D D eD D’

3AH2 3AH 2800S(¢Q)+3AH € c0s2(¢Q)+B zero
e’D?  ¢’D?

_HQ? cos(¢Q) LB +H3C05(¢Q) 3AH’Q? cos(¢Q) 4 AH2Q? cos” (9Q) N
D eD D eD D D?

L 3AH? | 6AH? €08(9Q) , 5, 12€05°(¢Q) Cosz(tbQ)
g D2 eD D

~HQ’cos(¢Q), H? . H’ cos(¢Q) 3AH’Q’cos(¢Q) 3AH’Q’ cos’(¢Q)
3AH> D 3AH28D 3AH> D 3AH’¢D D 3AH? D’

L 3AH® ., 6AH? cos(¢Q), 3AHcos’(9Q), B
3AH?¢’D? 3AH?:D D 3AH2 D? 3AH2

+B=zero

=Z€10

~HQ’ COS(d)Q) . H cos(¢Q) Q7 cos(¢Q) chosz(d)Q)
3A D 3A8D 3A D eD D D?

1, 2cos(9Q) cos’4Q), B _ ..

82D2 eD D D? 3AH2

cos” (¢Q) _Q? cos’(9Q) HQ? cos(¢Q) , H cos(¢Q) Q* cos(¢9Q)
D? D2 3A° D 3A D eD D

L20cs¢9Q . H . 1 . B
gD D 3A8D ¢’D? 3AH?

=Z€10

=Z€1ro0

(1Q)es- Q) ( HQ , H Q 2 )cos¢Q, H , 1 , B
D’ 3A 3A &D &D) D 3A8D D> 3AH>

Er _—m,c?

H= =—1

ch m,c?

1) 8Q) [ _(=DQ% D Q% 5 Jeos@Q), D, 1, B
' p? 3 3A ¢D sD) D 3AeD ¢lp? 3A(<1)’

(I_Qz)cosz((l)Q) Q__L__ 2\COS(¢Q) 11 +%=zero

D> 3A 3A €D sD) D  3AsD . p’

=ZCro
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(o) Q) (@ 1 Q1 2 et 1, 1 DB _,,,
D’ 3A 3A D eD) D 3AeD D’ 3AeD
cDB— eDGi\/IO _eDGM, _
L?  eDGM,
2)eos’(9Q) (Q7_ 1 Q7 2 Jeos(9Q)
e Qo1 @ ajeoslb) 1 11
D> 3A 3A ¢D eD) D 3AeD ?p? 3AeD
2 2
( _QP s (¢Q) Q 1. Q 2 COS(<I>Q)+ L ero
D> 3A 3A D eD) D ¢p?
h_12A
zero<r(¢Q)<oo—>MO¢zero—>Q:—8D
[1—6A
eD
1_%—| [ (1-12A (1_127A —|
1—| __eD |[cos’¢Q) | 1|~ D | 1 1| D |, 2 |cos0Q) 1 _ ..
1-6A || D2 [3A| 1-6A | 3A 8DL1_6A SDJ D D2
L eD L eD eD
[1_6A _(1_12A)|cos*(0Q) [ 1 ({_12A)__1 (;_6A_ 1 (;_12AY, 2 (;_6A\|cos0Q), 1 (;_6A)_
e U SD)J D2 _3A(1 SD) ! ) o\ sD)'sDKl sD)_| D a2l SD) “ero
1 12A_ 1 1 6A_ 1, 112A,2 2 6A)cos9Q), 1 L_6A_ero

(1 6A _1,12A)c0s*(6Q) (

eD  eD/) D2 3A 3A eD 3A 3AeD eD &D €D

1 \cos(9Q) |

1 6A:zer0
eD) D

eD? eD

(6 eos60),

eD) D2 2D?

_(_lji \/(_1)2_4614( L1 6A)
COS(¢Q)= eD eD eD\e?D? £2D?eD
D 76A

eD

1 \/ 1 _24A( 1
cos(dQ) _ eD " Ve2D2  eD \g2D2
D 12A

eD

1 6Aj
e2D? eD

24A 1
eD D2
12A
eD

“24A 1 6A
eD £2D? eD

COS(¢Q) aD \/szD2

14 1 [[Z24A 24A6A

cos(¢Q) _ gD~ eD gD €D gD
D 2A

eD
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1 12A | 144A2

L+ 1 1240 103A7

COS(¢Q) SD eD eD  g2D?
D 12A
eD

141 [1_12A)
COS(¢Q): eD €D eD
D 12A
eD

141 (1_12A
COS@’Q):sDisD(l SD)

D 12A
eD
1i(1_112A)
COS(¢Q): eD \eD €D €D
D 12A
eD

1_(1_ 1 12A)
COS(¢Q)= eD \eD €D eD

D 12A
eD
11, 112A
COS(¢Q) aD SD eD eD
D 12A
eD
1 12A
COS(¢Q) eD eD
D 12A
eD
cos(dQ) _ 1
D eD

Where applying the result of the second hypothesis ccos(¢Q)=1=>cos(¢Q)=1
€

11_1
eD €D

That it is an identity demonstrating that the result of the second hypothesis is correct.

1-12A oM

2_ eD ~1 6A 2:1_6_A A= 0

Ve T &
eD

eD=a(l-£2)=57.909.227.00000]l - (020563593 |=55.460.469.568.40

GM, _6,6740831.10""".1,9891.10%

A= (2.99792458.10% ]

=1.477,089.535.42
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_12A

Q= |—£€D__0.999.999.920.1 Q=./1-9A 20.999.999.920.1
1_6A eD
eD

1,276.789.102.53

1.296.000,00

0.Q=1.296.000,00=¢= Q<1 Advance Q>1 Retrocess

Ap= é—lj1.296.000,00 Ad>zero Advance Ad<zero Retrocess

Adp= 1 —11.296.00000=0,103.549.893.544"
1-12A 2
eD
1—6A
L eD
Adp= %—1 1.296.000,00=0,103.549.876.997"

(o)

L eD

N=100PT _100365.256.363.004
"PM

=415,210.316.139
87,969

> Ap=AGN=0,103.549.893.544 x 415210.316.139=42,994.984.034.7"

> Ap=AGN=0,103.549.876.997 x 415210.316.139=42,994.977.164.2"

Newtonian Energy Ey
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d¢ L dr__.dw d’r _ —I7 d*w d*¢ _ 217 dw

= gt 9w ar _—Ldw

dt r? dt d¢ dt? r? d¢? dt? r’ dg¢

+—=——=-=———=zero
d¢ r* mIL r mL
’ E
dw 2__2k N2 —zero
d¢ mIL° mL
2E
= 2k2 y= N2
m,L m,L

2
dw | 4,2 —XW—y=Zero
d¢

—1_ 1 [14ecos(go)] dw _—0sen(¢Q) dZw _ —Q*cos¢0)

r &b d¢ D d¢’ D
[%@} { [1+gcos(¢Q)]} —xLf+zcoslgoll-y=zero

Zl-cosgoll— i +2scodgo) cos (o)l x-L—x-Lscoslgo)-y=zero
£2D D &D

Z(W)_SAD_X%@_Y =zero

2 2
%—%coé(@ﬁ%

D
Q_2_chosz(¢Q)+ 1 .2 COS(¢Q)+COSZ(¢Q)_i_XCOS!¢Q!_y:ZerO
D? D? gD b D D? &D D

cos¥(¢0) Q2c052(¢Q) 2 COS(¢Q)—xcoS(¢Q)+Q—2+L—i—yzzero

D? eD D D D &°D° &D
2 2
( Qz)cosMQ! ( jcos{ $0) o/ R S,
D? eD D2 &°D* €D

Newtonian Energy Ey

5 2
(I—Q2 cosD(zd)Q)+(X_é)COSS)Q)_F%_FSZ#_%_}/:ZMO

N _1 1 _cos(¢Q), 1 _
r=0—->Q=1->w 8D[1+8cos((1)Q)] D +8D Zero
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2
1- ZI—L)(—L)+(X 2 )( 1 j+Q L X _y—zero
( Q eD eD eD eD) D?* &D? €D Y

2
1—- 2( 1 ) X 2 :Q p1 X _y=zero
( Q g eD ¢’D* D? &D* eD Y

1 Q@ x. 2 Q@ 1

T T T yZZCI'O
¢’D* ¢’D* eD ¢’D* D? ¢'D? €D
Q. Q 4 2 2
+=+ =7€ero =
gD’ D? ¢D? D Y Q
1 1 4 2X o
+—=+ y=zero
&D? D? ¢D* €D

22 212 22 22
82D2 & ]2 } 482 Dz 2xe D°_2p’y_zero
eD” D eD eD
—1+82+4—2xeD—82D2y=zero
x=-2 y=2Ex >=¢DGM I_-L
eD m,L a €D
—1+82+4—2%8D—82D2y:zer0 —1+82—82D2y=Z€I‘0
€
—1+82—82D2£NZ=Z61‘0 —1+82—82D22¢=Z€r0
m,L m,eDGM,,
e —eD—2EN jero L(82—1)=—2EN
M m, eD k
o=k
N oa

144/149



§27 Advancement of Perihelion of Mercury of 42.99” "contour Conditions"

Let us start from the equation expressing the equilibrium of forces:

f'=— 0% _£2 21.65

On the right side we have the gravitational force %f defined by Newton, on the left side we have the
physical description of Force ' = —™2%_ of the Undulating Relativity.

1;/2 E
(1+C_2>

The physical properties of equation 21.65 require its validity when its radius varies from a radius greater than
zero to an infinite radius, so the radius varies from zero < r < o, and so we have two distinct boundary
conditions. The first boundary condition is when the radius is infinite r = co and the gravitational force is zero,
which means that the particle is at rest with v’ = zero and a’ = zero and the second boundary condition is
when the radius is greater which is zero and smaller than infinity zero < r < oo which means that the particle
is in motion due to the influence of a gravitational force 21.65 with v’ # zero and a’ # zero.

In §26 following the calculations is substituted in 21.65, the equality, 21.62, 21.69 and

Er
H=—H A
m,C c

:GM° B= M, ., more w = —.
2 Lyz r

After these substitutions we obtain the differential equation:

2 2
H3—‘31¢‘;’ +H3W+3AH2?1T‘;VW+3AH2WZ +B=zero 271

This equation has to be valid for the same boundary conditions as equation 21.65, that is, it has to be valid
from a radius r greater than zero (r > zero) to an infinite radius (zero < r < ). Your solution is given by:

w =l=L[l+scos(¢Q)] 27.2
r €D
Which should cover the two contour conditions already described.

Applying solution 27.2 in differential equation 27.1 we have:

2 2
AW L 13w 3AH2 W 1 3AH? W2 + B=zero
do? do?

w =1-1 [1+&cos(¢Q)] d_w:——Qsen((I)Q) d’w = _Q2 cos(¢Q) 21.38
r

&D do D dg? D

HB{‘Qz CI‘;S(‘I’Q)}W 8}) [1+8C05((|)Q)]+3AH{%} })[1+8008(¢Q)]+

€

+3AH? %[I+SCOS(¢Q)]}Z +B=zero

P02 Cos(0Q) 13 1 g3 1 2| ~Q%cos(9Q) [ 1, 5,2 ~Q7cos(6Q) | 1
H°Q b +H 8D+H 8D8C0S(¢Q)+3AH [ 5 LD+3AH [ 5 :|£D£COS((|)Q)+

+ 3AH2{ 2})2 [1 +2¢ecos(¢pQ)+ €2 cos? (d)Q)]} +B=zero
€
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_HQ? cos(¢Q) LB cos(¢Q) 3AH’Q’ COS(<I>Q)_3 AH2Q? cos’(9Q) N
D eD D eD D D?

+ 3?522 [1+2800S((|)Q)+ g”cos’ (¢Q)]+ B=zero
€

_p3qgreosleQ) cos(¢Q), H? , ;3c0s(9Q) 3AH’Q” cos(¢Q) 5,4 220" (0Q) (¢Q)
D  &D D eD D D’

3AH 3AH 3AH?> 2 2
2ecos + £°cos +B=zero

Q2 eosléQ) COS(¢Q) H® 3 cos(¢Q) 3AH’Q’ COS(¢Q) _3APQ2 ooy 9Q) (<I>Q)
D aD D eD D?

L3AH? | 6AH? cos(¢Q) 5, 1208°(¢Q) (¢Q)
g D2 eD D

~HQ’cos(¢Q), H? . H’ cos(¢Q) 3AH’Q’cos(¢Q) 3AH’Q’ cos’(¢Q)
3AH* D 3AH28D 3AH> D 3AH’¢D D 3AH? D’

L 3AH® . 6AH? cos(¢Q), 3AHcos’(9Q), B
3AH?¢’D? 3AH?’:D D 3AH2 D? 3AH2

+B=zero

=Z€1o0

~HQ’ COS(¢Q) . H cos(¢Q) Q7 cos(¢Q) chosz(d)Q)
3A D 3A8D 3A D eD D D?

1, 2cos(9Q) cos’4Q), B _ .

82D2 eD D D? 3AH2

cos’(¢Q) Q cos’(9Q) HQ’ cos(¢Q), H cos(¢Q) Q’ cos(9Q)
D? D2 3A° D 3A D eD D

L2c8¢9Q H . 1 . B
"D D 3A8D e’D? 3AH?

=Z€10

=Z€10

(1-Q? ) 0Q), ( HQ* H Q 2 )cos¢Q, H , 1 , B
D’ 3A 3A &D &D) D 3A8D ¢’D? 3AH?

Ep _—myc?

H= =—1

mc2 m,c2

(1_Q2)0082(¢Q)+[_(—1)Q2+(—1)_Q2 2 Jeos(9Q), (=D , 1 B

D> 3A° 3A €D aDJ D 3AeD e’D’ 3A(-1)°

—————+— - + +—=-=zero

(Qz cos (<I>Q) 1 Q" 2 )eos(¢4Q) 1 1 . B
3A 3A eD D) D 3AeD ¢*p? 3A

= - + + =Zero
3A 3A €D €D D 3AeD ¢*p? 3AeD

(1-Q° cos” (4Q) J{Qz 1 Q2 Jeos(¢Q) 1 1 __ eDB

eDGM_ eDGM,

eDB= = =
L eDGM

146/149

=Z€ro



2 2
(@ )eos Q) fQ° 1 Q2 Jeos@Q) 1 1 1,
D> 3A 3A ¢D D) D 3AeD  *p? 3AeD
2 cosz(d)Q) Q2 1 Q2 2 |cos(dQ) 1
(I—Q 2 4l _1 _~x , 2 + 5 zzzero 27.3
D 3A 3A eD €D D €D

This equation must have solution for the same two contour conditions of 21.65.

Solution of 27.3 for the first boundary condition which is when the radius is infinite r = oo, and the
gravitational force is zero which means that the particle is at rest and we have
v' = zero and @’ = zero.

Applying Q2=1 in 27.3 we get:

12y Cos2(01) (ﬁ_i_i i) cos(91) 1
1-19 D2 34 34 D + €D D s2pz  Z€ro
cos@ L L _ zero g=—1 27.4
D &D cos(®)

Equation 27.4 is exactly equal to the result of equation 27.2 when the radius is infinite r = co, w = zero and Q
=1, as shown in 27.5:

1

-1 -1 _cos(@ 1 _
== [1+ ecos(BQ)] = > [1+ ecos(B1)] = ——+— = zero 27.5

w =

=00
Therefore in 27.4 we have an exact result that describes how in infinity the eccentricity € is related to the
angle @ of the infinite radius of the particle, being € = 1 which means that the motion from infinity will be or
parabolic with e = 1 or hyperbolic with € > 1. Note that by definition € > zero.

Solution of 27.3 for the second boundary condition which is when the radius is greater than zero and less
than infinity zero < r < o which means that the particle is in motion due to the influence of a gravitational

force with v’ # zero and @’ # zero.

124
1- eD

6A

eD

Applying Q = in 27.3 we have:

5 =Z€ro 27.3

-0 Cosz(¢Q)+(Q2 | Q2+L]COS(¢Q)+ |

D> 3A 3A D €D D e’D

1_%—| [ (1-12A (1_127A —|

1—| __eD |[cos’¢Q) | 1| D | 1 _1|_ D |, 2 |cos0Q) 1 _ ..
1-6A || D2 3A| 1-6A | 3A 8DL1_6A SDJ D D2

L eD L eD eD

[1_6A _(1_12AY|cos*(@Q) [ 1 (|_12A)__1 (;_6A)__1 (;_12A), 2 (;_6A\]cos®Q), 1 (1 6A)_,ero
o\ SD)J D2 '_3A(1 SD) Al SD) D\ sD)'sDKl sD)_| b ep SD)_

(1 6A 1+12A\COSZ(¢Q)+(1 LI2A_ 1 . 1 6A_ 1 112A, 2 2 6AYCos0Q), 1 _ 1 6A_ ..

eD eD/) D2 3A 3A eD 3A 3AgD gD gD eD eD eDeD) D £D? £2D2eD

[@\Cosz(d)Q)_{ 1\COS(¢Q)+ 1 ___1 6A_,0p
¢D) D2 ¢eD) D  &D? g2D?eD
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N e

D 76A
eD

141 _24A[ 1 _ 1 6A)

cos(0Q) _eD " Ve2D? gD \2D? £2D? gD
D 12A
eD

C24A 1 ,24A 1 6A

COS(¢Q) gD J £2D2  eD £2D? gD g2D%eD
2A

eD

141 [|_24A  24A6A
cos(¢Q) _eD "~ eD 12921‘) eD gD

D 12A
eD

\/ 12A 144A2

cos(¢Q) _ gD eD g?D?
D 12A
eD

141 [_12A
COS((I)Q):aDisD (l SDJ

D 12A
eD
1i1(1_12Aj
cos(¢Q) —eD €D eD
D 12A
eD
1. ( 11 lej
COS(¢Q) eD \eD €D €D
D 12A
eD

1_(1_112Aj
COS(¢Q)= eD \eD €D €D

D 12A
eD
11, 112A
COS(¢Q) aD aD eD eD
D 12A
eD
1 12A
COS(¢Q)= eD eD
D 12A
eD
cos(¢Q)_ 1

D eD
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500 L L sero £=— 27.6
D eD cos(8Q)
In the theory of conic for hyperbole we have ¢ = 2 equating to 27.6 we have ¢ = C; = COSEQQ) This results

a = c.cos(@Q)) which is the correct formula, of the greater half axis of hyperbola.

Therefore in 27.6 we have an exact result that describes how in the course of zero < r < o the eccentricity €
is related to the angle @ of the particle, being € = 1 which means that the motion will be or parabolic with
& =1 or hyperbolic with € > 1. Note that by definition £ > zero

"Although nobody can return behind and perform a new beginning,
any one can begin now and create a new end"
(Chico Xavier)
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