Undulating Relativity

Author: Alfredo Dimas Moreira Garcia
E-mail: avaliac@sjc.sp.gov.br

ABSTRACT

The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many
renowned scientists, to know:

-The dilatation of time, and
-The contraction of the Lorentz Length.

The solution to these have driven the author to the development of the Undulating Relativity (UR) theory,
where the Temporal variation is due to the differences on the route of the light propagation and the lengths
are constants between two landmarks in uniform relative movement.

The Undulating Relativity provides transformations between the two landmarks that differs from the
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (u ), Acceleration (a ), Energy (E), Momentum

(p), Force (17“ ), Electrical Field (E ), Magnetic Field (E ), Light Frequency ( y ), Electrical Current (j) and
“Electrical Charge” (p ).

From the analysis of the development of the Undulating Relativity, the following can be synthesized:

- Itis a theory with principles completely on physics;

- The transformations are linear;

- Keeps untouched the Euclidian principles;

- Considers the Galileo’s transformation distinct on each referential;

- Ties the Speed of Light and Time to a unique phenomenon;

- The Lorentz force can be attained by two distinct types of Filed Forces, and

- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special
relativity rounding is not necessary as concluded on the Doppler effect.

Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:
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c c
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Along with the equations of transformations between two references of the UR, we get the invariance of
shape to Maxwell's equations, such as:

= divE = ﬁ; = divE = 0.
I%0)
= divB = 0.

= RotE :—B.
ot

_ - E _ E
= RotB = po. j+ eo.uo.%;: RotB = 80.#0.%.
t ¢

We also get the invariance of shape to the equation of wave and equation of continuity under differential
shape:
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Undulating Relativity
§ 1 Transformation to space and time

The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light
speed, exactly like Albert Einstein’s Special Relativity Theory defined:

a) The laws, under which the state of physics systems are changed are the same, either when referred to a
determined system of coordinates or to any other that has uniform translation movement in relation to the
first.

b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same,
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of
Michel-Morley).

Let’'s imagine first that two observers O and O’ (in vacuum), moving in uniform translation movement in
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’
move with velocity v, on the positive axis x, with the respective parallel axis and sliding along with the x axis
while the O’, together with the x’, y’' and z' axis of a system of a rectangle Cartesian coordinates sees O
moving with velocity —v’, in negative direction towards the x’ axis with the respective parallel axis and sliding
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t' (t # t').
Let's admit that both observers set their clocks in such a way that, when the coincidence of the origin of the
coordinated system happens t = t' = zero.

In the instant that t = ' = 0, a ray of light is projected from the common origin to both observers. After the
time interval t the observer O will notice that his ray of light had simultaneously hit the coordinates point A (x,
y, z) with the ray of the O’ observer with velocity ¢ and that the origin of the system of the O’ observer has
run the distance v t along the positive way of the x axis, concluding that:

x2+y2+22—02t2=0 1.1
X=x-vt. 1.2
The same way after the time interval t' the O’ observer will notice that his ray of light simultaneously hit with
the observer O the coordinate point A (X', y’, Z') with velocity ¢ and that the origin of the system for the
observer O has run the distance v't’ on the negative way of the axis x’, concluding that:
x’2+y’2+z’2—czt’2=0 1.3
x=x+Vvt. 1.4
Making 1.1 equal to 1.3 we have

X2+y2+22—02t2=x’2+y’2+z'2—czt'2. 15
Because of the symmetry y =y’ end z = Z, that simplify 1.5 in

X —c? P =x? - t2 1.6
To the observer O X’ = x — v t (1.2) that applied in 1.6 supplies

X —c*t= (x-v t)2 — ¢ t” from where

. Vi 2wx
t:t 1+—2——2. 17
c ct

To the observer O’ x = x’ + V' t' (1.4) that applied in 1.6 supplies
(x + Vvt —c?? = x? - c t? from where
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, v12 2v'x'
=t',1+ + : 1.8

2 24
c c't
Table |, transformations to the space and time
X =x-vt 1.2 x=xX+vt 1.4
y=y 1.2.1 y=y 1.4.1
z=z 1.2.2 z=7 14.2
2 2
v: o 2vx v 2v'x!
'=t 1+—2——2 1.7 r=t' 1+—2+T 1.8
c ct c ct'
From the equation system formed by 1.2 and 1.4 we find
vt=vtor |v|l = |v'|t' (considering t>o0 e t">0) 1.9

what demonstrates the invariance of the space in the Undulatory Relatitivy.

From the equation system formed by 1.7 and 1.8 we find

vi o 2wx Vi o2v'x!
I+ —— J1+—+ =1. 1.10

2 2 2 2
c ct c ct'

Ifin 1.2 x’ = 0 then x = v t, that applied in 1.10 supplies,
2
v 12
Y I, R 1.11
c c

Ifin 1.10 x = ct and x’ = ¢ t’ then

(I—X}(HKJ:L 112
C C

To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of
the light speed are also constant along its axis, thus

:—:ux)—:—:u —=—=Uz 113

x _dx y dy z dz
tdt fa U T

and then we can write

vi o 2ux vi o 2vux
1+—2——2 = 1+—2— - 1.14
c ct c c
With the use of 1.7 and 1.9 and 1.14 we can write
|V| t' vi o 2wx v 2vux
= St It 1.15
|v| t c ct c c

Differentiating 1.9 with constant v and v', or else, only the time varying we have

Mdt =|v|d" or === 1.16
Ivl
f 2vux / 2vux
but from 1.15 ~— | then dt'=dt,|1+ 1.17
\%

u

Being v and Vv’ constants, the reazons H and — in 1.15 must also be constant because fo this the
% t

2

. . 2vx x dx _
differential of 1+—2——2 must be equal to zero from where we conclude — = ? =ux, that is exactly
c t t

ct
the same as 1.13.

4/144



To the observer O’ the principle of Constancy of velocity of light guarantees that the components u'x’, u’y’,
and u’z’ of velocity of light are also constant alongside its axis, thus

X odx' o,y dy z' dz

—= =u'x,—= =u'y,—=—=u'z7", 1.18
t' dt' t' dt' t' dt'

and with this we can write ,

v12 2v'x' v12 2\/" ' v
l+—+ = J1+—+ : 1.19

c’ c’

With the use of 1.8, 1.9, and 1.19 we can write

|V| Vi 2v'x vio2v'u'x'
t’= I1+—+ = J1+—+ ) 1.20

2 2 2 2
i

c ct c c

Differentiating 1.9 with v’ and v constant, that is, only the time varying we have

V|dr'=vldt or = | | , 1.21

|v| dt'
V! v12 2v'u' %' v|2 2'u'x'
but from 1.20 | | \/1+—+ — then dt=dt'\[1+ —+—F—. 1.22
|v| c c c c
v| t
Being v’ and v constant the divisions H and — in 1.20 also have to be constant because of this the
V t
V|2 () X' '
differential of 1+_2+T must be equal to zero from where we conclude —'=?=u'x', that is
c c't t t

exactly like to 1.18.

Replacing 1.14 and 1.19 in 1.10 we have

v 2vux Vv 2v'u'x!
I+—-——. 1+—2+—2—1. 1.23
c c c c
To the observer O the vector position of the point A of coordinates (x,y,z) is
R=xi +yj +zk 1.24
and the vector position of the origin of the system of the observer O’ is
ﬁo':vtf+0j+0k — Ro'=vii . 1.25
To the observer O’, the vector position of the point A of coordinates (x',y’,Z’) is
R=xT+yj+2'k, 1.26
and the vector position of the origin of the system of the observer O is
Ro=—=V1Ti+0j+0k = R'o=—v'("I . 1.27
Due to 1.9, 1.25, and 1.27 we have, Ro'=—R'o. 1.28

As 1.24 is equal to 1.25 plus 1.26 we have
R=Ro+R'= R'=R-Ro'. 1.29

Applying 1.28 in 1.29 we have, R = R'—R'o. 1.30
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To the observer O the vector velocity of the origin of the system of the observer O’ is

dRo'

V= =vi+0]+0k =V =vi. 1.31

To the observer O’ the vector velocity of the origin of the system of the observer O is

- dR'O e - T - g
V'= 7 =Vi+0j+0k =>V'=2"i. 1.32
t'
From 1.15, 1.20, 1.31, and 1.32 we find the following relations between v and V'
V= Y 1.33
v 2v'u'x!
l+—+—7—
c c
= Y . 1.34
v 2vux
I+t ——5
c c

Observation: in the table | the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30.

§2 Law of velocity transformations u and u'

Differentiating 1.29 and dividing it by 1.17 we have

dR' dR - dRo' u-v u-—v
= . 2.1
2vux v 2vux JK
2 - o2
Differentiating 1.30 and dividing it by 1.22 we have
dR dR'-dR'o - u'—v' u'-v'
dl‘ ' v|2 2vvu|x| v|2 2vvu|x| \/_'
ar'\[1+—+——— I+—+——
c c c c
Table 2, Law of velocity transformations u and '
p=t 2.1 i=t 2.2
JK ' JK' '
e Y 03 o — u'x'+v' 04
VK ' VK '
o Wy u'y'
wy= 2.3.1 uy = 2.4.1
VK VK
u'21_£ 239 uZ_u'Z' 04
v V'
|V' — | 1.15 V= 1.20

2 12 2| ' |
SR | 4/—K':\/1+V_2+ R PY
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Multiplying 2.1 by itself we have

2vux
u1/1+—— 5
u'= “u__u 2.7

v 2vux
1+ -
c c

Ifin 2.7 we make u = c then U’ = ¢ as it is required by the principle of constancy of velocity of light.
Multiplying 2.2 by itself we have

u'\/ v|2 . 2vvu|x|
u12 u|2

u= . 2.8

v 2v'u'x!
I+—+—
c c

Ifin 2.8 we make u’ = ¢ then u = c as it is required by the principle of constancy of velocity of light.

c—v
If in 2.3 we make ux = ¢ then u'x'=————————= = as it is required by the principle of constancy of
| v:i 2ve
fe e
velocity of light.
. c+V' . . o
If in 2.4 we make u'x’ = ¢ then ux = =c as it is required by the principle of constancy of
1 v 2v'e
+
c c

velocity of light.

Remodeling 2.7 and 2.8 we have

1"
2vux
1/1 < 2.9
u'2

|

v|2 2V'I/l' cz
I+—+ > i 2.10

c u>

02

The direct relations between the times and velocities of two points in space can be obtained with the
equalities #'=0 = u'x'= 0 = ux = v coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply

— dt v_2_2v \/7 2.11
di=dr' |1+ —2+2V'0:>df 2.12
V! 7
NI d I ¥ . 2.13
M v|":| 2v'0 M vv’z
1+c—2+ . 1+c—2
V= b == i 2.14
P 2wy 2 .
1+‘c%_072 1_cz
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Aberration of the zenith

To the observer O’ along with the star u'x’ = 0, Uy’ = ¢ and u'z = 0, and to the observer O along with the
Earth we have the conjunct 2.3

2
ux—v u / v
0= :>ux=v,c=—y:>uy:c l-—,uz=0,
v 2vux v 2w ¢
S I S I
c c ¢ c
2
2

/ v
u= \/uxz +uy2 +uz’ = vV +| eyl —C—Z +0° =c¢ exactly as foreseen by the principle of relativity.

To the observer O the light propagates in a direction that makes an angle with the vertical axis y given by

ux % v/c
tango = — = =

; ; 2.15
uy v v
Cull—— 1——
\/ c’ \/ c’

that is the aberration formula of the zenith in the special relativity .
If we inverted the observers we would have the conjunct 2.4

u!x!_i_vl u/ ' V’Z
0= >ux'=-v',c= J =>u'y'=c,/l——-,uz=0,
\/ V7 2viulx' \/ v’ 2v’(—v’) ¢

I+—+ I+—+
¢’ ¢’ c’ ¢’
3 2
’
2 v
Lt’z\/u’x'z+u'y’2+u’z'2 = (—v’) +| eyl ——; +0° =c¢
c
; u'x' -V’ -V

-~ ; ; 2.16
uy v V'
C.\/]—Z \/]—2
C C

that is equal to 2.15, with the negative sign indicating the contrary direction of the angles.

Fresnel’s formula

Considering in 2.4, u'x'=c/n the velocity of light relativily to the water, v'=v the velocity of water in
relation to the apparatus then ux = ¢' will be the velocity of light relatively to the laboratory

1
, c/n+v c/n+v c vio2v)?2 (e 1(v: 2v
c'= = =l —+v|il+—+—| =|—+v|l-——|5+—
v 2ve/n v:io v n ¢ nc n 2\c¢® nc
I+ I+

2 2
C C

C2 nc

Ignoring the term v’ /¢’ we have

[c v c v o
cdzl—tv|l-—|=2—+v-——F——
n nc) n n-  nc

and ignoring the term v? /nc we have the Fresnel's formula

, C v ¢ 1
=—+v——=—+y l-—|. 217
n n-n n
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Doppler effect

2t12

Making 7> =x>+y*+z° and r”?=x"+y"+z” in 15 we have 7’ —c’t’=r"—c or
r'+ct’ ve 2vx
(r—ct)= (r’—ct’)( ) replacing then r =ct, r'=ct' and 1.7 we find (r—ct) = (r'~ct’) I+————
(r+ct) c c’t
w oW 1 Lo, ., ., v 2wx o .
as ¢ :; :; then ;(kr—wt):;(k r'-w't ) I+— ——— where to attend the principle of relativity
' ' ¢t

2
/ v 2vx
we will define kK'=k ]+—2——2 2.18
c c’t

Resulting in the expression (kr - wt): (k’r’—w’t') symmetric and invariable between the observers.

To the observer O an expression in the formula of !//(l’,t) = f(kr - wt) 2.19
represents a curve that propagates in the direction of R . To the observer O’ an expression in the formula of
w'(r )= 1 (k' r'—w't') 2.20
represents a curve that propates in the direction of R'.

- 2r ,, 2w
Applying in 2.18 k 27, k :7, 1.14,1.19, 1.23, 2.5, and 2.6 we have
l/
\/— \/— 2.21
that applied in ¢ = yA = y'A" supply, y'= y\/f and y=y)y'vK". 2.22

Considering the relation of Planck-Einstein between energy (E) and frequency () ), we have to the
observer O E = hy and to the observer O’ E'= hy' that replaced in 2.22 supply

—EJK and E=E'VJK'. 2.23

If the observer O that sees the observer O’ moving with velocity v in a positive way to the axis x, emits
waves of frequency ) and velocity ¢ in a positive way to the axis x then, according to 2.22 and ux = ¢ the

observer O’ will measure the waves with velocity ¢ and frequency y':y(l—zj , 2.24
c
that is exactly the classic formula of the longitudinal Doppler effect.

If the observer O’ that sees the observer O moving with velocity —v’ in the negative way of the axis x’, emits
waves of frequency )’ and velocity c, then the observer O according to 2.22 and u'x'=—V" will measure
waves of frequency y and velocity c in a perpendicular plane to the movement of O’ given by

12
,/ %
V=7 I—C—z, 2.25

that is exactly the formula of the transversal Doppler effect in the Special Relativity.
§3 Transformations of the accelerations a and a’

Differentiating 2.1 and dividing it by 1.17 we have
du' du /K (4 ‘7) v dux/ KK N a ‘7) v ax 31
dt aK Ak ' '

Differentiating 2.2 and dividing it by 1.22 we have
du _du'/VK' (i[’ 4,) Vi du'x'/ K'NK' g a' (i[’—ﬁ') v a'x'
di arNK S N K' c’ '

3.2

9/144



Table 3, transformations of the accelerations a and a’

N T BN LACE S P
K K K’ K’
a'x’zﬂ—i-(ux— )lza—)z 3.3 ax=£—(u’x'+v’)%'a'f 3.4
c K K’ c XK'
a'y’=ﬂ+uy%a—)§ 3.3.1 ay=a'y’— ' Lza)i 3.4.1
K c K K' K'
a'z'=""buz o 332 |az= <z —uzLZ% 342
c K’ ¢ K
e _ &
a'=— 3.8 a=- 3.9
2 2 [
Kol D 35 | Kere o 20 g
c c c c

From the tables 2 and 3 we can conclude that if to the observer O ii.d = zero and ¢’ =ux’ +uy2 +uz’,

then it is also to the observer O’ 1"d'= zero and ¢’ =u'x"’+u'y"”’+u'z'’, thus i is perpendicular to @
and 1’ is perpendicular to @' as the vectors theory requires.

Differentiating 1.9 with the velocities and the times changing we have, tdv+vdt=tdv'+v'dt', but
considering 1.16 we have, vdt =V'dt'= tdv=1t'dV' 3.7

_ o v’ dv , a
Where replacing 1.15 and dividing it by 1.17 we have, — =—— or a'=—. 3.8

dt'  diK K

We can also replace 1.20 in 3.7 and divide it by 1.22 deducing
dv adv a'
—= oraq=—.
dt dt'K' K’
The direct relations between the modules of the accelerations a and a’ of two points in space can be
obtained with the u'=0=u'x'=0= a'x'=0= 1 =V = ux = v coming from 2.1, that applied in 3.8 and
3.9 supply

3.9

, a _a _ a’ o da
a= 2 - 2 and a = ,2 n
v 2vv v v 2V'0 v
c c c c c c

That can also be reduced from 3.1 and 3.2 if we use the same equalities
U=0=u'x=0=ax'=0=u=v = ux=v coming from 2.1.

3.10

§4 Transformations of the Moments p and p’

Defined as p = m(u)ii and p'=m’(u')ii’, 4.1
where m(u) and m'(u') symbolizes the function masses of the modules of velocities ©# = |L7| and u'= |L7'|

We will have the relations between m(u) and m'(u') and the resting mass m,, analyzing the elastic

collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The
spheres while observed in relative resting are identical and have the mass m,. The considered collision is
symmetric in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment
of. Collision.

Before and after the collision the spheres have velocities observed by O and O’ according to the following
table gotten from table 2
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Sphere | Observer O Observer O’
VIZ
Before S Uxs = zero, uys = w u'x's==v,u'ys=wl- >
c
V2
Collision s’ uxs'=v, uys'=—w, |1 -— u'x's'=zero, u'y's'=-w
c
12
After s Uxs = zero, uys =—-w u'x's=—v',u'ys=-w 1_v2
c
V2
Collision s’ uxs'=v, uys'=w,|l1-— u'x's'=zero, u'y's'=w
c

To the observer O, the principle of conservation of moments establishes that the moments px = m(u)ux

and py= m(u)uy of the spheres s and s’ in relation to the axis x and y, remain constant before and after
the collision thus for the axis x we have

m(1/UXSZ+ uys’ )uxs+ m(qluxs'2+uys’2 )uxs': m(1/MXS2+ uys’ )uxs+ m(qluxs'2+uys’2 )uxs' :

where replacing the values of the table we have

2 2
2 2
m v+ —w ]——2 v=m| |[vi+|W ]——2 v from where we conclude that w = w,
c c

and for the axis y

m(\/uxs2+uys2 )uys+ m(w/uxs’zjtuys’2 )uys’z m(\/uxs2+uys2 )uys+ m(w/uxs’2+uys’2 )uys’,

where replacing the values of the table we have

2 2
2 2 2 2
/ v v —\— — v — v
m(w)w—m Vit —w I-—— | |w 1——2:—m(w)w+m v+ W I—— | [Wyl-——,
c

C C C

simplifying we have

2 2
% v
m(w) =m \/v2+ w’ (] ——ZJ I——, where when w— () becomes

n0)= | v+ 07 1= | L1220 o) = o) 1- 25 = ) =20
0= b0 (1= |12 5 =1 = ) ]0?

but m(O) is equal to the resting mass m, thus

0

m(v) =T with a relative velocity v =u = m(u) = - 4.2
%
¢ c
— - _ m,u
that applied in 4.1 supplies p = m(u)u = - 4.1
u
1=
c

With the same procedures we would have for the O’ observer
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m'(u')= - 4.3

u
]—
cZ
- - myu'
and p'=m'(u')i'= ——. 4.1
ul2
1= 2
c
m,
Simplifying the simbology we will adopt m m(u) B 4.2
u
==
c
m
and m'=m'(u') 0 4.3
u!Z
1= 2
c
that simplify the moments in p =mu and p'=m'u’. 4.1

Applying 4.2 and 4.3 in 2.9 and 2.10 we have

2
V' 2Vu'x' 2vux
m:m’\/1+—2+ — > m= m'~JK' and m'=m ]+———2:>m':m\/K. 4.4
c c \ c c

Defining force as Newton we have F = @ = d(mﬁ) and F'= @ = M with this we can define then
dt dt dt' dr'
kinetic energy (Ek JE', )as
u u d —- u _ _ u 5
E, = I .dR I Id(mu)u :I(u dm+mudu),
0 0 dt 0 0

dmﬁ

and E'k:Tﬁ’.dR' lj P
0 0

dﬁ': Td(m'ﬁ’).ﬁ' = T(u’Z dm'+m’u’du').
0 0

Remodeling 4.2 and 4.3 and differentiating we have m’c’—m’u’ = m(,zcz = u’dm+ mudu = c¢’dm and

m’c’—-m'u’ = m0202 =u"” dm'+m'u'du'=c’dm’, that applied in the formulas of kinetic energy

m'

supplies £, = jc dm=mc’ —myc’ =E—E, and E', —j ‘dm'=m'c’ —m,c’ =E'-E,, 45
my my

where E =mc’ and E'=m'c’ 4.6

are the total energies as in the special relativity and £, = moc2 4.7

the resting energy.
Applying 4.6 in 4.4 we have exactly 2.23.

From 4.6, 4.2, 4.3, and 4.1 we find

E=c\ym,’c’ +p’ and E'=c+m, c’+ p"’ 4.8

identical relations to the Special Relativity.

Multiplying 2.1 and 2.2 by m, we get
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mu' m u myv - E _

12 _ 0 _ 0 1 —my 5= H_
u’z_ - == m'u'=mi—my = p'=p sz
I—— I-— I-—
c c c
maﬁ maﬁ, mO{}" — 1= s > = ' o7
and = - Smu=mu-myv=p=p-——7V.
uZ u;Z uI2 C
I-— I—— I——
c c c
Table 4, transformations of moments p and p’
., - E_ . ., E'_,
p=p——V 4.9 p=p——7V 4.10
c c
(A4 E ! ! E, ’
p'X'=px——v 411 px=p'x+—v 4.12
c c
p'y': py 4111 py:p'y' 4121
p'Z'z pz 4.11.2 pzzp'z' 4.12.2
= ENK 223 | p_pdk 2.23
m m
m=mu)=——="—= |42 m=m'(u)=—L— |43
uZ 12
I—— I——
c c
= md K 4.4 m=mJK' 4.4
Ek:E_Eo 4.5 E'k:E'—EO 4.5
E:mcz 4.6 EI:mICZ 46
E =mc’ 4.7 E =mc’ 4.7
4.8 4.8
E :c\/mozcz +p° E'= c\/mozcz+p’2

Wave equation of Louis de Broglie

The observer O’ associates to a resting particle in its origin the following properties:

-Resting mass m,

-Time t'=¢,

-Resting Energy £, = mocz

2

o _MyC

-Frequency y, 27: h

-Wave function y,=asen2ry,t, with a = constant.

The observer O associates to a particle with velocity v the following:

0

2
-
C

-Mass m = m(v) = (from 4.2 where u =v)

t t
-Time ¢t = g = 2 (from 1.7 with ux =v and t'=¢,)
v: 2w v?
-5 I~
c c c
E 2
-Energy E = C__=—— (from 2.23 with ux =v and E'=E)
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v, _mocz/h

2 2
¢ c

-Distance x = vt (from 1.2 with X’ = 0)

_ v? v? x) . c’
-Wave function y=asen2ny,t, =asen2ny,|1-——t,|I-——=asen2mxy| t—— | with u =—
c c u v

2
-Wave |ength u:yi:c—:E:y_h:)i:ﬁ (from 4.9 with ]_5': ﬁo = 0)
v p p p

To go back to the O’ observer referential where u'=0 = u'x'= 0, we will consider the following variables:

-Frequency y=

(from 2.22 with ux =v and y'=y,)

-Distance x = v't’ (from 1.4 with x’ = 0)

, , vi:ioo2vio v o,
-Time t =t",|1+ + =t', |1+ (from 1.8 with u'x'=10)

c’ c’ c’
12
v .
-Frequency y:y'1/1+—2 (from 2.22 with u'x'=0)
c
. v’
-Velocity v = —— (de 2.13)
er
I+—
c

that applied to the wave function supplies

2 12 12 4
VX v v vt
w’zasenZny(t——zj: asenZny’\/H 5 t'\/]+—2—— =asen2ny't',
c c c 5 v
+

c
butas t'=¢, and y'=y, then ' =y, .

§5 Transformations of the Forces F and F'

Differentiating 4.9 and dividing by 1.17 we have

dt' diNK  diK ¢ JK

Differentiating 4.10 and dividing by 1.22 we have

p__dp___dr V_Q:»ﬁzL{ﬁ' dE"}:F ! [ﬁ'_(*ca')"_] 52

dt arJKk drJK ¢ Je'| dr ¢

From the system formed by 5.1 and 5.2 we have

= F'=

_d_Ei}
dt ¢’

[ﬁ— (F.ﬁ)iz] 5.1

dE _dE’

—= orﬁ.ﬁ:ﬁ".ﬁ', 5.3
dt dt'

that is an invariant between the observers in the Undulating .Relativity.
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Table 5, transformations of the Forces F and F'

- 1 | = (= _\V 7 1 L Fr 0
N

F’x'z%{Fx— (ﬁﬁ)clz} 5.4 Fx:%[F,x'jL(ﬁ"ﬁ'):_z’} 5.5

F'y'=Fy/K 541 | Fy=F'y'/{K' 5.5.1
F'z'= Fz/JK 542 | Fz=F'z'/K' 5.5.2
dE'_dE o

dr dr 5.3 F.ai=Fu 5.3

§6 Transformations of the density of charge p, p' and density of current J and J'

d
Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as p, :d_q we have

pou — pau _ pov jp!ﬁ!:pﬁ_pvjj':j_pv 61

12 2 2
\/1—”2 \/1—”2 \/1—”2
C C C

u u' V' - - . e -
and —2¢ - -7 =S pu=pu-pv=J=J-p'v. 6.2

2 12 12
\/1—”2 \/1—”2 \/1—”2
C C C

Table 6, transformations of the density of charges p, p' and density of current J and J'

j':j—p\j 6.1 j:j'—p'\_}.' 6.2
J'x'=Jx—pv 6.3 Jx=Jx"+p"V 6.4
J'y'=Jy 6.3.1 Jy=Jy 6.4.1
J'Z'=Jz 6.3.2 Jz=J"7 6.4.2
J = pii 6.5 J'=p'i’ 6.6
Po ' Po
P=T— p =
] u 6.7 u' 6.8
S -
¢ c
o' = K 6.9 o= oK' 6.10

From the system formed by 6.1 and 6.2 we had 6.9 and 6.10.

§7 Transformation of the electric fields E, E' and magnetic fields B , B'

-

”xé) and ﬁ'zq(E’+ﬁ'x§') in 5.1 and 5.2 we have
olE x5~ ol e B)- v i B)a) %
ana o+ B)= | ol )l )]

c

Applying the forces of Lorentz F = q(

} , that simplified become

(E'+iix B')=

e\ i) (E.0) % | o (i) e E)- @) | gom

where we get the invariance of E.u = E'ii’ between the observers as a consequence of 5.3 and the
following components of each axis
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E'x'+u'y'B'z'-u'z'B'"y'= L[Ex+ uyBz—uzBy— Em;xv - Eytéyv - EZL;ZV} 7.1
VK c c c
1
E'y+u'z’B'x'-u'x'B'z’'=——=|Ey+uzBx—uxBz 711
JE[ ]
1
E'Z4+u'x'B'y'-u'y'B'x'=—|Ez+uxBy—-uyBx 7.1.2
d |
Ex+usz—usz:L E’x’+u’y’B’z’—u’z’B’y’+E ruxy +E JUuJyy +E Zuzy 7.2
VK’ o2 o2 o2
1
Ey+uzBx—uxBz=—|E'y'+u'z’B'x'-u'x'B'z’ 7.21
x| |
1
Ez+uxBy-uyBx=——|E'Z'+u'x'B'y'-u'y'B'x' 7.2.2
T ]

To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8.

Table 7, transformations of the electric fields £, E' and magnetic fields BeB

Ex vux E'x’ viu'x'
E'x'=—| 11— 7.3 Ex = 1+ 7.4
=) )
Ey v’ vux) VvBz E'y' v: viu'x") v'B'z
Evyv="2|]+—— |——Z | 7.31 Ev = ]+ —+ + 741
y \/E( CZ CZ j \/E y lKr ( 02 CZ [K!
E 2 B EI ’ 12 [ IBI i
Ez=2l+ L -2 2 1782 | o2 L PET ) P2 740
\/E c c K VK’ c c VK’
B'x'=Bx 7.5 Bx=B'x' 7.6
% y'
B’y’=By+c—2EZ 7.5.1 By=B'y'—c—2E'Z’ 7.6.1
B'z'= BZ—LZEy 7.5.2 Bz = B'Z’-i—v—ZE'y' 7.6.2
c c
E'y'= EyNK 77 Ey=E'y'K' 78
E 2= EoK 771 | gk 7.8.1
ux u'x'
By=-—F 7.9 By=——3E7 7.10
ux u'x'
Bz=—Ey 7.9.1 B'z'=——FE")' 7.10.1
Table 8, transformations of the electric fields £, E' and magnetic fields BeB
1 — % 1 — v’
E'x'=—— Ex—(E.ﬁ)— 7.11 Ex=—— E’x'+(E’.L7’)— 7.12
VK { cz} \/K[ ¢’
1 1
E’y’=ﬁ(Ey—vBZ) 7.11.1 Ey=7(E’y’+V’B’Z’) 7.12.1
1 1
E’z’:—(Ez+vBy) 7112 | Ez= (E’z’—v’B’y’) 7.12.2
B'x'= Bx 713 Bx=B"x' 714
B'y’:By 7.13.1 By:B'y' 7.14.1
B'z' = Bz 7132 | Bz=B'z’ 7142
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Relation between the electric field and magnetic field

If an electric-magnetic field has to the observer O’ the naught magnetic component B'=zero and the

electric component E'. To the observer O this field is represented with both components, being the
magnetic field described by the conjunct 7.5 and has as components

vEz vE
Bx=zer0,By=——2,Bz:—2y, 7.15
c c
: = 1 =
that are equivalentto B=—VxFE . 7.16

c
Formula of Biot-Savart

The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x' the
following electric-magnetic properties:

d.
-Linear density of resting electric charge p, = d_q’
x

-Naught electric current I'= zero
-Naught magnetic field B’ = zero = ii' = zero

-Radial electrical field of module E'=+/E'y’+E'z"” = p Po R at any point of radius R =+/y"* +z'° with

e

o

the component E'x'= zero.

To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity ux =v
to which it associates the following electric-magnetic properties:

-Linear density of the electric charge p = p—“g (from 6.7 with u = v)
v
1=
c
v
-Electric current [ = pv = PV
VZ
1=
c
!
-Radial electrical field of module FE =T (according to the conjuncts 7.3 and 7.5 with
v
1=
c
B'=zero = ii'=zero and ux =v )
. ] vEz vEy
-Magnetic  field of  components Bx =zero, By =——+, Bz =—; and  module
c c
vE v E v 1 1 1
B=—=— =— Po ol here W, =—, being in the vectorial form
¢ ¢ v oc v: 2me, R 2nR g,C
I-— I-—
c c
- 1 _
B= at? u 717

27R
where u is a unitary vector perpendicular to the electrical field E and tangent to the circumference that

passes by the point of radius R = w/yz +z° Dbecause from the conjunct 7.4 and 7.6 E.B=zero.
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§8 Transformations of the differential operators

Table 9, differential operators

6 _0 vo g1 | 20 v 0o 8.2
ox' 0x ot ' ox oOx' ¢’ ot '
6 0 6 0

ay,—g 8.1.1 5— ay, 8.2.1
0 _ 0 0 _ 0

5_5 8.1.2 5_5 8.2.2

2 ' 2 ror 89.4
0 0 L(Iij__KJa 8.3 0 v 0 1 (]+v_+vxj8

)
- = 4 _— = + _
ot JK dx K 2 ot ot  JK ox' K 2 or'

¢’ c’t c c’t
From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions

0 x/to o x'/t' o
—+—F—=o0oand —+—F——=0. 8.5
ox ¢ Ot ox' ¢ ot

From where we conclude that only the functions y (2.19) and ' (2.20) that supply the conditions

Oy [ YOV _ ) ang OV X0V

- - = 8.6
ox c¢° Ot ox' ¢ ot

can represent the propagation with velocity c in the Undulating Relativity indicating that the field propagates
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also
write to the other axis

a—"[/+y—jla—"[/=0, Oy +yjl oy =0 and 6_1//+Z_§t8_¢/:0’ Oy +Z§t Oy =o0. 8.7
oy ¢ Ot oy’ ¢ ot oz ¢ Ot oz ¢ ot

From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem

_vux ]+v’u'x’
J_G(x',y’,z',t’)_ ¢’ and J'= o(x,y.z.t) _ ¢’ , 8.8

- A(x,y,z1t) - JK a(x’,y',z',t’)_ JK'

variables with ux and u'x’ as a consequence of the principle of contancy of the light velocity but are equal ais
J =J" and willbe equaltoone J=J'=/when ux=u'x'=c.

Invariance of the wave equation
The wave equation to the observer O’ is

o0, o 1
ax12 ayIZ aZrZ CZ atIZ

= zero
where applying to the formulas of tables 9 and 1.13 we get
2
i+i2 2_|_ 82 + 82 _L v i+ 1 ]+ﬁ_m 2 = zero
ox ¢’ ot oy’ oz’ ¢’ JK 0x K ¢ ¢’ ot

from where we find
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o’ o’ o° 10 2vo 2o wux ot vioo vieol 2ux o’
K +K S+K S-S+ —+— - t Tt i T A
ox Oy 0z" ¢° 0t° «c¢° oxot ' oOxot ¢ oaxor o’ ot ¢’ ot

v:i ol 2v o 2v3 o7 ux o7 v o7 2vux &7 2Viux o7 viux? o7 v! &’

-— = + - —+ —+ —————=7zero
c’ox’ ¢’ éxat ¢’ oxot ¢t oxor ' ot ¢’ o’ ¢’ o c® o o’
that simplifying supplies
KiJrKiJFK@z_Li_Zvuxaz _ﬁi_v_@erZvux@ vuxzi_zero
ox’ oy’ oz’ ¢’ ot’ ¢ oxor ccoxt cfat oo c’ ot
where reordering the terms we find
62 62 62 2 2 ] 62 2 62 2 62 2 62
K—+K—+K—- I+v—2—¥ —2—2—V— —2+g—+@—2 = zero 8.9
ox’ oy’ oz c ¢’ Jc° ot ox ¢’ oxot ¢ ot
o x/t o o uxoY 8 2ux & ux’ o’
butfrom8.5and 1.13wehave —+—F—=0=|_—+—F—| =5+— +— 7 =zero
ox ¢’ ot ox ¢ Ot ox c” oxot ¢’ ot

o> o & 10’
that applied in 8.9 supplies the wave equation to the observer O —— + ——t 57 =zero. 8.10
ox’ oy’ oz’ o’

To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting
2
o v 0 2+82 +82 1 v 0 N 1 1+v’2+v’u'x’ 0 — ero
ox' ¢’ ot oy’ oz ¢’ K ox' K c’ ¢’ ot

from where we find

1% 0’ LK 0’ LK 0’ _L 0’ _ﬂ o’ _2v’3 0’ _4v’2u'x’ 0’ +ﬁ 0’ +ﬂ o’
ox'? oy’ ozt ol axor ¢! ox'or ¢ oot ot o o’
+2v’3u'x’ o’ _v'2 o’ v o’ 87 2iu'x o7 _2v'2 0’ _2v’u'x’ o’ 3
¢’ f ot o ax'or o ox'or ¢t oot ot o ¢t o’
3 2 2 2 2 4 2
v7iu'x" 0 vVau'x's 0 \VARNG
- - - = zero
C6 ath C6 ath 06 atIZ
that simplifying supplies
o’ ,62 ,62 1 07 Xux &’ V2ol v et wu'x 87 viu'x’? o B
K’ +K 2 +K 2 2 Ag2 4 A 2 Aa2 4 Aa2 4 2 6 2 = zero
ox'? oy oz'" ¢ ot c ox'ot'  c¢° oOx ¢’ ot ¢’ ot c ot

where reordering the terms we find
o’ 0’ 82 V2 Wu'x' 1 87 v o7 2u'x o u'x"? o°

K’ + K’ +K' I+—+ — -— + + = zero
ox'? oy’ oz'? ¢’ c’ ¢’ o'’ ox'? ¢’ ox'ot ¢t o’

but from 8.5 and 1.18 we have

o X'/t o o uwx oY & 2ux & ux? o’

[ + 2 _r =0= r + 2 ' = 2 + 2 1 ’ + 4 2

ox ¢’ Ot ox'" c¢° Ot ox' c- ox'ot ¢’ ot

that replaced in the reordered equation supplies the wave equation to the observer O’.

= zero

Invariance of the Continuity equation

The continuity equation in the differential form to the observer O’ is

p +V.J' = zero = P + CJx + oy + 0Jz
ot’ o' ox' oy oz

= zero 8.11
where replacing the formulas of tables 6, 9, and 1.13 we get

] 2
(—V i+—(1+v—2—%J g Jp\/E‘l-(i-i——ij(J pv)+ oy +—8JZ = zero

JK ox JKU ¢ ot ox ¢’ ot oy 0Oz
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making the operations we find
2 2
v@p+8_p+v_8_p_vux8_p+8Jx+L8Jx_v8p_v_@_p+8Jy+8Jz

= zero
ox o0t ¢ o0t ¢ ot ox ¢ ot ox ¢’ ot 0y Oz
that simplifying supplies
op vuxdp OJx v oJx OJy 0Jz
————t——+— + + = zero
ot ¢ 0t Ox ¢ 0t 0y Oz
where applying Jx = pux with ux constant we get
@_@G_p+_aJx+%a(pux)+8Jy+8JZ=Zem:>8_p+6Jx+8Jy+8JZ=Zem 8.12
ot ¢ 0t Ox ¢ Ot oy Oz ot 0Ox 0y 0z

that is the continuity equation in the differential form to the observer O.

To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of
tables 6, 9, and 1.18 in 8.12 getting

, 2 [ 4 "y’ 'z
( =, ] r(1+v—2+vu2x] d Jp’x/EﬁL(i_V_ij(J’x%p’v'ﬁaJy +8JZ = zero

p— + _

JK'ox' K c > ot ox' ¢’ ot oy oz
making the operations we find

’ ' ' 12 ' [ ' . ’ . ' ' 2 ' o, "
_Vv'op +8_p+v_26p +vu2x op +8Jx_v_28Jx+v8p _v_zap +8Jy+6Jz

ox' ot ¢ ot ¢ ot ox' ¢ ot ox" ¢ ot 0y oz’

= zero

that simplifying supplies

op'" Vvu'x'op' oJ'x" v oJx" oJy oJ<z
' + 2 ' + 2 i + ' + '

ot c- Ot ox' ¢ Ot oy oz

= zero

where applying J'x'= p'u’x" with u'x’ constant we get
op LY u2x op +8Jx _v_zﬁ(pux)+8Jy +8JZ =zer0:>ap +8Jx +8Jy +8JZ
ot' ¢ ot o0x' ¢ ot' oy’ oz’ ot ox' oy’ oz’

= zero

that is the continuity equation in the differential form to the observer O’.
Invariance of Maxwell’s equations
That in the differential form are written this way

With electrical charge

To the observer O To the observer O’
OEx OEy OEz p OE'x" OE'y' OE'z" p’
t—— = 8.13 + + =— 8.14
ox oy 0Oz g, ox' oy’ oz' g,
8Bx+63y+8Bz=0 815 6Bx+6By+8 2 816
ox oy Oz ox' oy oz'
OEy OEx 0Bz OE'y' OFE'X OB'z'
- =- 8.17 - == 8.18
ox Oy ot ox' oy’ ot'
OEz OEy OBx OE'z' OFE'y' OB'x'
- =- 8.19 - =- 8.20
oy 0Oz ot oy’ oz' ot'
OEx OEz _ OBy 621 OE'x' OE'z' _ 0OB'y 82
0z  Ox ot ' oz' ox' ot' '
OBy OBx OFEz OB'y' OB'X OE'Z
- =WwJz+e,n,—— |82 - =u,J' z'+e 1, 24
o oy " Moo 138 | "o o " Ho a0 |8
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0Bz 0By _ Jrte OEx 8 25 OB'z' 0B'y' _ Jire OE'x' 896
o a0 H, oMo o |8 o Py K, oMo o :
OBx OBz OEy OB'x'" OB'Z OE'y'
— =, JJy+eg pn, — - =pn,J y+e
= o H,Jy €1, Py 8.27 Py o H,J V+E N, or 8.28
Without electrical charge p = p'= zero and J=J'=zero
To the observer O To the observer O’
OEx OEy OFEz OE'x'" OE'y' OFE'Z
+——+—=0 8.29 + + =0 8.30
ox Oy Oz Ox' oy’ oz'
6Bx+63y+8Bz=0 831 OB'x +6By +6Bz iy 8 32
ox oy Oz ox' oy oz'
OEy OEx OBz OE'y" OFE'xX OB’z
— =— 8.33 - =— 8.34
ox Oy ot ox'’ oy’ ot’
OEz OEy OBx OE'z" OFE'y' OB'x'
- == 8.35 - == 8.36
oy 0Oz ot oy’ oz' ot'
OEx OEz _ OBy 837 OE'x' OE'z' _ 0By 8 38
0z  Ox ot ' oz' ox' ot' '
8By_6Bx_8 OEz 830 OB'y'" 0o ’x’_8 OE'Z' 8.40
o oy M ' o o Mo '
OBz 0By . OEx 641 63’2’_8B'y'_8 OE' x' 6.4
o o Py ' o o Mo '
OBx 0Bz _ . OEy 8 43 OB'x' 0B'z' _ . OE' y' 8 44
o BT T P '
1
N, =— 8.45
c

We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is
!

OE'X'" OE'y' OE'z' p
+ + =
ox' oy’ oz' e,

8.14

where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u’x’ constant, we get
0 v 0| Ex vux) 0| Ey v’ vux)| VvBz
—t ==l |t =t |——F—=|t
o c’ ot K c oy _\/E c c JK

0 { Ez (1 v’ vuxj vBy— B p\/f

+— —— + =
0z| VK ¢ VK g,
_ , _ v’ OFx ,
making the products, summing and subtracting the term _28_ we find
¢’ ox

OEx v OEx vux 8Ex_v2ux 8Ex+6Ey+ﬁ6Ey_vux 6Ey_vﬁBz+

x ¢ 0t ¢ ax ¢ ot dy oy oy
+8Ez ﬁ@Ez_vux OEz v@By_i_ﬁaEx_ﬁ@Ex_pK
2 2 -

0z c¢° Oz ¢’ oz 0z ¢ ox ¢’ ox €

o

that reordering results

v (ﬁEx ux 6Exj 0Bz OBy I OEx OEx OEy OEz vl ovux) pK
|+ |-V — -— + + + I+

cc\ox ¢ Ot oy 0z ¢° Ot ox oy oz
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where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to

vpux o
- v(qux) = —Vl,pux = ——— gotten from 8.25 and 8.45 resulting in
€,C

o

2 2
(6Ex+6Ey+6Ezj(]+v__%j=£{1+v__vuxJ_£vux+£vux

ox Oy Oz o €, ¢’ g, ¢ g, ¢’
OEx N OEy N OFEz _p
ox oy 0z g,

that is the Law of Gauss in the differential form to the observer O.

from where we get 8.13

To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux
constant, we get

[i_ii}E'x'(]_i_v'u,x'j_i_i E!yl 1+ﬁ+vlu!xl +V’B’Z' .
ox' ¢’ ot |JK' c’ oy'| VK’ c’ c’ VK’
o |:E'Z'(] vr2 vrurxrj_vrBryr:|_pr /Kr

e\t e Tk | .
"> OFE'x'
making the products, adding and subtracting the term 2 W we get
OE'x' v OE'x' N v'u'x' OE'x' vZiu'x' OE'X' N OE'y' +ﬁ8E'y' N viu'x' oE'y' N
ox' ¢’ ot ¢’ ox c’ ot' o' & oy o
N v'OB'z' N OFE'z' ﬁ@E'z’ N v'u'x'0E'z" v'OB'y' +ﬁ8E’x' _ﬁ OE'x' _p'K
oy’ oz o’ o7 ¢ o oz’ o o g,

that reordering results in
v'?(OE'x' u'x'OF'x' J[(O0B'z" OB'y'" I OE'X
+— +v - - +
ox' ¢ ot oy' oz' ¢ ot

[ ! ! r 1! 72 ! ! ! ! !
N 8Ex+8Ey+8 z ]+v2+vu2x :pK
ox' oy’ oz' €

c c "
where the first blank is 8.5 and because of this equals to zero, the second blank is equal to
Vrp!urx! ) .
———— gotten from 8.26 and 8.45 resulting in
e

o

" (W] [ 12 (W ' 12 [ [ [
(6Ex+8Ey+aEzJ(1+v +vux} p(1+v +1/Lt)cJ+p1/Lt)c pv'u'x

2
C

V (i, ¥) =V, pu X' =

e’ e’

o o

ox' oy’ oz' c’ ) e c’ c’
aE!!xV aE! ! aEV ! !
—+ Y + z = P that is the Law of Gauss in the differential form to the O’

from where we get
X oy’ oz €

o

observer.
Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.
§9 Explaining the Sagnac Effect with the Undulating Relativity

We must transform the straight movement of the two observers O and O’ used in the deduction of the
Undulating Relativity in a plain circular movement with a constant radius. Let’'s imagine that the observer O
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial
speed V' in a unclockwise way (U) equals to the negative course of the axis x of the UR.

In the moment t =t = zero, the observer O emits two rays of light from the common origin to both

observers, one in a unclockwise way of arc cty and another in a clockwise way of arc ctc, therefore cty = ctc
and ty = tc, because c is the speed of the constant light, and t; and tc the time.
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In the moment t = t' = zero the observer O’ also emits two rays of light from the common origin to both
observers, one in a unclockwise way (useless) of arc ct’y and another one in a clockwise way of arc ct’c, thus
cty =ct'c and t'y = t'c because c is the speed of the constant light, and t'; and t'¢ the time.

Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR):

|v| ¢ v 2vux

|V'| { \/ v,z Wu'x'

L B | I : 1.20
|v| t c? c?

Making ux = u’x’ = ¢ ( ray of light projected alongside the positive axis x ) and splitting the equations we
have:

t'=t(]—zj 9.1 t=t'(1+1j 9.2
C C

v v
V= —— 9.3 V= 9.4

v v

1—— ]+ —

c c
When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance
Vi, =V't', of the observer O and simultaneously will detect its clockwise ray of light at the same point of

the observer O, in a symmetric position to the diameter that goes through the observer O because
cty =ct. =>t, =t. and ct', =ct'. = t', =t',, following the four equations above we have:

2nR
cty, +vi, =2nR=t,. = 9.5
c+v
27R
ct' AN, =27R =1 = 9.6
c+2v

When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its
own clockwise ray and will be at the distance vt,. =V't’,, of the observer O, then following the equations
1,2,3 and 4 above we have:

2U

27R
Cltye =2nR+Vvt,, = t,, =—— 9.7
c—v
2nR
cthy=2nR=>t, . =—— 9.8
c

The time difference to the observer O is:

2R 2nR 4nRv
At=t,. —t.= - = 9.9
c—Vv c¢c+v ¢’ —-v

The time difference to the observer O’ is:

2nR  2mR 4RV
= = 9.10

c _c+2v' B (c+2v’)c

Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating
Relativity.
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§10 Explaining the experience of Ives-Stilwell with the Undulating Relativity

We should rewrite the equations (2.21) to the wave length in the Undulating Relativity:

A A
A= and A = , 2.21
v 2Qvux Vi VU X
c c c c

Making ux = u’x’ = ¢ ( Ray of light projected alongside the positive axis x ), we have the equations:

X':—}L and 7»=—x 10.1

-0 )

If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and wave length A, in the positive
way of the axis x, then according to the equation 10.1 the observer O’ will measure the waves with velocity ¢
and the wave length A’ according to the formulas:

Ap Ap

_F e,

(=) ()
c c

If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis x,

emits waves, provenient of a resting source in its origin with velocity ¢ and the wave length A, in the

positive way of the axis x, then according to the equation 10.1 the observer O will measure waves with
velocity c and wave lenght A , according to the formulas:

}\"F :}\'—A and }\’A :}\'—F,,
=) ()
C C

The resting sources in the origin of the observers O and O’ are identical thus A =A',..

Ap= and A, = 10.2

10.3

We calculate the average wave length A of the measured waves (A ,,A',) using the equations 10.2 and
10.3, the left side in each equation:

’ ! 2
T Mpthy g +x'F(1—K) Motk Ay 1+(]_z)
2 2(]—") ¢ 2 2(1—Vj ¢
C c

We calculate the diffrence between the average wave length A and the emited wave length by the sources
AN=A—A,:

_ Y 2
AL=A—M\, :—F{H(l—z) }—kF
2(1—V) ¢
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[1+1 22+ VZ 2+2K}
(1 : °‘
c

A

(1‘(;)76

Reference
http://www.wbabin.net/physics/faraj7.htm

10.4

~
|<
LS}

§10 Ives-Stilwell (continuation)
The Doppler’s effect transversal to the Undulating Relativity was obtained in the §2 as follows:

If the observer O’, that sees the observer O, moves with the speed —v’ in a negative way to the axis x’, emits
waves with the frequency )’ and the speed c then the observer O according to 2.22 and u'x'=—V" will
measure waves of frequency y and speed c in a perpendicular plane to the movement of O’ given by

y=y' [1-Y— 2.25

12 2
For u'x'=—v' we will have ux=zero and ,/]—v—z , /1+v—2 =1 with this we can write the relation between
c c

the transversal frequency y =y, and the source frequency y'=)",. like this
y, = 105

1+C—2

With c=y,A, =)' A’ we have the relation between the length of the transversal wave A, and the length of

the source wave A/,
2

A=Ay [T+ 10.6

2
C

The variation of the length of the transversal wave in the relation to the length of the source wave is:

2 2 }\" 2
AN, =h, =N =" /1+z—2—wF=wF( /1+z—2—1J;w (1+2€ 1) ZF‘C’—Z 10.7

that is the same value gotten in the Theory of Special Relativity.

Applying 10.7 in 10.4 we have
= Al
Al = !

(=)

With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows

10.8

2
A,=N (1—1) 10.9
c
: v Ay
And from this we have the formula of speed —=1— 10.10
c Ay
Ap=Ap=JA N, 10.11

Applying 10.10 and 10.11 in 10.6 we have

}\’ 2
IV \/1+(1— /—AJ 10.12
Ay
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From 10.8 and 10.12 we conclude that A , <A, <A, <A<A/,. 10.13

So that we the values of A, and L', obtained from the Ives-Stiwell experience we can evaluate A,, A,

Y and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity.

c

§11 Transformation of the power of a luminous ray between two referencials in the Special Theory of
Relativity

The relationship within the power developed by the forces between two referencials is written in the Special
Theory of the Relativity in the following way:

. Fii—vFx
Flu=————+ 1.1

vux
-
)

The definition of the component of the force along the axis x is:

dt dt dt dt
For a luminous ray, the principle of light speed constancy guarantees that the component ux of the light
speed is also constant along its axis, thus

x dx , , dux dm

— =— =ux = constant, demonstrating that in two —— = zero and Fx =—ux 11.3
t dt dt dt
The formula of energy is £ = mc” from where we have — = — 11.4

dt ¢ dt
- dE - _ o . ux
From the definition of energy we have 7 = F.u that applying in 4 and 3 we have Fx=F.u - 11.5
t c

Applying 5 in 1 we heve:

Fii—(Fii)™
F'u'= ¢
vux
) Pbid
- di’ dE
From where we find that F'u'= Fu or — = — 11.6
di' dt

A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as
the source.

§12 Linearity

The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating
Relativity:

J— :ux’—:—:uy’—:—:uz 113

uz 1.18

Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in
the following way:

x = Ax'+Bt’ 12.1
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t = ExX'+Ft 12.2

With the respective inverted equations:
, F -B
X = X+ t
AF — BE AF — BE

12.3

-FE A
= X+ t
AF — BE AF — BE

!

12.4

Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and
y,Z.

We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed ¢
(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective
inertials referential at the moment in which the origins are coincident and at the moment where:

t=t =zero 12.5

because of this in the equation 12.2 at the moment where t' = zero we must have E = zero so that we also
have t = zero, we can’t assume that when t' = zero, X’ also be equal to zero, because if the spreading

happens in the plane y'z’ we will have x’ = zero plus t'# zero.

We should rewrite the corrected equations (E = zero):

x = Ax'+Bt' 12.6
t=Ft 12.7
With the respective corrected inverted equations:
, x Bt
X'=——— 12.8
A AF
, !
t'=— 12.9
F
If the spreading happens in the plane y’ zZ’ we have x’ = zero and dividing 12.6 by 12.7 we have:
x B
"y 12.10
t F

where v is the module of the speed in which the observer O sees the referential of the observer O’ moving
alongside the x axis in the positive way because the sign of the equation is positive.

If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have:
x' B B

! !

—=——=—V or —=V 12.11
t' A A

where Vv’ is the module of the speed in which the observer O’ sees the referential of the observer O moving
alongside the x’ axis in the negative way because the signal of the equation is negative.

The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the
equations 12.6 to 12.9:

2_ 2402

x? =t =x?=c’t 1.6

Applying 12.6 and 12.7 in 1.6 we have:
(Ax!_'_Btr)Z _CZFZtrZ — er _CZZrZ

From where we have:
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2

B° 2ABx'
(AZX'Z )—sz'Z {Fz _c__ czfx } — 2 _p2?

B°  2ABx'
where making A% = 1 in the brackets in arc and {FZ -

2

> } =1 in the straight brackets we have
c c't

the equality between both sides of the equal signal of the equation.

B®  24Bx B® 2Bx
Appllying A=1in | F* ——-—=——|=1 we have F’ =]+ += 12.12
c c't c c’t
. . B B ,
Appllying A =1in 12.11 we have z:7=B=v 12.11

That applied in 12.12 suplies:

12 [
/ v 2V x

F = 1+—2+T:F(X',f') 12.12
c c’t

as F(x, t) is equal to the function F depending of the variables x’ and t'.

Applying 12.8 and 12.9 in 1.6 we have:

2 2
x2—02t2=£—£ _Cz%
A AF F

From where we have:

2 2
2 2,2 X 2.0 1 B 2Bx
X —ct=|—5|-ct|—— +
(AJ Lﬂ A’C’F? A’C’Fi
B’ 2Bx

1
where making A? = 1 in the bracket in arc and {— }: 1 in the straight bracket we

- +
F? AC’F’  A’C’Ft
have the equality between both sides of the equal signal of the equation.

Aoplying A = 1 and 12.101n | B, _2Bx I we have
N = a . —_— = .
PPINg F. ACF ACF
1
P - Flx.1) 12.13
]_}.ﬁ_%
c2 czt

as F(x, t) is equal to the function F depending on the variables x and t.

We must make the following naming according to 2.5 and 2.6:

12 r ot

K'=1+2 +2V2x — F =K' 12.14
c ct
v 2wx 1

K=l+———"F"=>F=—\+ 12.15

¢’ VK
As the equation to F(x’, t') from 12.12 and F(x, t) from 12.13 must be equal, we have:

28/144



2
V' V' x! 1
F = 1+—2+ — = 12.16
' 2
% 2vx
M

c c't
c czt

Thus:

2 12 r
\/]+V_2_2_\2/x_\/]+v_2+2\/2x =l orJK K =1 1217

c’ c't c c't
Exactly equal to 1.10.
Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have:
x=x'+'t 12.6
t=Ft 12.7

With the respective inverted corrected equations:

xX'=x—vt 12.8
,
t'=— 12.9
F
We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae:
x=x+'t 12.6
, 12 2V'x’
t=t'\[1+—5+— 12.7
c c’t
With the respective inverted final equations:
xX'=x—vt 12.8
, v 2wx
t'=t ] +—2——2 12.9
c c’t
That are exactly the equations of the table |
B , . : v
As v=— and V'= B then the relations between vand v are v=— or V'=v.F’ 12.18

We will transform F (12.12) function of the elements v, x’, and t’ for F (12.13) function of the elements v, x
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18:

12 !\ 2 j—
Fo /]+v_2+2vzx _ ]+(VF;) +2va vt)
c c't c 2
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2 22 22 2
2vxF vlj :>F2+v}; _2vx2F = 1

F?=1+=—
c't c c c't v: o Jwx

c c’t
That is exactly the equation 12.13.

We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements v’, X’
and t’, replacing in 12.13 the equations 12.6, 12.7 and 12.18:

F= ! _ l _ 1
]+v2 2vx 1(vY ZV'(x'+v't’) )i Ve 2v'x' 7
2t 1+7 P R RIS Sy pppy sy g
¢ ct c\F ¢ FFt c’F° ct'F° c’F
12 ' )2 .
F = ! = F’|1- l} _gvxz =] F= 1+"_2+2"Tx
\/] Ve VX c’F2 ct'F c c’t
CZF'Z CZt/FrZ

That is exactly the equation 12.12.

We have to calculate the total diferential of F(x’, t') (12.12):

oF oF
dF = —dx'+—dt’'
ox' ot'
as:
oF 1 V and or 1 Vv X 12.19
ox' Kt o K tt '
we have:
1 v 1 v X
dF = 3 dx'— EOTioT !
VK ¢t JK' ¢t t
where applying 1.18 we find:
1 1 Vv dx
dF = S—dx'— s———di'=0 12.20
JK' 't VK ¢t dt
From where we conclude that F function of x’ and t’ is a constant.
We have to calculate the total diferential of F(x, t) (12.13):
oF oF
dF =—dx+—dt
Oox ot
as:
oF 1 v oF 1 v x
- =—3—2 and — = -5 12.21
ox 2 ¢t ot Zcett
K-’ K’
we have:
1 v 1 v x
= c't ~ctt
K? K?
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where applying 1.13 we find:

dF = dx——— X gr=0

From where we conclude that F function of x and t is a constant.

The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and
time.

The time has its own interpretation that can be understood if we analyze to a determined observer the
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will
get a result without any use for the physics.

If in the instant t = t' = zero, the observer O’ emits two rays of light, one alongside the axis x and the other
alongside the axis y, after the interval of time t’, the rays hit for the observer O’, simultaneously, the points A,
and A, to the distance ct’ from the origin, although for the observer O, the points won’t be hit simultaneously.
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius
in relation to the axis x and that provide the same time for both observers (t; = t; and t'y = t’;), which means
that only one ray of light is necessary to check the time between the referentials.

According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight
line according to what is demanded by the fundamental axiom of the Undulating Relativity § 12, because of
this, the difference in velocities v and v’ is due to only a difference in time between the referentials.

X=X 12 y=X=xX' 14

t t
We can also relate na inertial referential for which the light spread in a straight line according to what is
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the

difference of time between the referentials.

According to § 1, if the observer O at the instant t = t' = zero, emits a ray of light from the origin of its
referential, after an interval of time t;, the ray of light hits the point A; with coordinates (x4, y4, z4, t1) to the
distance ct, of the origin of the observer O, then we have:

2 2wx
t'=t, |1+ -

c ct

After hitting the point A; the ray of light still spread in the same direction and in the same way, after an
interval of time t,, the ray of light hits the point A, with coordinates (x; + Xo, y1 + Y, Z1 + 25, t; + 1) to the
distance ct, to the point A,, then we have:

_X 2 2wx 2 2wx 2
X_dx_ N 2=Mx2>\/]+v—— ! =\/1+"—2— 2[4 Y _2vux
tl 1,

t dt ¢ 't &

and with this we get:

2 2wx V2
t',=t, [1+Y5-52=t, /1+ ZV“X
c c't,
2vx vi 2vlx, +x
t'+t',=t 1+ ! +——2"”x =(¢,+t,) 2"”“ =(¢,+t,). [ 1+ 2, +x,)
12l At +t,)

The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be
expanded to A, points and several observers.
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0, 0, 0=0 0, X

*
t=t = zERoO
In the figure the angles have a relation y=¢'—¢ and are equal to the following segments:

1
P

O:to O=0' isequalto O=0' to O’y (0, «>0',=vt,=V't'))

O,t0 Ojisequalto O'1to O, (0, <> O, =v(t, +1,)=V(¢',+t',)—>vt,=V't',=0,<>0,+0',<>0',)
And are parallel to the following segments:

O, to A, is parallel to O, to A,
0’5 to A, is parallel to O’y to A,

X=X'"isparallelto X,=X",

The cosine of the angles of inclination ¢ and ¢’ to the rays for the observers O and O’ according to 2.3 and
2.4 are:

ux_y
- %' cosdp—v/c
u'x'= I/l)g v :>I/l X — C'2 C :>COS¢': Zd)
c
1+V—2——2V?x 1+V—2——2V§’x \/1+‘}2—2Vcos¢
c c c c c
coshp—v/c
cosg=S20=v/¢ 12.23
VK
s sen
And with this we have: send'= o 12.24
VK
u!xf v!
u'x'+v' ux c +? cos'+v'/c
ux= > === - =cosh= :
! [ c ! [ ! !
\/1+"2+2”;x \/1+"2+2"ij \/]+"2+2"cos¢'
c c c c c c
cosd'+v'/c
cos¢=¢— 12.25
/K!

32/144



send’

12.26
/K!

The cosine of the angle y with intersection of rays equal to:

And with this we have sen¢=

2 2

¢ - ¢ - = 12.27
VK JK' VK JK'

! r,.! ’
VU g VUX 1 Veosh 1+ Y-cosd!
cos\y = ¢ =

_ ] send ' send’
And with this we have: seny =Y = 12.28
¥ cvK ¢ JK'

The invariance of the cosy shows the harmony of all adopted hypotheses for space and time in the
Undulating Relativity.

The cosvy is equal to the Jacobians of the transformations for the space and time of the picture I, where the
radicals

2 12 r
VK =1 +v_2_2_\2/x and vK'=_|1+ vZ + 2‘}2)’6 are considered variables and are derived.
c c't c ct

I 00 -V VX VUx
cosy=J = o'’ _ 8(x',y',z','t'): g é? g _ 1 t_ 1 o’ os
o' o(xyzt) |—v/e? 001 (]Jrﬁ_ vx) JK VK
| VK JEU 2
00 4 VX' Vviu'x'
cosy=J'= o' _ Oxy.zt) g é? 8 _1+sz' _1+ c’
V=== = = = 8.8
o' a(x 2 t) |y /e’ 001 (1+v'2 _’_v'x'j JK' JK'
| VK JEU T e

§13 Richard C. Tolman

The §4 Transformations of the Momenta of Undulating Relativity was developed based on the experience
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres
preserving the principle of conservation of energy and the principle of conservation of momenta, shows that
the mass is a function of the velocity according to:

mO

1—(?2

m=

where m, is the mass of the sphere when in resting position and u = |ﬁ| =+/uu the module of its speed.

Analyzing the collision between two identical spheres when in relative resting position, that for the observer

O’ are named S’y and S’, are moving along the axis X in the contrary way with the following velocities before
the collision:

Table 1

Esphere Sy Esphere S’,
u'x',=v' u'x,'=—v'
u'y',=zero u'y',=zero
u'z',=zero u'z',=zero

For the observer O the same spheres are named S; and S, and have the velocities
(uxl, Ux,, uy, =uz; =zer0) before the collision calculated according to the table 2 as follows:

33/144



The velocity ux, of the sphere Sy is equals to:

ux. = u'x',+v' _ V4! _
1 _ -_ _ -
12 2v'u'x’ 12 (2 12
Ja I ]+v2+2v2v ]+3’v2
c’ c’ c c c

The transformation from v’ to v according to 1.20 from Table 2 is:

! ! !

- % _ % _ %
2 V'u'x' r2 1t 2
AL TR ) NI A A S
c’ ¢’ c c c
That applied in ux, supplies:
!
ux, =2 % =2v
3
I1+==
c
The velocity ux, of the sphere S; is equal to:
u'x',+v' vy
ux, = 2 22 T 2v+2v !( r) =zero
' viu'x ' Vi(—v
\/1+V2 +—=2 \/1+"2+2
c c c c
Table 2
Sphere S; Sphere S,
!
uxlzz—V,:ZV
I+ 312/ ux, =zero
c
uy,=zero uy, =zero
uz,=zero uz,=zero

For the observers O and O’ the two spheres have the same mass when in relative resting position. And for
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of

this the momenta (p'lzp'z) null themselves during the collision, forming for a brief time (At') only one
body of mass

— ! !
my=m',+m',.

According to the principle of conservation of momenta for the observer O we will have to impose that the
momenta before the collision are equal to the momenta after the collision, thus:

mux, +mux, =(m, +m, )w

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time (At) will also see the

masses united (m=m,+m,) moving. As the masses m, have different velocities and the masses vary

according to their own velocities, this equation cannot be simplified algebraically, having this variation of
masses:

To the left side of the equal sign in the equation we have:

u=ux,=2v
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m m m

mo _ 0 _ 0 _ 0
m;= 2 2 2 e
PR PR A P
CZ cZ CZ C

U=ux,=zero

m m m
p— — o — 0 _
m,= = =

\/1—(”22 \/1—(”"3)2 \/1—(28’;0)2 B

To the right side of the equal sign in the equation we have:

u=w
m1: mu > = mu 5 = mo 5
\/]_(u) \/]_(W) \/]—WZ
c’ c’ ¢
mg_ mo _ mo _ mo

Applying in the equation of conservation of momenta we have:

mux, +m,ux, =(m, +m, )w=m,w+m,w

- - 0=—"10 — W+ d —Ww
4y w w

/]—— /1—— /1——
c’ c’ c?

From where we have:

2v+m,.

2my 2m0W2:> v W

4y w 4y w
1- 11— 1 1
\/ ¢’ \/ ¢’ \/ ¢’ \/ c?
w= v -

3v

]—

cZ

As w#v for the observer O the masses united (mzm, +m2) wouldn’t move momentarily alongside to the

observer O’ which is conceivable if we consider that the instants At # At are different where supposedly the
masses would be in a resting position from the point of view of each observer and that the mass acting with

velocity 2v is bigger than the mass in resting position.

If we operate with these variables in line we would have:

mux, +myux, =(m, +m, )w=m,w+m,w

m, 2V

+m,.0= w+

2 3' 2 2 w=
\%
\/]+ S \/ _WT \/ _WT
1| 2y ¢ ¢ ¢

3V
c

2
c o1+
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c
2myV' _ 2myw
3V _ 4 \/ w

I+=—— 1—
\/ & c’
2myV' 2myw

From where we conclude that w=v" which must be equal to the previous value of w, that is:

A relation between v and v’ that is obtained from Table 2 when ux, =2v that corresponds for the observer O
to the velocity acting over the sphere in resting position.

§14 Velocities composition

Reference — Millennium Relativity

URL: http://www.mrelativity.net/MBriefs/VComp Sci Estab Way.htm

Let’s write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity:

y'=_ XVt o= XVt
2 14.1a 2 14.3a

v v

1-— 1-=

c c
V'=y 14.1b y=y' 14.3b
z'=z 14.1c z=2z' 14.3c

- 1+
f'=—= 142 | t=—== | 144

1-7Y 1-Y-

2 2

c c

From them we obtain the equations of velocity transformation:

P UX—V u'x'+v
ux=———— Ux =——-"="-—-"
]_vux 14.5a 'y 14.6a
c’ c’
2 2
uy‘/l—v—z u'y',/]—v—2
uy=—>"—C—| 1450 | yy=——+—C_ | 146b
]_Vizx ]+%
c c
2 2
uz,/l—v—z u’z’,/l—v—z
wz'=——C_ | 145¢c | yz=— S | 146c
]_VLZJC ]+vu2x
c c

Let's consider that in relation to the observer O’ an object moves with velocity:

u'x'=15.10"km/s(=0,50c).
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And that the velocity of the observer O’ in relation to the observer O is:
v=1,5.10"km/s(=0,50c).

The velocity ux of the object in relation to the observer O must be calculated by the formula 14.6a:

[N 5 3
wx'ty _ 130 +L310°_ 5 4 103 1/ s(=0,80¢).

vu'x'

IR 1,5.105.1,5.505
¢ (3,0.10°)

ux=

Where we use ¢=3,0.10° km/s(=1,00c).

Considering that the object has moved during one second in relation to the observer O (tz],OOs) we can
then with 14.2 calculate the time passed to the observer O’

5 5
=Y t(]_vuxj 1,00(1_1,5-10 .2,4.1()}
= 0’60

2
g\ (3.0.10°) — 11206935
2 2 2 ’ ’
\/]_vz \/]_vz ,_15.10°) v0.75
C C

2
(3.0.10°)
To the observer O the observer O’ is away the distance d given by the formula:

d=vt=15.10".1,00=1,5.10"km .
To the observer O’ the observer O is away the distance d’ given by the formula:

0° 0,60

NO,75

To the distance of the object (dO, d',) in relation to the observers O and O’ is given by the formulae:

d'=vt'=135.1 =1,03923.10° km .

d,=uxt=2,4.10°.100=2,4.10° km .

0.60 _

075

To the observer O the distance between the object and the observer O’ is given by the formula:

d',=u'x't'=15.10". 1,03923.10° km.

Ad=d, —d=24.10°-15.10"=0,90.10" km .
To the observer O the velocity of the object in relation to the observer O’ is given by:

Ad _0,90.10° km

=0,90.10" km/ s (=0,30c)
t 1,00s

2
Relating the times t and t’ using the formula t’:t1 /I—V—Z is only possible and exclusively when ux=v and
c

u'x'=zero what isn’t the case above, to make it possible to understand this we write the equations 14.2 and
14.4 in the formula below:

t(]—vcosd)) t'(1+vcos¢'j
f=——C 72| 142 |t=——-5" 2| 144
2 2
=Y =Y
2 2
c c
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_X i x
Where cos¢p=- and cos¢'=—-.
ct ct

The equations above can be written as:
t'=f(t.0) e t=f'(t.¢) 14.7

In each referential of the observers O and O’ the light propagation creates a sphere with radius ¢t and ct’
that intercept each other forming a circumference that propagates with velocity ¢. The radius ¢t and ct’
and the positive way of the axis x and x’ form the angles ¢ and ¢’ constant between the referentials. If for
the same pair of referentials te angles were variable the time would be alleatory and would become useless
for the Physics. In the equation #'= f(¢,0) we have t' identical function of t and ¢, if we have in it ¢
constant and t' varies according to t we get the common relation between the times t and t' between two
referentials, however if we have t constant and t’ varies according to ¢ we will have for each value of ¢

one value of t' and t between two different referentials, and this analysis is also valid for = f"(¢',¢').

Dividing 14.5a by ¢ we have:

) v COS¢_X
M:ujcos(br: c_ 148
vux v
¢ 1--5 1-+cosd
c c
’ [
Where cosd):i:ﬂ and cos(])':L:M_
ct ¢ ct' ¢
Isolating the velocity we have:
cosd—cosd’ ux —u'x'
v_(cosd—cos¢) ¥ o
¢ (I-cosdcosd’) | wu'x
2
c

From where we conclude that we must have angles ¢ and ¢' constant so that we have the same velocity
between the referentials.

This demand of constant angles between the referentials must solve the controversies of Herbert Dingle.
§15 Invariance

The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this:

x' 100 —v | x
¥y (010 O |y
z/|7{001 0 |z 15.1
| 1000vK |1
That written in the form below represents the same coordinate transformations:
x' 100—v/c| x
¥y (010 O y
z7[7|001 0 z 15.2
c'| 1000 VK |t
We call as:
x' i 100-v/c X x'
r_ rl_y'_x'2 _ _010 0 _ '_y_x2
X=X = 5 = x,} , a—a’l’j— 001 0 , x=x'= 2 = x3 15.3
ct'| |ex't 000 VK ct| |ex
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That are the functions x" =x" (xf ):x"' (x1 ,x2,x3ext )z x" (x,y,z,ct) 15.4

That in the symbolic form is written:

4
x'=a . x orin the indexed form x”zZocijx’ :>x”:ocijx’ 15.5
=1

Where we use Einstein’s sum convention.

The transformations to the space and time of table |, group 1.4 plus 1.8, in the matrix form is written:

X 100 v || x'
y| (010 O |y
z| 001 0 |z 15.6
t| 000K | ¢
That written in the form below represents the same coordinate transformations
x 100v/c| x'
y| (010 O ||y
z|7(001 O z' 15.7
ct| 000K | ct
That we call as
X x' 100v/c x' x'"
2 ’ 12
x=x'= Jz) =% |, a a'y g(l)(l) g , X'=x""= y' = x,3 15.8
X z X
ct cx 000\/? ct' ex'
That are the functions x* =x* (x” )zxk (x" ,x'2,x",ex' )zxk (x',y',z',ct') 15.9
That in the symbolic form is written:
x=a'.x" or in the indexed form x* :Za'k, ' =xf=a, x" 15.10
=1
Being VK =|1+2o— 2% ), ), VK = 1+ 2” (18)andf¢? 1 (1.10).
The transformation matrices @ = «; and a'= '}, have the properties:
4 100—v/c|100v/c| [1000
_[010 0 010 0 |_|0100]|_,_i
/= 000 VK |000K'| {0001
4 1 00 0 1 00 O 1000
0 10 0 0 10 0 0100 '
=l —v/cOO\/E V/c00K'| (0001

Wherea' = a ; is the transposed matrix of & = «; and a'" = a', is the transpose matrix of a'=«',, and

O is the Kronecker’s delta.

0v'/c|[100—v/c 1000

00 |[010 O 0100 k

10 Joo1 o [Floo1o|7/=Y 15.13
0

10
L ) 01
a.a:ak,aij:Zak,a,j: OO

000vK' [000 VK | [0001

=1
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4 1 00 0 1 000 1000

' ' ' 010 0 0 100 0100 !

atat=alkajl~=2alkaki= 001 0 0 01 0 20010 =I=5i 15.14
k=l V/c00VK' | —v/c00JK | 0001

Where a" =a', is the transposed matrix of a'=a',, and @' = a; is the transposed matrix of & =,

and O is the Kronecker’s delta.
Observation: the matrices a; and o, are inverse of one another but are not orthogonal, that is: « ; #a'y,
and a; #a'y .

1 . ri .
The partial derivatives 8x_] of the total differential dx”=%dxl of the coordinate components that
X X

correlate according to x"':x”'(xf), where in the transformation matrix a=a; the radical v K is

considered constant and equal to:

Table 10, partial derivatives of the coordinate components:

o' _ax" _ 6x’1:] 8x’1:0 6x’1:0 ox'"_ v
ox’  ox’ ox! o> o’ ox* ¢
ax/i axr2 axd aXIZ aer aXIZ
5'/:aj=81=0 82=1 3:084:0
X X X X Ox X

ox' o'’ ox'’ ox"”? ox'’ ox"”?

ox ox Oox ox ox Oox

o' ox't | ox™ _ ox' oo o | oxM_ g
ox!  oxt ox! 0 A2 =0 PRE =0 o’ \/_

The total differential of the coordinates in the matrix form is equal to:

—v/c| dx!

dx'" 100—v
dx'? _ 010 O dx?
cde* | 1000 VK | cax®
That we call as:
dx' ; 100-v/c dx!
X 12 . 4 i 2
di=de'=| W\ gm i 0100 g a 15.16
dr j 001 0 dx
ox/
cdx' 000 VK cdx?
s R L
Then we have dx'= Adx = dx" :ZA}dxf =dx" =%dx1 15.17
X

j=1

k k

The partial derivatives % of the total differential dx* :%dx" of the coordinate components that
X X

correlate according to x* =x"(x"), where in the transformation matrix o'=a',, the radical vK'is

considered constant and equal to:
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Table 11 partial derivatives of the coordinate components:

ox* _ ox’ _ ox’ — ox’ —0 ox’ _ ox' _v'

ox' o'’ ox'! ox'? ox"’ 't e

oxt ox? | ax? —0 ox’ _ ox’ —0 ox’
rl_ rl_ (1_ !2_ !3_ ’4_

Ox ox ox ox ox ox

ot ox' | ax? —0 ox’ _0 ox’ —7 ox’
o i il 2 3 4

ox'"" oOx ox ox ox ox

oxt _ox' _joxt_ Jox’ _lex! | oxt e

o' et | ox! ox'? =0 ox'? =0 ox'

The total differential of the coordinates in the matrix form is equal to:

dx'! 100v/c| dx'
de _ 010 O dx'2
dc® [7]001 0 dax"? 15.18
cdx*| 1000 \/F cdx'*

That we call as:

dx' A 100v'/c dx"!
2 12
de=det=| U, | a=af =20 000 0 ) dv=ar' 4 4 15.19
4 ox F 4
cdx 000vK cdx'
N ox*
Then we have: dx=A'dx'= dx* :ZA'f‘ dx' = dx* :Fdx" 15.20
=1 X

The Jacobians of the transformations 15.15 and 15.18 are:

o ol w7t ) 070 0°

X'’ X' )xl )xl )xl

Jzaxj:6x1x2x3x4 “loo1 o :\/E 15.21
S 000 VK

k a 1 2 3 4 (1)(1)8v,0/c

,_Ox" O, xTxT,x ) I

J_ax_rl_axrl 2 0 ) 001 0 _\/? 15.22
B 000K

2 1 12 ror ol
Where VK = [1+X -2 0 5) k= [1:Y_ 420X (5 6) and VK AK'=1 (1.23).
C C

2 2
C C

The matrices of the transformation 4 and A' also have the properties 15.11, 15.12, 15.13 and 15.14 of the
matrices @ and «'.

From the function ¢=g(x* ):¢':¢'[x" (x" )] where the coordinates correlate in the form x* =x* (x") we

o ot ox described as:
X X Ox
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0¢ _ 09 ox+ _ 04 ox n 09 ox2 " 0¢ ox? n 09 ox+
ox'' Oxk ox"' Ox! ox"' Ox2? ox"' Ox3 Ox'' Ox#* Ox"
0¢ _ 0 oxk _ 09 ox n 0¢ ox> " 0¢ ox3 " 09 x4
ox'?  Oxk Ox'2 oOx!'ox'? Ox2ox"? oOx30x'2 Ox* ox'"
o¢' _ 09 oxk _ 0P ox! " 0P ox2 , O ox3 . 0P Ox4
ox'*  Oxk Ox'3 oOx!'ox' oOx2ox"™ ox3ox™ ox4 ox"
o¢ _ 0P oxk _ 0P ox! n 0P dx2 " 0P dx3 +8¢' ox4
ox't  Oxk Ox'* oOx!'ox' Ox2ox' Ox3ox' Ox4 ox'

That in the matrix form and without presenting the function ¢ becomes:

ﬁ:] ox! _ ox! _ ox! —y
ox'! ox'? ox'3 ox'?
. izo ox? —J ox? —0 ox? -0
% | 0 8 8 8 ||o o o 8 | a?  a? !
ox'’ _{Gx’l ox'? ax' ax'? }_[axl ox’ ax® ox? J ﬁz() o’ =0 o’ =] o’ =0
ox'! ox'? ox'3 ox'?
ox? V' 6x4= ox? —0 ox” __ 1 (l,v'z v'u’x’lj
ox'! czx/ﬁ ox'? ox'3 ox'? «/FL Icz I c? |
Where replacing the items below:
at_ v v
o' 2K P
o' N
o' K
ot 1 (Pvz v'u’x'lj ox't 1 (1 2 vuxlj
6x’4_\/Fk Icz I c? ot x/_k c?

Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:
ox! Ox ox! ox! v
ol 8’2_06’3_06’4 JK
. ox’ -0 ox’ ox? ox? -0
6¢{a o o a}:[a 0 0 o fal  a? el o
o'’ Lax'! ax'? ax'3 ax'? ox! ox? ax? ax? | ox’ —9 9 _, ox’ =] ox’ =0
o't a?
6x4:L8x _08x _Oax _I(,Z vux]J
o'l ¢? ax? Ox' \/_k | ¢’ ]

That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form.

From the function ¢'=¢'(x”'):¢=¢[x”'(xf )] where the coordinates correlate in the form x"=x" (xf) we

0p' _ 09" ox"

have

Oox/

described as:

Cox' ox/
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0f' ox'+

09" 04" ox'i 09" ox" n

Ox!  ox' ox! ax'! Ox!

o' 09" ox'i  0@' ox" "

0¢' ox" n

ox'? Ox!

0P ox'2 |

0¢' ox'3 n

ox" ox!  Ox'4 ox!
0@" ox'4

0f' ox'3 "

Ox2  Ox'i Ox2  Ox'l Ox2

09" _0¢' ox'i _ 0¢' ox"

Ox'? Ox?

" ox'3 ox?

0P ox'2 |

Ox'4 Ox?

0f' ox'3  OF' ox's

Ox3 ox' Ox3  Ox'" ox3  Ox" Ox®  Ox'3 &x3  Ox' ox?
0¢' _ 09" ax'i _ 04" ox" " 0¢' ox' " 09" ox'3 " 09" ox'4
Ox* Ox'" Ox* oOx"' Ox* oOx'2 Ox*4 Ox" ox* Ox'* ox*

That in the matrix form and without presenting the function ¢ becomes:

0

0 0

a¢’:[ o o0 o @ }{
x| ax! ax? ax? ox? ax'! ax'? ox'd ax'? i o' =0

Where replacing the items below:

'ax,J ~ ol ol ol
=1 2 =0 7=
6x2 Ox 2 6x2 ox )
. 6x_’1=0 6x’2 —J 6x'3 —0 6x'4 -0
0 ox 6x3 6x3 6x3
: 6x’2 —0 6x'3 —J 6x'4 —0
ox ox ox ox
ox'* __ =V ox'? _ ox'* ox'? __1 (“ 2 yux!
L ax! VK o’ ox’ ox* «/E\ 22

ol v

ot x/ﬁ

at_ v v

ox! CZJE c?

6x’4= 1 (Hvz vwclj oxt 1 (1 v2 v'u'x'lj
ot x/Ek ct o't x/ﬁk c?

Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:

0

0 0

a¢’{ 0o 0 o }:[
axj ax] 8x2 ax3 ax4 8)6’] 8xl2 8)6'3 axr4_ ax’3 -0

_8x’] —J ox'! -0 o'! -0 o' __V
ox! o’ a3 ox? x/E
; o'’ -0 o'’ - o'l _ o'l —0
o | ax! o’ o’ ax?
axl3 B 8.?(,3 B 8x!3 0
i 2 3 4
ox ox ox ox
a'? v o't 0 o't 0 o't ( 2 v,u,x,JJ
_8x1 c? ox? o’ ox? \/_k ? ]

That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form.

Applying 8.5 in 8.3 and in 8.4 we simplify these equations in the following way:
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Table 9B, differential operators with the equations 8.3 and 8.4 simplified:

0 _0 v 0 0o __0 Vv 0

ox'' Ox! c¢? ox* 8.1 ox! Ox'' c¢? ox'4 8.2
_0 _ 0 0 _ 0

ox'?2  Ox? 8.1.1 Ox2 Ox'2 8.2.1
0 _ 0 0 _ 0

ox'3 ox3 812 | ox3 ox'3 8.2.2
—0 —0 —0 7 =0

cox'* cox*4 8.3B | cox* \/_céx"‘ 8.4B
0 ,ux! 0 _ 0 ,ux't 0 _
ﬁ‘FW—ZGI"O 8.5 ax'l 1 2 8x'4 =zZero 8.5

The table 9B, in the matrix form becomes:

15.23

I 1
{aaa—a}[aaa—a 0
= 0

ox'' ox'* ox’? cox't - ox' ox? ox? coxt |

15.24

e e

1
0
o' ax? ox® coxt | Lo’ ox'? o' cox' i 3

The squared matrices of the transformations above are transposed of the matrices A and A’.

Invariance of the Total Differential

In the observer O referential the total differential of a function ¢(x") is equal to:

dx'!
d¢(xk )—%dxk =%dxl+ o9 dx2+%dx3+%dx4:[a¢ 0p 09 09 } dx’ 15.25

ot ox' 8x_2 ox® ox* 5@7@7 cox* dx’
cdx

Where the coordinates correlate with the ones from the observer O’ according to x* =x"(x" ) replacing the
transformations 15.24 and 15.18 and without presenting the function ¢ we have:

1 00 0 [[100V/c| ax"
12
d¢=a_¢idxk=[ 0 0 0 54} 0 100101001 dv” 15.26
Ox Ox'" Ox'” ox'” cox' dx
—v'/c00VK' [ 000 VK" || cax*
The multiplication of the middle matrices supplies:
1 00 0 T100v/e] | L 00 /e
0 100 Joto 0 | | g o g 15.27
0 01 0 (001 O |~ v dy! :
—/c00VK [ 000K | |=v/c001+="
cdx'
Result that can be divided in two matrices:
1 00 /e 0 00 V/c
0 10 0 (1)(1)88 0 00 0
0 01 0 :0010+ 0 00 O 15.28
, 20" dx'"! , 2v'dx'"
—v'/c 001+ — 0001 —v'/c00 —
cdx’' cdx'

44/144



That applied to the total differential supplies:

0 00 Vv/c

1000 dx'"
0 00 O »
dp= gtk | s aaee 0010 0 00 0 |5 1529
0001] [—v/c00ZX D1 s
codx'
Executing the operations of the second term we have:
0 00 v/c "

6o 0 o] 000 0 fE 0 gor ' 2
{ } 0 00 0 | &IV O gty gt VA O g
ox' ax'? ox'? cox'? iyt | ax ctox' ox'! c? dx'* ox'

—v'/c00LE_ o cdi™

Where applying 8.5 we have:

V.0 o 1dxt 8 V. 2vdt 8,
c? ox'4 d 1+V\ c? dx'4 ox'4 A c? dx'4 ox'4 di't=zero

Then we have:

0 00 V/c

dxrl
0 00 0 .

0. 0.0 0 1 0 00 0 |N |—z0 15.30
ox'' ox'? ax'? con' 2wyt || ax'

—v'/c00 dx’4 Cdx’4

With this result we have in 15.29 the invariance of the total differential:

o6 1000 dx’; o
0 0 0 0 0100} o 1
dp=—"—dx" [ } 3 |=——dx" =d¢' 15.31
ak 6’16’26 13 6;4 0010 dx’ arl
X X X~ COX 0001 cdx’4

In the observer O’ referential the total differential of a function ¢(x”') is equal to:
d !

d¢’(x'i)=a_¢_d a¢1 dx r1+ a¢ d r2+ a¢ dx 3 a¢4 14 |:a¢l a¢2 a¢3 a¢4:l 5 15.32

ox'! ox' o For 6x’ ox" ox'" ox'” cox’ ‘ZC

cdx’

Where the coordinates correlate with the ones from the observer O referential according to x" =x" (xf )
replacing the transformations 15.23 and 15.15 and without presenting the function ¢ we have:

100 0 J100-v/c]| dx'

.99, 0 0.0 8] 0100 0100 x>
M {ax o’ o’ c@x} 0 0101001 dx’ 15.33

v/c00NK 000 \/ cdx’

The multiplication of the middle matrices supplies:

1 000 J100=v/c] | L 00 —v/e
0010001 0 |7 . :
v/c00+/K 000 VK | [v/c001- e
Cc ax

Result that can be divided in two matrices:

45/144



1 00 —-v/c 0 00 —v/c

1000
8 (1)(1) 8 _|0100 + 8 88 8
2vdyx'! 0010 2vdyx!
v/c001- 0001| [v/c00-
2 7.4 2 ;4
cdx cdx

That applied to the total differential supplies:

, 1000 8 88 _VO/C dx!
d¢':§jfdx'i:[ail pere c@i“} ooroft 000 O ]G
0001] [v/c00-2x |} s
c dx
Executing the operations of the second term we have
0 00 —v/c !
o 08 51000 0 Joh 0 0 .4 2vdr' 8
{aaa a}ooo 0l v [Foar® o e
X
! ax? ax’ cox y OO—Zrdx4 ol c?oxt X cdx* ox
Where applying 8.5 we have:
v 0 [ 1dxv )d 2vdx! & 4_
x v dx*=zero
c? ox* \ 2 dx* o c? dx* ox*

Then we have:

0 00 —v/c

dx'
000 0 .
{35@5}000 0 % |=zero
ox' ox? ox® cox? v/ 00_2va’x4 cc;;c4
crdx

With this result we have in 15.36 the invariance of the total differential:

, 10007 ax!
a9'= aaq?' [ai ai ai c@ax }8(1)(1)8 Z; aaqudx =d¢
0001 | o

Invariance of the Wave Equation

The wave equation to the observer O is equal to:

[N N
jo))

=

LS

|

(=]

vig L o> _ o¢” a¢2+a¢2 1 0¢’ :[a o 0 a}
ox!' ox? ax® cox?

SO O~
SO~ O
O~ OO
L

L

jo))

=

w

Where applying 15.24 and the transposed from 15.24 we have:
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C o
1o
o 104 [0 0 a8 o 910006700 e
Vg 2 0 1 2 3 4 001 0 00100100
c 6(x4) ox'" Ox'* Ox"” cox' _VIOO\/F 000-1 001 0 | _9_
— - 13
c 000VK' | &
cox' |
The multiplication of the three middle matrices supplies:
_v’
2 980 TrooaTroo=x] | 100 =
00108})?8010028})? 0
—_V, ’ _ 001 0 s IO Il
: 00K |[000-1 000K | | = 00122
C
Result that can be divided in two matrices:
- —v
boo == 10007 %% =
010 0 10100 + 000 0
001 0 1 10010 000 0 1
V()() 1_2"— 000-1 100_2"—2
c? c c
That applied in the wave equation supplies:
_i_
' xrl
, 10001] %% = 0
V34 1 0¢° | &6 0 0 O 0100 000 0 ox'?
c? 8(x4)2_ ox" ox'? ox'? cox'* ||| 0010 000 0 o 0
000-1 100—2\) 8x!3
C cz
L cox™ |
Executing the operations of the second term we have:
v et
000 — 5
C —_—
0 0 0 0 000 O o2l v o o v o o Wux' o
8)(,1 8)(,2 ax/3 cax/4 0 00 0 8 - c2 axll ax!4 62 ax/l 8)(,4 62 62 42
_vl _2vl [ rl 7 8)(;
_()()—2 ox
c c i o
L eox'* |

Executing the operations we have:

2V 0 0 Wu'x" 02

cr ox'tox't ¢t ¢ 8(x’4)2

Where applying 8.5 we have:
v wxt & o  2vuxt ¢

2\ ¢ ox'tlox't ¢ ¢? A(x+)

=zero

Then we have:
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000 — 2

[aaaa}ooo 0 ox'?

' ax? axeoxt | 0 00 9, " 0
—2V'u'x o'’
C2

=zero

__‘/00
c

4
Lcox' |

With this result we have in 15.43 the invariance of the wave equation:

9
; for
, 10007 _@ ,
iy L 0 {a o o 8}0100 o |_yry_ L 08
cza(x“)z ox ax? ax eoxt 001 04 9 cza(x"‘)z
000-1] 53
0
cox'*

The wave equation to the observer O’ is equal to:

0

vig_l 0 _ 0¢° | 04” | 04”1 04" _[ o0 0 0
Cz@(x’4)z a(x’l)z a(x’z)z 6(x’3)2 ¢’ 6(x’4>2

Where applying 15.23 and the transposed from 15.23 we have:

10

vig L 04 {a o 0 d }8(1)
c’ 6(x’4 )2 ox' ox? o’ cox* )|

EO

\%
100 0 Tuagofroo 2] 100 2
001 0 8(1)(1’8 010 0 :8(1)‘1) 8
YooK [000-1|201 O | |} Qv
c 000K | [200-1+5%
C

Result that can be divided in two matrices:

v v
1002 10007 200 ¢
010 0 10100 +000 0
001 0 1001 0 000 O
XOO_1+2VL;XI 000-1 v002vux
c c c c

That applied in the wave equation supplies:
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v ]| et
. 100071(°99 ¢ 0
vep L 09" [0 8 0 8 ]/0100|1000 0 o’
cza(x'4)2_6x18x26x308x4 0010 000 0 0
000-1] v q2vu' || 57
¢ ¢ 1) _©
L cox* |

Executing the operations of the second term we have:

9

v ] ax!

0007 12
[iiﬂa}oooo x| v o o vao o 2vux' &
ox' ox* ox’ cox* 000201 O | Faxtoaxt CFaxtoxt f el 6(x4)2

v vux_ |l a3

COO s %

ot

Executing the operations we have:

2v 0 0 ,2vux! 02

c? ox! ox* ¢? c? 8(x4)2

Where applying 8.5 we have:

2v{—ux1 0 \8 2vux! 02

c2\ 2 x4 /ot 2 2 a(x4)2

=zero

Then we have:

v ] axt
000 = 175
0 9 0 0 000 0 [fax*|_
ox' ax? ox® coxt | 000 0 0 —Eero
KOOZvux1 8x_3
T -
L ox* |

Then in 15.50 we have the invariance of the wave equation:

1o
AT

Vil o¢” _[a o 0 a} Vi

c? 8(x’4 )2 Lox! ax? ox? cox?

coo~—
co~o
o—~oco
ILooo
»

2|
wl N

Invariance of the equations 8.5 of linear propagation

Replacing 2.4, 8.2, 8.4B in 8.5 we have:

0 ux' 0 _ 0 v o  1Wx'+) 27 o

ox! c? axt ax'l c2ox't 2 JK' ox'4 —zero
Executing the operations we have:
1 ' 111 '
0 ,ux! O o V. 0 u'x o ,v 8226;,0

T == T
ox! ¢2? ox* ox'' c?ox't c? ox'4 c?ox'4
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That simplified supplies the invariance of the equation 8.5:

0 ,ux! O 0 ,u'x't 0

T == T =ZzZero
ox! ¢2? ox% ox'' c¢? ox'4

Replacing 2.3, 8.1, 8.3B in 8.5 we have:

o wx" 0 _ 8 . v o 1)~ 5
: = : : VK =
ox'' ¢? ox't oOx! c?oxt ¢ JK ox* zero

Executing the operations we have:

O ,ux' 0 _0 ,v 0 ,ux* 0 v 0O

, = . =zero
ox'"' 2 ox'*t Ox! c¢?ox* c¢? Ox* c?ox*

That simplified supplies the invariance of the equation 8.5:

0 ,ux't 0 0 ,ux! 0

T == T =Zero
ox'' ¢? ox't ox! c¢? Ox*

The table 4 in a matrix from becomes:

px 100-v/c| px'
px'2 _ 010 O pxz
3171001 0
px px
E'/c 000 \/E E/c
px' | T100v/c] px
p)c2 _ 010 O px’2
307001 O i3
px | px
E/c 000\/? E'/c

[rx ] [100—v/c| o
J'x’2 _ 010 O Jx2
J'x1001 0 Je

o' | 1000 VK | ¢p

[t [100v/c] gyt
Jx2|_|010 0 | 2
J 171001 0 | gry?
cp 000 x/F cp'

Invariance of the Continuity Equation

The continuity equation to the observer O is equal to:

Jx!
op _oJx' O A dp [0 0 9 9 | =zero
o' ' o axt i’

cp

V.J+
ox' ax? ox® coxt

Where replacing 15.24 and 15.56 we have:

0 0 T1oov/c[Jx"
00 [010 0 | y?
10
0

001 O J'_xl?’ =zero

oxt Lox" ax'? ax'® cox'?
VK[ 000K | ¢cp'

10
6jlap{a o o a} 8 (1)
—v'/c0
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The product of the transformation matrices is given in 15.27 and 15.28 with this:

10007 | & 00 Yoe ([

- = r 12
VJ+:p4 :|:aarl aayZ aar3 86'4:| 0o lo 0 00 0 1 :;r);d
TR e 0001 | |—v/c00 2 X Ty

c

Executing the operations of the second term we have:

0 00 V/c o

0 00 o |/x 1 |
{a o 0 0 } 0 00 o |J¥|__van! vop' 2vu'x" opf
ox' ax'? ox" cox'* ' %" J'X'f ¢t 't ! ¢t

—v'/c00 5 cp
c

Where replacing Jx''=p'u’x"" and 8.5 we have:

Va'x'' 9p' | ,{ u'x'' 0 )p,+2v'u'x'1 op'

2 ox't N\ 2 ox't c? axm:zero
Then we have:

oo o 000 00 [0
|: T Ad2 A3 4} 0 00 0 erf3 =zero
ox' ox'* ox" cox’ wau'x | X

—v'/c00 5 cp'
c

With this result we have in 15.59 the invariance of the continuity equation:

A 1000 J’x'; A

<= o [0 0 0 o |o100|sx?| o3, O

V.J+—= =V.J+——

+8x4 L’?x’l ox'* ox"? c@x"‘} 0010 j'x7 +8x’4
0001} ¢cp'

The continuity equation to the observer O’ is equal to:

J'x"
== Op' _oJ'x" aJ'x"? aJ'x? oOp' 0 0 0 0 "%
e R ’af"‘{ﬁ ax'z&c_“cax"‘} j’i'f —Ere
cp
Where replacing 15.23 and 15.55 we have:
, 1 00 0 [[100—v/c| Jx!
6'j’l(;3/),4:{661562563 ;4} 8 (1)(1) 8 8(1)(1) 8 :QC; =zero
T 004K 000 VK | ep

The product of the transformation matrices is given in 15.34 and 15.35 then we have:

0 00 —v/c .

1000 Jx

L 000 0 .

V.J’:ap—[aaa a}g?8+000 o ||
0001

8!4_618 283 84 1
X X OX X~ COX v/coo_z‘}lzx Cp
C

Executing the operations of the second term we have:
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0 00 —v/c |
000 0 | 1 1
[iﬂi g } 0 00 0 Jx* |_v oJx' _vOp 2vux' Op
ox' ox? ax’ cox? v || 2 axt o' 2 ax'
v/c00-—=— cp
c

Where replacing Jx!=pux' and 8.5 we have:

vux! Op (uxl 0 ) 2vux! 9p

c? ox* \ 2 x4 c? Ox# —zero
Then we have:
080
008 .0 1000 0 |5 |=zrn 15.65
ox' ox* ox® cox’ 2vux!' | J*

v/c00-—
2 cp

With this result we have in 15.64 the invariance of the continuity equation:

5 1000 Jx; 5
- ' [0 o o o Jotoo|nt| o
V.J'+ = =V.J+— 15.66
ox't {axlaxz ox? c@x“}OOIO Jx? +6x4
0001] cp

Invariance of the line differential element:

That to the observer O is written this way:

1000 dx;
2 2 2 2 0100 || dx
(ds) =(dx1)z+(dx2) +(dx3) —(cdx4) = [a’x1 dx’® dx’ cdx4] 0010 || g 15.67
000-1||cdx*
Where replacing 15.18 and the transposed from 15.18 we have:
! 010040100 ¢l ax?
(ds) =ax" a2 avcav* [ 001 0 [§590 010 0 s 15.68
YooK [000-1] 001 0| =
c 000K’
The multiplication of the three central matrices supplies:
/ v
100 0 0001100 ¥ 100 .
0100 445100 c 11010 0
001 0 15970 010 0 |= 50 0 15.69
v ; i jootr o , Al
¢ 00K [000-1] oo | ¥ g0y 2v'dx
c cdx'
Result that can be divided in two matrices:
V' v
1o = 10007(°°% ¢
010 0 _|o100 000 O
001 0 |loo10[7000 o 1570
1’0 0 _1—2v’dx’1 000-1 1’0 0 —2v'dx"!
c Cde/4 c Cder4

That applied in the line differential element supplies:
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(ds) = [a’x’1 dx'* dx" cdx"*

oo~
SOoO—O

0 0
0 0
0o
-1 V

dx"!
der
dxr}
cdx"

Executing the operations of the second term we have:

[dx’l dx'* dx' cdx'

Then we have:

[dx’l dx'* dx' cdx'

000

000
000

Y00
C

000

000
000

Y00
C

vl
- 1
C dx’ . 4
0 dx'* | _v'dx'" cdx’
0 1 dxr} c
=2v'dx’ cdx™
2 4
c” dx'
vl
- 1
c dx’
0 dx'?
0 s =zero
1
—2v'""dx’ cdx’4
2 4
c” dx'

+edx" (ﬂdx’l -
c

1
2V dx'
2 4
¢ dx'

cdx'* j =zero

With this result we have in 15.71 the invariance of the line differential element:

(ds)2 = [dx’1 dx'? dx" cdx'*

10
01
00
00

-1

007 ax"

00 | dx” (
1 0 dxl3

0

=(ax"!

4
cdx'

To the observer O’ the line differential element is written this way:

(ds’)2 :(dx’l )2 -i—(a’x’2 )2 +(dx’3 )2 —(cabc’4 )2 = [a’x'1 dx'* dx” cdx’4]

1 00 —

C

lo10 0
1001 0 1
=V 0 14204
c crdx’
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That applied in the line differential element supplies:

-V
1000 000 ¢ dx;
(ds’)2:[dxld)62dx30abc4 8(1)(1)8 + 8 88 8 dx3 15.78
000-1] | —v o 2vdx || cax’
c crdxt

Executing the operations of the second term we have:

000 =¥ 1
e dx'cdx’ dx!
152,354 000 O dx” |_—vdx cdx o[ =v 1, 2vdx 4|
[dx dx~dx’cdx 000 0 1 P +cdx ( dx +C2 dx4cdx j—zero
__Vooz_:dLAl cdx4
c c”dx
Then we have:
-V
000 -~ dx!
[d)cld)czd)c3(,’c:’x4 8 88 8 ?’;3 =zero 15.79
__Vo()ﬂdil cdx*
c c* dx*

With this result we have in 15.78 the invariance of the line differential element:

1000 dx;
(ds’)2 =[dx1dx2dx3cdx4 8 (1)(1) 8 23;3 =(dx1)2 +(dx2)2 +(01x3)2 —(cdx4)2 =(ds)2 15.80
000—1| cax®

In §7 as a consequence of 5.3 we had the invariance of Ei=E'ii' where now applying 7.3.1,7.3.2,7.4.1,

7.4.2 and the velocity transformation formulae from table 2 we have new relations between Ex and E'x’
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below:

Table 7B
o EXVK Er EXVEK
(I_V) 7.3B (1+ 14 ) 7.4B
ux u'x'
E'y'= EyJK 7314 | By=EYWK 7.4.1
E'z'= EzNK 732 | Ez=E"ZNK 7.4.2
B'x'= Bx 7.5 Bx=B'x' 7.6
! ’ V ’ ’ ' ’ !
B'y'=By+ 5 k2 751 | By=BYy-—E'z 7.6.1
! I __ v _ ! ! v’ ! !
B'z'=B _c_ZEy 752 Bz=B Z+c—2E y 76.2
ux , ., u'x' .,
By:——zEZ 7.9 By=_ 2 E'z 7.10
C ' C :
ux , o, u'x"
Bz="7ky 794 | BFETEY 7.10.1

(2l
ux ux

With the tables 7B and 9B we can have the invariance of all Maxwell's equations.
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Invariance of the Gauss’ Law for the electrical field:

8E’x’ OE'y' aE o

Gy’ ‘ ! 5_0 8.14

Where applying the tables 6, 7B and 9B we have:
( v 0 \ ExvK 6Ey«/_ EzK P‘/_

ox c? ot )(1-v/ ux) oy 0z &
Where simplifying and replacing 8.5 we have:
[a ,v(—l 6)1 Ex  OEy Ez_p

ox \uxox ) |(1—v/ux) oy oz &,
That reordered supplies:
[Q(l v)—‘ Ex {aEyIEzzﬁ.

ox\ wux)|(l-v/ux) oy oz e,
That simplified supplies the invariance of the Gauss’ Law for the electrical field.
Invariance of the Gauss’ Law for the magnetic field:
OB'x' : 0By : aB'lezero 8.16

o' oy o

Where applying the tables 7B and 9B we have:

B —

That reordered supplies:

OBx aBy OBz v ( O0FEz OEy 0OBx —0
ox ay' oz czkay FER "

Where the term in parenthesis is the Faraday-Henry’s Law (8.19) that is equal to zero from where we have
the invariance of the Gauss’ Law for the magnetic field.

Invariance of the Faraday-Henry’s Law:

aElyl a !xI: aB!ZV

8.18
o' oy o

Where applying the tables 7B and 9B we have:

o v o 0 ExJVK v
LY CEpK - VK Bz—YE
(6x+c2 8t) Y 8y(1 v/ux) VK ( z c? yj

That simplified and multiplied by (l—v/ux) we have:

8Ey( v\ OEx_ 8Bz( j
ﬁxk ux) oy le ux

Where executing the products and replacing 7.9.1 we have:
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OEy OEx_ 0Bz v (OEy uxOEy
ox Oy ot ux\ ox c? ot

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

OE'z’ OE'Y'  OB'x'

= 8.20
oy o7 ot'

Where applying the tables 7B and 9B we have:

OF

aEZR y\/E=—\/Ean
oy 0z ot

That simplified supplies the invariance of the Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

OE'x' OE'z' __OB'y'
= 8.22
oz ox ot’

Where applying the tables 7B and 9B we have:

0 ExNK (0, v 8) 8( v )
I EzN K =— K —| By+—E.
oz (1-v/ux) \ox c2 o z Ot y+c2 ‘

That simplified and multiplied by (l—v/ux) we have:

OEx OEz(

0z  Ox \1

v vaEz(l vj: aBy(l v v@EZ(l vj
ux) c? atk ux 81\ ux) c? le ux

That simplifying and making the operations we have:

OEx OEz__ 0By v(0Ez OBy
&z ox o ux\ax o

Where applying 7.9 we have:

OEx OEz_ OBy v (0Ez, uxaEZ)
0z Ox or ux\ ox ¢ ot )

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Ampere-Maxwell’s Law:

0B'y" OB'x' OE'Z'
— = J' e, 8.24
axf ay! ﬂ() Z g() ILI() atl

Where applying the tables 6, 7B and 9B we have:

0,v o0 v ) OBx_ 0
(ﬁx o 61)(3;.625‘2) o _yon+goyO\/EalEz«/E

That simplifying and making the operations we have:
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OBy 0Bx _ Joig g OFz 1 v20Ez 1 2vuxOEz v OEz v OBy 1 v20Ez
ox Oy ~Ho il ot c*c? Ot c* c? Ot c20x c¢c* ot c?ct ot

Where simplifying and applying 7.9 we have:

OBy 0Bx _ Jote OEz 1 2vux0Ez v OEz v (-ux GEZJ
ox Oy ~Ho offo o ¢ ¢ At 2 ax 2\ 2 ot

That reorganized supplies

0By OBx
By _OBX_ ), Jot
ax ay /’l 80 /’l 0

OEz v(ux@EzﬁEz)
ot 02\02 ot Ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law:

Invariance of the Ampere-Maxwell’s Law:

dB'z' OB'y' OE'x'
— =u,J'x've, p,—— 8.26
a-yy aZy /’lo X o /’lo alr

Where applying the tables 6, 7B and 9B we have:

Q(BZ Ey) 0 (By t Cvz EZ):,UO (Jx—pv).hgoluo Rm

oy z\ ot (1-v/ux)

Making the operations we have:

OBz OBy v (OEy  OEz ( v2 2vux\0Ex 1
——= : : 14

oy oz 1o 2\ oy oz o€ P [FeoHy c2 ) ot (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law and multiplying by (I—Lj we have:
ux

0Bz OBy _ Jyre 1 OEX v (dBz OBy Jx\ v 0Ex v2( 1 0Ex\, 1 v20Ex 1 2vuxOEx
oy Oz B 075 ‘ux\ dy oz #o ) e ax c2\ux ox ) crer ot ¢ ¢ ot

Where replacing Jx=pux, 7.9.1, 7.9 and 8.5 we have:

0Bz OBy _ Ly it OEx _ v (uxOEy ux0Ez ol OEx v?(=10Ex\, 1 v’ 3Ex 1 2vuxOEx
8)/ Oz ot ot 'uxkcz 8y Icz oz oM cz ox Iczkcz ot Icz cz ot cz cz ot
That simplified supplies:

0Bz OBy OEx , v (OEy 6Ez \ v 0Ex 1 2vuxOEx
= Uy - : : c?
oy oz MR TGO S e P T o o ar

Replacing in the first parenthesis the Gauss’ Law we have:

0Bz OBy _ Jrte OEx v OEx v OEx 1 2vuxOEx
o 7o et ox 2 ox ¢ 2 o

0Bz OBy _ Jere, i OEx 2v( OFEx ux@Ex)
ay oz T TS0 T e o
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law:

Invariance of the Ampere-Maxwell’s Law:

OB'x' 0OB'z' _ OE"y'

=u,J'y'+e 8.28
T

Where applying the tables 6, 7B and 9B we have:

OBx (0, v 0 v 0
I B Ey |=u,J; VK —FEyvK
0z \Gx c? 8t)( z c? yj HosVF&oHo ot Y

Making the operations we have:

OBx 0Bz e OFy 1 v20Ey 1 2vuxOEy v OEy v 0Bz 1 v?OEy
0z ox ~Ho YT E M Ot c2c2 ot ¢ 2 Ot ¢ Ox ¢ Ot crc? ot

Where simplifying and applying 7.9.1 we have:

OBx 0Bz OEy 1 2vuxOEy v OEy v (ux aEyJ

OBx 0Bz jy+ .
oz ox 0O T oy o e c2\c? ot

That reorganized makes:

OBx 0Bz
0z ox

aEy % (ux 8Ey . 8Ey
=Ho V¥ oty ot c2\c* ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Gauss’ Law for the electrical field without electrical charge:

[ aE’ ! [
OF'x : ),} : aE,Z =zero 8.30
oy 0z
Where applying the tables 7B and 9B we have:

( LV 0\ ExvJK 8Ey\/_ EzVK _
ox c2 ot )(1 —v/ux) oy 0z

zero

Where simplifying and replacing 8.5 we have:

[a ,v(—laﬁ Ex OEy Ez
ax  \uxox ) |(1-v/ux)” oy oz

=zero

That reorganized makes:

[Q(l ; j—l Ex O Eo =zero
ax\ ux)|(1-v/ux)" oy oz '

That simplified supplies the Gauss’ Law for the electrical field without electrical charge.

58/144



Invariance of the Ampere-Maxwell’s Law without electrical charge:

0B'Y OB OEZ

=£ 8.40
axf ayf 0/10 atf

Where applying the tables 7B and 9B we have:

0,v 0 \ OBx _
(ax'cz alj(By E) o 0/,10«/_ EZ«/_

Making the operations we have:

OBy 0Bx s OFz 1v20Ez 1 2vux0Ez v 0Ez v OBy 1 v20Ez
ox 6y offo ot ¢2¢? Ot 2 ¢ Ot ¢ Ox 2 Ot cre? Ot

Where simplifying and applying 7.9 we have:

OBy 0Bx_.  0OEz 1 2vux0Ez v OEz v(—ux@Ez)
ox Oy offo ot ¢ c2 dt 2 ox 2\ 2 ot

That reorganized makes:

OBy oBx_  OEz v(uxaEzlaEzj
ox Oy ot "5 c2\e? ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

oB'z’ OB'Y OE'Y

= 8.42
o o e

Where applying the tables 7B and 9B we have:

g, \ [ po . 0 ExJK
ay(B Ey) \Byl ) O'UO\/_ (—v/ux)

Making the operations we have:

@_GBy V| 8Ey OEz ), . (11"2 2vux \OEx 1
oy Oz ay oz ) ey 2 o (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by (1 - v/ux) we
have:

0Bz OBy . OEx, v(dBz OBy\ v 0Ex v?( 10Ex), 1 v20Ex 1 2vuxOFEx
oy oz 075 uxk d 0z ) c* ox ' c2\ux ox ) c2c? 0t ¢ ¢ ot

Where replacing 7.9, 7.9.1 and 8.5 we have:

OBz 8By_g p OEx , v (uxOEy ux0Ez\ v 0Ex v?(-10Ex), 1 v20Ex 1 2vuxOFx
oy 0z o uxler by 2oz ) 2 ox c2\e2 ot ) cre? o 2 ¢ ot

That simplified supplies:
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@_5&:8 OEx v (OEy 0Ez) v O0Ex 1 2vuxdEx
oy oz Y Teay ez ) ot ax o2 e ar

Replacing in the first parenthesis the Gauss’ Law without electrical charge we have:

@_@zg OEx v OEx v 0Ex 1 2vuxOEx
oy oz My o e ax 2 o o

That reorganized makes:

@—aﬂ—ﬂoﬁﬁg u OEx 2v( OEx , ux 8Exj

o oz 0o e2ax e o

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

OB'x' OBz OE'Y

= 8.44
oz ox oMo

Where applying the tables 6, 7B and 9B we have:

OBx (0, v O v 0
I B Ey |= VK —EyNvK
0z \Gx c? 8t)( z c? y) oty ot Y

Making the operations we have:

OBx 0Bz _ OEy 1v20Ey 1 2vuxOEy v OEy v 0Bz 1 v20Ey

=& 1 L
0z Ox otho Ot ¢c2¢c?2 Ot ¢?2 ¢ Ot ¢ Ox c¢* Ot c?c? ot

Where simplifying and applying 7.9.1 we have:

@_@:g OEy 1 2vuxOEy v OEy v (uxOEy
oz ax M o 2 ar e ox c2\c? ot

That reorganized makes:

OBx OBz _ OEy v (ux OEy OEy
A A ok '
oz oOx ot c2\c* ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

§15 Invariance (continuation)
A function £(6)= f(kr —wr) 2.19
Where the phase is equal to & = (kr - wt) 15.81

In order to represent an undulating movement that goes on in one arbitrary direction must comply with the
wave equation and because of this we have:

L[&, Wy +zz)} o), k OO 2 21(0)

20" 20" = zero 15.82

2
2 2
—(x +y’+z
r? r 00 r?

That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn'’t.
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In order to overcome this problem we reformulate the phase @ of the function in the following way.

A unitary vector such as

n= cos¢f+cos0§+cosﬂl€ 15.83
X X z z

where cos¢p=—=—, cosa:X:X, cos f=—=— 15.84
r ct r ct r ct

has the module equalto n = |ﬁ| =nn= \/cos2 p+cos’ a+cos’ f=1. 15.85

Making the product

2 2 2 2

-5 xS "3 | +y +

n.R:(cos¢l +cosog +cos Pk )(XZ +yj+zk ):cos¢ix+cosay+cosﬂz=u=r—=r 15.86
r r

we have r =7.R = cos ¢x + cos ay + cos [z that applied to the phase @ supplies a new phase
® = (kr —wt)= (kﬁﬁ - wt)z (k cos g + k cos ay + k cos ffz —wt ) 15.87

with the same meaning of the previous phase =0 .

= w
Replacing 7 =n.R = cos ¢x + cos ay + cos [fz e k=— in the phase & multiplied by —1 we also get another
c

phase in the form

o :(_1)(kr_wt):(wz_kr):[w[t_fﬂ :M_C‘W “OS“y*COS/”ZH 1588

C C

with the same meaning of the previous phase (— 1)0 =0.

Thus we can write a new function as:

f(q))zf{w{t cos¢x+cos0¢y+cos,6’zﬂ 15.89

C

That replaced in the wave equation with the director cosine considered constant supplies:

2 2 2 2 2 2 2 2
—6 f(q))w—cosz¢+—a f(q))w—coszawt—a f(q))w—coszﬂ——a f(q))w—zzero 15.90
c

oD’ ¢? oD’ ¢? oD’ ¢’
that simplified meets the wave equation.
The positive result of the phase @ in the wave equation is an exclusive consequence of the director cosines
being constant in the partial derivatives showing that the wave equation demands the propagation to have

one steady direction in the space (plane wave).

For the observer O a source located in the origin of its referential produces in a random point located at the
distance r=ct=\/x2 +yz+z2 of the origin, an electrical field E described by:

E = Exi + Eyj + Ezk 15.91
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Where the components are described as:

Ex=E.f(D)
Ey=E,.f(®) 15.92
Ez=E,,.f(®)

That applied in E supplies:

E=E f(@F +E, /(@) + £, /(@ =[E7 +E, ] +E,]/(@)=E, /(@) 16.93
with module equal to E:\/(E )y +(Eyo F+(E, Y f(@)=E=E, f(0) 15.94
Being E,=E i+E, j+E_k 15.95
The maximum amplitude vector Constant with the components Eye, Eye, Exo 15.96
And module E, =\/(E Ve, P+E,) 15.97

Being f(CD) a function with the phase @ equal t015.87 or 15.88.
Deriving the component E, in relation to x and t we have:

OEx _ . of (©)od _ P of (@) a(kr—wr) P of (@) hox P o (®)kx

ox oD ox Y oD ox Y od r Y 0D ct

OEx_ . of(@)od_ . of (@)o(kr—wr)_ g (‘D)(_W)

15.98

15.99

o Y em o Y od ot oD
that applied in 8.5 supplies

OBx x/toEx_ .~ . Of(®)o® x/t, af(q))aq):zem:Emaf(q)) o0 x/100

o o “od ox 7 od o o0 (ax o 8tJ:

2

8f(®){62|x/t62j oD x/tod
ox ¢ ot

S \6 75, =zero—=>—+———=zero 15.100
X c

demonstrating that it is the phase @ that must comply with 8.5.

oD x/t oD Akr—wt) x/t d(kr—wt) Jox  x/t x(ow
t+——=zero= + zzer0:>—+—2(—w)zzer0:>— k—— |=zero

ox ¢ ot ox c? ot ct ¢ ct c

w .
as k =— then E, complies with 8.5.
c

As the phase is the same for the components E, and E, then they also comply with 8.5.

As the phases for the observers O and O’ are equal (kr—wt)z(k'r'—w't') then the components of the
observer O’ also comply with 8.5.
5(kr—wt)+x_/15(kr—wt) ok'r—wt') x'/t o(k'r'—w't')

: _ X — zero 15.101
Ox c ot ox' c ot'
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The components relatively to the observer O of the electrical field are transformed for the referential of the
observer O’ according to the tables 7, 7B and 8.

Applying in 8.5 a wave function written in the form:

Y = e = o = cos(kx —wi )+ isin(kx — wt) = cos® + isin @ 15.102

where i:x/—_l.

Deriving we have:

a—‘P=—lcselaq)+lcz'00LS’<I) end a—‘P:wsend)—wicosq) 15.103

Oox ot

or 6—1P:keiq’ and 6_‘1’ =—we'® 15.104
ox Ot

That applied in 8.5 supplies:

b4 b4
%+x_£tﬁa_l = zero = (— k sen® + kicos ®) + x—/zt(wsenCD —wicos®) = zero
X c c

that is equal to:

(—k+¥jsin®+(ki—mjcos(b = zero

2

ct ct
or a_\I! + x_/z@_‘P =zero= (ke@ )+ x_/t(_ WeiCI> )= zero
ox % ot c?

where we must have the coefficients equal to zero so that we get na identity, then:

xw xw
—k+—=zero=k=—r
c't c't
.xXwi xw
kl——zzzer0:>k=T
c't c't

(keiq))-f- x—/2t(— Weiq))z zero =k = xw
¢ c't

Where applying w = ck we have:

xw  xck  x
k=—r=—r=—=c
c’t c't t

Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c.

X
If we apply w=uk and v ="—we have:
t

xw  vuk c
k=—F=—F=u=—.
¢t ¢ \

A result also gotten from the Louis de Broglie’s wave equation.
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§16 Time and Frequency
Considering the Doppler effect as a law of physics.

We can define a clock as any device that produces a frequency of identical events in a series possible to be
enlisted and added in such a way that a random event n of a device will be identical to any event in the
series of events produced by a replica of this device when the events are compared in a relative resting
position.

The cyclical movement of a clock in a resting position according to the observer O referential sets the time in
this referential and the cyclical movement of the arms of a clock in a resting position according to the
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times
between the referentials in relative movement thus, relate movements in relative movement.

The relative movement between the inertial referentials produces the Doppler effect that proves that the
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with
the relative movement that is, it is enough to replace the time t and t' in the formulas 1.7 and 1.8 by the
frequencies y and y’ to get the formulas of frequency transformation, then:

t=tdK = V'= y\/f 1.7 becomes 2.22

t=t'JK' = y= y’\/F 1.8 becomes 2.22

The Galileo’s transformation of velocities #'=1 —V between two inertial referentials presents intrinsically
three defects that can be described this way:

a) The Galileo’s transformation of velocity to the axis x is ' x'=ux —v. In that one if we have ux = ¢ then
u'x'=c—vandif we have u'x'=c then ux =c+v. As both results are not simultaneously possible or else

we have ux =c or u'x'=c then the transformation doesn’t allow that a ray of light be simultaneously
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because
each observer can only see the ray of light running in its own referential (intrinsic defect to the classic
analysis of the Sagnac’s effect).

b) It cannot also comply to Newton’s first law of inertia because a ray of light emitted parallel to the axis x
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the
moment in which t = t' = zero will have by the Galileo’s transformation the velocity ¢ of light altered by £ v to
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity
because there is no external action acting on the ray of light and because of this both observers should see
the ray of light with velocity c.

c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation
between the referentials in movement as it is required by the Doppler effect.

The principle of constancy of light velocity is nothing but a requirement of the Newton’s first law, the inertia
law.

Newton’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating
Relativity that doesn’t have the three defects described.

The time and velocity equations of tables 1 and 2 can be written as:

2
t'=t 1+V——&cos¢ 1.7
cz c
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v2 o 2y
t=t,|1+—+—cos¢’ 1.8

v= 1.20

12 ’
1+

v+
c2 c

cosqg’'

The distance d between the referentials is equal to the product of velocity by time this way:

d=vt=V't 1.9

It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the
proportion between time and velocity, keeping the distance constant in each moment, to any propagation
angle.

The equations above in a function form are written as:

d=e(v,t)=e’(v',t') 1.9
t'=f(vt,0) 1.7
v’zg(v,qﬁ) 1.15
= 1.0 ) 18
vzg'(v’,qﬁ’) 1.20

Then we have that the distance is a function of two variables, the time a function of three variables and the
velocity a function of two variables.

From the definition of moment 4.1 and energy 4.6 we have:

- E_
p=—u 16.1
c

The elevated to the power of two supplies:

2 2
u C 2
==—p 16.2
¢’ E?

Elevating to the power of two the energy formula we have:
2

m,c 2
E’=| | =E' ~-E =m)c’
-4 ¢
2
c
Where applying 16.2 we have:
2 2
EZ—E2”—2:m§c4:E2—E2?p2=m§c4:>E=cqlp2+m§c2 4.8
c

From where we conclude that if the mass in resting position of a particle is null m_ = zero the particle

energyisequalto E=cp. 16.3
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That applied in 16.2 supplies:

2 2 2 2
U =€ p’=t =€ plou=c 16.4

CZ EZ p CZ (cp)Z

From where we conclude that the movement of a particle with a null mass in resting position m_ = zero will
always be at the velocity of light u = c.

Applying in E =c p therelations E=yh and c=y\ we have:

yvh= ykp:p—% and in the same way p'= 1 16.5

ﬂ/!
Equation that relates the moment of a particle with a null mass in resting position with its own way length.

Elevating to the power of two the formula of moment transformation (4.9) we have:

p'= ﬁ—iv:p =p +E v —2£vpx

Where applying £ =c p and pxzpcosd):p@ we find:
c

2
| 2
p'2:p2+@ -2 pvp = p'=p,|l+ %:p'sz/l( 16.6
c ¢ ¢

Where applying 16.5 results in:

h h A A
=pVK =>—=—+K => A'=—— orinverted A =— 2.21
P ) JK JK'

Where applying ¢ = yA and ¢ = y'A' we have:

V'=y~K orinverted y = y'vK' 2.22
In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase.
17 Transformation of H. Lorentz

For two observers in a relative movement, the equation that represents the principle of constancy of light
speed for a random point A is:

'2+y'2+z'2—02t'2=x2 +y2+22 —c’t? 17.01

In this equation canceling the symmetric terms we have:
Nesta cancelando os termos simétricos obtemos:

x?—c’t?=x? -’ 17.02
That we can write as:

(x'—ct')(x"+ct')=(x—ct)x+ct) 17.03
If in this equation we define the proportion factors 77 and 4 as:

{(X’—ct')zn(x—ct) A

17.04
(x’+c t') = ,u(x +c t) B
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where we must have 77.1=1 to comply 17.03.

The equations 17.04 where first gotten by Albert Einstein.

When a ray of light moves in the plane y'z' to the observer O’ we have X' = zero and x = vt and such
conditions applied to the equation 17.02 supplies:

2
0-c’t?=(vt) —’t? > =t [I-V5 17.05
C

This result will also be supplied by the equations A and B of the group 17.04 under the same conditions:

(O—CT:,/]—V—j]:n(vt—ct) A

17.06
2
[0+ct‘{1—v—2j=u(vt+ct) B
c
From those we have:
17.07
Where we have proven that n7.u=1.
From the group 17.04 we have the Transformations of H. Lorentz:
wo ) uen) 17.08
2 2
colmn)  nvp) 17.09
2 2
o), (-n) 17.10
2 2
ce =) o (nvn) 17.11
2 2
Indexes equations 77;# # and 77;’”:
_ _ 1
n+u= = 17.12
v
o2
_v
= £ 17.13
_v_
o2
v
n—pu= =_C ; 17.14
\%
=5
c
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Sagnac effect

When both observers’ origins are equal the time is zeroed (t = t' = zero) in both referentials and two rays of
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and x’
with a wave front A; and another in the negative direction (counter-clockwise index u) of the axis x and x’
with a wave front A,.

The propagation conditions above applied to the Lorentz equations supply the tables A and B below:

Table A
Equation Clockwise ray (¢) | Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x.=Ct, Condition x,=—Ct,
17.08 x'.=uct, 17.08 x' =-nct,
X' = px, X', =n%, X' AX = pux +1x,
17.09 ct'.=puct, 17.09 ct',=nct, ct' +ct',=uct, +nct,
x'.=ct', x', =—-ct',
Table B
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x'.=ct', Condition x' =—ct',
17.10 x,=nct', 17.10 x, =—pct',
X =X, X, = pux', X +x, =nx' +ux',
17.11 ct,=nct', 17.11 ct, =uct', ct.+ct,=nct' +uct',
x.=ct, X, =—Ct,

We observe that the tables A and B are inverse one to another.

When we form the group of the sum equations of the two rays from tables A and B:

D'=ct'_+ct' =uct_ +nct A
{ ° i ! 17.15

D=ct_+ct,=nct'+uct', B

Where to the observer O’ D'=A <> A_ is the distance between the front waves A, and A; and where to the
observer O D=A, <> A_ is the distance between the front waves A, and A..

In the equations 17.15 above, due to the isotropy of space and time and the front waves A, <> A_ of the

two rays of light being the same for both observers, the sum of rays of light e times must be invariable
between the observers, which we can express by:

D'=D=ct'_+ct',=ct_ +ct,=>2t'=>¢t 17.16

This result that generates an equation of isotropy of space and time can be called as the conservation of
space and time principle.

The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the
conservation of space and time principle given by 17.16:
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Hypothesis A:

If the space and time are isotropic and there is no movement with no privilege of one observer considered
over the other in an empty space then the propagation geometry of rays of light can be given by:

et |=|ct,| and |ct,|=|ct!, 17.17
This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time
conservation principle given by 17.16.

The hypothesis 17.17 applied to the tables A and B results in:

ct' = uct' A
Quadro A c !
ct',=nct’, B
17.18
Quadro B Cte =Nt ¢
ct,=puct, D

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in an empty space
then the geometry of propagation of the rays of light is given by:

et |=|ct,|=|c 17.19
That applied to the table A and B results in:

ct'_=uct A
Quadro A c
ct',=nct B
17.20
ct=nct' C
Quadro B c
ct=uct', D
2
ct'.=u-ct A
¢ ! 17.21
ct' . =n’ct', B
Summing A and B in 17.20 we have:
+ + D t
ct'c—i-ct'u=2ct(777'uj:D'=D(nT’uj:>D':—2:>Zt':z—z 17.22
v v
1-—— 1-—
C c

This result doesn’'t comply with the conservation of space and time principle given by 17.16 and as D'# D it
results in a situation of four rays of light, two to each observer, and each ray of light with its respective
independent front wave from the others.

Hypothesis C:

If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space
then the propagation geometry of the rays of light is given:

r
|ctc

=lct',|=|ct] 17.23

That applied to the tables A and B results in:

ct'=uct A
Quadro A c
ct'=nct, B
17.24
ct.=nct C
Quadro B c
ct,=uct' D
ct.=n‘ct, .\
17.25
ct, =u’ct, B
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Summing C and D in 17.24 we have:

+ + D' t!
ct, +ct, :2ct'(77—’uj:>D=D'(77—'uj:>D=—:>thz— 17.26
2 2 VZ V2
-5 -5
C C

This result doesn’t comply with the conservation of space and time principle exactly the same way as
hypothesis B given by 17.16 and as D'#D D'#D it results in a situation of four rays of light, two to each
observer and each ray of light with its respective independent front wave from the others.

Conclusion

The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we
can conclude with the geometry of propagations.

The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of
the observers not changing the front wave A, relatively to the front wave A; because the front waves have
independent movement one from the other and from the observers.

The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not
compatible with the hypothesis B and C.

For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the path of the rays of light be of 27R:

ct'.=ct',=ct'=2zR 17.27

For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and
the counter-clock ray of light At =t_—t that can be obtained using 17.24 (C-D), 17.27 and 17.14:

v
27[R( c 4nRv
At=t_ —t,=t'(n-p)= = 17.28
c L 1_v2 o /CZ_VZ
2
C

§9 The Sagnac Effect (continuation)

The moment the origins are the same the time is zeroed (t = t' = zero) at both sides of the referential and the
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and
x" with a wave front A. and the other one in the negative way (counter clockwise index u) of the axis x and x’
with wave front A,

The projected ray of light in the positive way (clockwise index c) of the axis x and x’ is equationed by
x.=ct_ and x'_=ct', thatapplied to the Table | supplies:

r

ct'.=ct (1—&j:ct’ =ct.K_. (1.7) ct_ =ct' (]+ch:>ct =ct' _K'. (1.8) 9.11
C C c c C C ) C c c C c c ) -

\% % v’ v’
v =——Ct—=v' =—% (1.15) v =—°S _—=v < (1.20) 9.12

c K c ' c:K'
)" )
C C

From those we deduct that the distance between the observers is given by:

d.=v_ t. =v'_t', 9.13
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Where we have:

(I—XEJ(L+ch:K£K%=I
C C

The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by
x,=-ct, and x' =-—ct',:that applied to the Table | gives:

9.14

VV
ct, =ct’u(]— C”j:ctu =ct',K', (1.8) 9.15

ct' =ct (1+&j:ct’ =ct K6 (1.7)
u u C u u u )

Vu Vu V'u V'u
v, =——<=>V,=— (1.15) V=~ =>V,=— (1.20) 9.16
1+ Hu 1=V o
c c
From those we deduct that the distance between the observers is given by:
d,=v,t,=v',t', 9.17
Where we have:
v \d
(1) 1=,

We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations
9.1510 9.18.

With the propagation conditions described we form the following Tables A and B:

Table A
Equation %ﬁ(tzlg\;ise ray  of Equation %Ohlﬂtue)r clockwise ray of Sum of the rays of light
Result Result
Condition |x_,=ct, Condition |x,=—Ct,
1.2 x'.=ct_K_ 1.2 x' =—ct, K,
x'.=x_K_ x',=x,K, x' +x'",=x_K_+x,K,
1.7 ct'.=ct K, 1.7 ct',=ct,K, ct'+ct',=ct _K_+ct,K,
x'.=ct', x', =—ct',
Table B
Equation %ﬁ(tzlg\;ise ray  of Equation %Ohlﬂtue)r clockwise ray of Sum of the rays of light
Result Result
Condition |x'.=ct', Condition |x',=—-ct',
1.4 x.=ct'_K'_ 1.4 x,=—ct' K',
x.=x'_K', x,=x" K', X +x,=x'_K'_+x',K',
1.8 ct.=ct'_K', 1.8 ct,=ct' K', ct.tct,=ct'_K'_+ct' K',
X, =cCt, x,=—ct

We observe that for the rays of light with the same direction the Tables A and B are inverse from each other.
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Forming the equations group of the sum of the rays of light of the Tables A and B:

{D’=ct’c+ct'u=cthc +ct K, A o1

D=ct_+ct,=ct'_K'_+ct' K', B

Where for the observer O’ D'=A <> A_ is the distance between the wave fronts A, and A; and where for
the observer O D=A , <> A_ is the distance between the wave fronts A, and A..

In the equations above 9.19 due to the isotropy of the space and time and the wave fronts A, <> A_ of the

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable
between the observers, which is expressed by:

D'=D=ct' +ct',=ct_+ct,=>2t'=3t 9.20

This result that equations the isotropy of space and time can be called as the space and time conservation
principle.

The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18.

Hypothesis A:

If the space and time are isotropic and there is movement with any privilege of any observer over each other
in the empty space then the propagation geometry of the rays of light is equationed by:

{ctc:ct'u:>tc:t'u:>Vc=v'u:>KC=K'u A o1
ct,=ct'.=>t, =t'.=>v, =v'.=>K, =K', B

With those we deduct that the distance between the observers is given by:

d.=d,=v t_ =v'_t' =v,t, =v t, 9.22

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct.=ct,=ct

V,=V,=V B 9.23
vt =v,t,=vt C
With those we deduct that the distance between the observers is given by:
d.=d,=vt=v'_t' . =v t', 9.24
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and

time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.
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Hypothesis C:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct' =ct',=ct’ A
v'.=v' =V B 9.25
v' .t =v',t,=vt C

With those we deduct that the distance between the observers is given by:

d,.=d,=v't'=v_t_ =V, 9.26
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of

light are compensated in the referentials.

In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the rays of light course must be of 27R:

ct'.=ct',=ct'=2zR 9.27

Applying the hypothesis C in 9.11 and 9.15 we have:

1
t. =t K'.=t, :t'(l +V?) 9.28

t,=t',K',=t, :t'(]—%) 9.29

For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of
light and the counter clock ray of At=t_—t, that can be obtained making (9.28 —9.29) and applying 9.27

making:

1 I r+r !
At=t_—t, =t'[1+1)—t'(1—1j:2v t =4”§V 9.30
c c c c

vt 2v t, 2vit

u-u

The equation At= is exactly the result obtained from the geometry analysis of

c c
the propagation of the clockwise and counter clockwise rays of light in a circumference showing the
coherence of the hypothesis adopted by the Undulating Relativity.

In 9.30 applying 9.12 and 9.16 we have the final result due to v_ and v ,:

_2v't':47z'Rv': 47Z'RVC _ 47Z'RVU

At=t_—t = = 9.31
© Y e c’ cz—cvc c2+cvu

The classic formula of the Sagnac effect is given as:

At=t,—t, =RV 9.32

c'-v

From the propagation geometry we have:

Ar=2VE 9.33
c

The classic times would be given by:
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:27zR

t 9.34
c
g =27R 9.35
c—v
¢, =278 9.36
c+v
Applying 9.34, 9.35 and 9.36 in 9.33 we have:
At:ZvZﬂR:Mﬂjv 937
C C e}
Atc=2V 27R _ 4272'RV 938
¢ (e-v) ?—cv
At _2v 27R _ 47Rv 939

e letv) Caev

The results 9.37, 9.38 and 9.39 are completely different from 9.32.
§18 The Michelson & Morley experience

The traditional analysis that supplies the solution for the null result of this experience considers a device in a
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the X’
direction (clockwise index c¢) and another vertical in the direction y’. The horizontal ray of light (clockwise
index c) runs until a mirror placed in x’ = L at this point the ray of light reflects (counter clockwise index u)
and returns to the origin of the referential where x’ = zero. The vertical ray of light runs until a mirror placed in
y' = L reflects and returns to the origin of the referential where y’ = zero.

In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of
light track is given by:

ct'.=ct',=L 18.01
For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:

L L 2L
Zt’x, :t'c+t'u:E+E:?

18.02

In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’
axis is:

L L 2L
t =t =2 2=
2 Y T ¢ ¢ ¢

_ _ 2L . . . o .
As we have >t'., —Zt'y, = there is no interference fringe and it is applied the null result of the

18.03

Michelson & Morley experience.

In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise
rays of light.

Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience
obtaining a result that complies completely with the Sagnac effect.

Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9.
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Applying 18.01 in 9.19 we have:

D'=ct'+ct',=ct_K_+ct,K,=>D'=L+L=ct K_+ct,K, A
18.04

D=ct_+ct,=ct' _K'_+ct' K',=D=ct_+ct, =LK' _+LK' =L(K'.+K',) B
From 18.04 A we have:

D'=2L=ct_|[-2< 1+28 | p=21= 18.05
= =ct, —? +ct, +? =>D=/L=ct_—v t_+ct,+v,t, .
Where applying 9.26 we have:

97 _ _ _2L

D—2L—ctc+ctu:>ZtX—tC+tu—? 18.06

In 18.04 B we have:

v’ v’
D:ctc+ctu:LK1+ cj+(1— ”ﬂ 18.07
c c

Where applying 9.25 B we have:

D=ctc+ctu=2L:>ZtX=tc+tu=%L 18.08

The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise
rays of light compensate itself in the referential of the observer O resulting in:

St =Yt =3¢, =27L 18.09

Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have:

St EYE, 18.10
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§19 Regression of the perihelion of Mercury of 7,13”

Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction law:

. _GMm, f:—(6,67. 107')1,98.107)3.28.1 023)f: —k

F= > . > 19.01
The sub index "0" indicating mass in relative rest to the observer.

To describe the movement we will use the known formulas:

F=rr 19.02

d
=—7r+r— 19.03

2 2
u’=iiii :(ﬂj +(rﬁj 19.04

dt dt
— 2— 2( A 2 2 2
S ) S
dt dt dt dar’ dt dt dt dt

The formula of the relativity force is given by:

— 2 — —
in my_|_om_ - m, udu _m, HZ ujgﬁ[ﬁd_”j%} 19.06

In this the first term corresponds to the variation of the mass with the speed and the second as we will see
later in 19.22 corresponds to the variation of the energy with the time.

With this and the previous formulas we obtain:

(1— J d2 (d¢j r+[2drd¢+ d ¢]A +

- a’ e didi df’

Pl ) 19.07

A @d_ﬁ_{@j L4 drdg, d’p L(_f r%é)
¢’ dt| @\ dt al\‘ararat )[A\a @
2
{[l_é)[dz (dﬂ ]+{gld_2§_r(@j ]+ 4¢( Ldrdg. d¢)} ]Zdr}f+
&) dr’ dt dt| dt dt dt\ “dtdt  dr’ )|’ dt
F=r Mo 19.08

(_ 2 2)5/2‘ 5 5
[-u’/c {[ ][ Ldrdp d ¢] {dr[d r (a’gbj] 4¢( Ldrdg . d ¢J} ¢}
+| -4 =1 |t @
didcair ) \di|a? \ae) | a\ aralal || d
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In this we have the transverse and radial component given by:

m

2N 2 2 2 2
S B NPT O WP
(1_u2 /02)’ ) a e di| dar’ "\ dt di\"dedr " di’ )| dt

e prcec vt J R AR WL Pk i g L2
(1_u2/62)’/2 AN\ dtdt d? ) |ar|a? e i “drd " ar (& dr

I

<

19.09

19.10

As the gravitational force is central we should have to null the traverse component Ii;:zero so we have:

2 2 2
S T il Ldrdg &) |d] d_j-r(@j o2 pdrdd | AN T AbL ero
(1 uz /C dt ar " N dt dt dt\ dtdt  ar )| dt

From where we have:

Jdrdg  d’ —rdrdg opdrdg  .d¢) —ldr d22 (dcﬁj
didi | dr’ o dt dt dtdt  dr) ¢ dt|dt \dt

o] 2] s )]

From the radial component 15, we have:

2
2 | e drds, @

— m, d’r d¢ u dr dt\ dtdt dt ldr|.
B = ===+ “a
(1_u2/c2)’ a ) |dr d2r (d¢j ¢ dt

ar’ \ dt
That applying 19.12 we have:
d¢( r drd¢j
2 2 2 4. g,
Fo M AT [d¢j 1)) di\cdrai )| 1dr],
(]_uz/c2)’ dt dt c dt l:] (drj:l c dt
dt

That simplifying results in:
)

m, |dr? \dr

r 2 r

\/1—”2 {] z(dﬂ
c dt

This equaled to Newton's gravitational force results in the relativistic gravitational force:

7 2 r= 2 2
-] T
c dt

)
Fo M dr’\ dt . —-GMm, . —k .
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As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written
as:

E=E,+E = constant. 19.17

Where the kinetic energy (Ey) is given by:

E,=mc*—m,c’=mc’ L 19.18

And the potential energy (E,) gravitational by:

_—GM m, —k

E =—20°%=— 19.19
p r r
Resulting in:
Ezmoc2 1 -1 _k_ Constant . 19.20
u’ r
==
c

As the total energy (E) it is constant we should have:

dE_dE, dE,
—=——4+—"=2z€ero0 . 19.21
dt dt dt

Then we have:

dE, mu du

= 3 19.22
u
1=
c
dE, kdr
=—— 19.23
dt rodt
Resulting in:
dE _dE, dE, my du kdr mu du —kdr
— =L ezerom>————+——=zero= = 19.24
dt dt dt o dt it o dt ot
u u
]——2 ]——2
c c
This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in:
= m, _ 1kdr_. -k,
F= i ————i=— T 19.25
u cridt r
1=
c

In this substituting the previous variables we get:
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2
pom e, [d¢j o[ p0rdo APl 1 kdr(dr dp j _k one
(e i Taa " a cralde | dt

r

From this we obtain the radial component Fr equals to:

2 —
Fr: m, d_:_ (d¢j 1 k(drj __ic 19.07
; u’| dt dt dt) r

2
C

That easily becomes the relativistic gravitational force 19.16.

From 19.26 we obtain the traverse component F;; equals to:

2
Fo=—1 (Zdrd¢+rd? ]kdrd¢ zero 19.28
\/ W\ dedr A ) Crdedt
c

2

From this last one we have:

2
21’@@—1-7/&]—;¢ e
rz@ m,c’r’ dt ¢ '
dt

As the gravitational force is central it should also assist the theory of conservation of the angular moment
that is written as:

L=rx p=constant.

19.30
L=Fxp=Fx N (ﬂfﬂfﬁé: ™, rzﬁ(fx;/;): M rZﬁIQ 19.31
\/]_1,[2 \/]_Lﬁ\dt dt WP dr e
c’ c’ c’ c’
L= i’ 2rzﬁlg:L/(:constant. 19.32
]_IL dt
CZ
dL d( ) (L)k Ld() d( )kzzeroziL)zzem 19.33
dt dt dt dt dt

Resulting in L that is constant.

A

d,
In 19.33 we had ?zzem because the movement is in the plane (x,y).
t
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Deriving L we find:

2
aL_d|_m, rZ@ :]2 ol 3dur2d¢+ ™, {Zrﬂﬁﬂfzd—? =zero 19.34
dt di| [ 2 dt| ¢ Nodt di A\ dede di
1— u 11—
AN -
c
From that we have:
2
2r@@+r2d—;¢
dt dt dt —u dul
19.35

- 2 2
rz@ (I_uj dt c
dt &

Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we
have:

[2 drd¢+rch¢j —Idr{d% (d«ﬂ
dede d) ¢ di|d’ \dt)| k dr | W —u dul 1056
249 {1 (drj} mc’r’dt\ ¢ (]_uzj dt ¢ '
dt 2z o

From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16.

For solution of the differential equations we will use the same method used in the Newton's theory.

1
Let us assume w=— 19.37
r
. . . ow -1
The differential total of this is dw:a—dr:>dw:—2dr 19.38
v r

dw —1dr dw —1dr
From where we have — = & —=—— 19.39

d¢ r’ d¢ dt rdt

dg L w
From the module of the angular moment we have —= 3 ]——2 19.40
dt myr c
dr L dr
= 11— 19.41
dt myr d¢
dr —Ldw
Where applying 19.39 we have —=—— ]—— 19.42
dt m, dg¢
L
That derived supplies Z dg dt d( dw 1 19.43
e’ drdpdi| m, d¢\/
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Where applying 19.40 and deriving we have:

dz L ] uzi —Ldw ] u’ _—LZ J uz_dzw ] u’ dwd(
3 me\ Caglm dp\ E | i\ 2l ag & d¢d¢k

In this with 19.36 the radical derived is obtained this way:

d /] | -1 udu_ k dr(] u’ kdw(
dt ) NI-uP/ S dt moczrzdtk s mge dtk 02

i ] u’ 1 udu  k dr(] u2 —k dw(
dd\\' | Jimw /@ cdp merdp &) me d¢k

That applied in 19.44 supplies:

d’r -I 'l d’w u ok (dw ’ u’
—5=— I PR L Sl =
dt mr c|do ¢ mgc kd¢ c

Simplified results:

3
dr_ Lk, w’Y(dw) L [, wdw
ar mc’r’ d¢ mjrzk czjd¢2

Let us find the second derived of the angle deriving 19.40:

dp_d( L [ ) -2ndr [ W 1 d(/
e’ dt\my’ ) my’dt 2 mr dtk

In this applying 19.42 and 19.45 and simplifying we have:

“

dp_20 dw(, w’) Lk dwf, 'Y
dr’ m2r3d¢k mjczr4d¢k c

Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have:

o]

The equation of the relativistic gravitational force 19.16 remodeled is:

d’r (dgY 1(dr\' | =k
7 1——2 1—— - 2
dt dt | dt

In this applying the formulas above we have:

3 2
L'k u’ 2 dw r ( u \dz L u’ u’ If—de
el R 22 A== | S| =
mce'r ¢ )\d¢) mr k c )d¢ mr c c c Lmo de¢
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Ck (,w'Yawy £ [ wdw 2 [ v -k Ckif,
mc’r’\ c\dg) mr cdg mr c’ morzl rl

m’r’ d¢’ mir’ & myr’
dzwLI_ m k
dg¢’ r ?
g Lz\/]—uz
c
dzwi]_ m k
dé’ r 2
mo 2@ ]_uiz
] ' dt ¢’
CZ
2
dZW ] mok ]—?
d¢’ r ’
e
t
2
uZ

d¢2 Trd¢2Tr2 28(d¢j4
o\ dt
(dzw]izd% IR L
d¢’) rd¢’ 8(d¢j4 2 8(d¢j4
o\ dt o\ dt

- R C]

A&’ 2 2 4 4
¢ rdg- r mzrg(cwj m2r8(d¢j
7 \dt “\dt
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KE(drY K de¢Y
2 —|— —|r—
(dsz 2dw 1K Aldr) S\ ar

A A A

K (drY
, K| ar
(dzwj 2dw 1K ’\dg K

d 2|7 2 2 4 2 2
¢ rdg- r mzr‘?(wj mzrg(CMj m2c2r6(d¢j
o\ dt o\ dt ? dt

(dzwj 2dw 1 K 2 dg K

d 2| 2 2T 4 2 2
¢ rdg- r mzrg(CMj mzrg(éwj mzczrﬁ(wj
7 \dt > \dt ’ dt

12 dwY
, K |aw
d’w) 2d'w 1 kK \dg K’
A4 ' A r= 7 2 2
¢ rdg- r mzrg(cwj mzr4(d¢j mzczré(wj
>\ dt >\ dt ’ dt

In this we will consider constant the Newton's angular moment in the form:

L:rzﬂ
dt

That it is really the known theoretical angular moment.

(dzw Codw 1 KK (d_wj2 K

d¢’ Ty d¢2Tr2_mjL4 mfchzkd¢ _mfczrsz
dwY | dw K¥ooE (dw) K

| 2 22W+W2: 274 2 22| o 222W2
dg dg m L mc’L kdqﬁ m,c'L

2\’ 2 2
aW) Y= A | aw?
d¢ d¢ d¢

2\ 2 2

Tw) 2D DY) (a4 1~ B=zero
d¢

Where we have:

kZ

=73 22
m,c"L

k2
_me4
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The equation 19.54 has as solution:
1 1
W—E[I —SCOS(¢\/ 1+4 +¢0) W—E[] —8c0s(¢Q)] 19.57

Where we consider ¢ =zero.

Itis denominated in 19.57 O°=1+A4. 19.58

The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass
with the variation of the energy in the time, because both as already described, participate in the relativistic
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable
and indivisible in the electromagnetic theory.

From 19.57 we obtain the ray of a conical:

. D e D 19.59
w ]—860S(¢«/I+A) ]—8cos(¢Q) '
Where ¢ is the eccentricity and D the directory distance of the focus.
Deriving 19.57 we have d—W:QSLm 19.60
d D
2 2
That derived results in d VE:Q COS(¢Q) 19.61
d¢ D
Applying in 19.54 the variables we have:
2 ? 2 ?
dw| 2d Wy, g W L (g41)w’ ~B=zero.
d¢ d¢ d¢
Q4COS2(¢Q)+2QZCOS(¢Q)[]—€COS(¢Q) +AQ2sen2(¢Q)+(A+l{l—&cos(@)}z_Bzzem 19.62
D’ D | & D’ &D
Q4cos2(¢Q)+2chos(¢Q) 2Q200s2(¢Q)+A‘Q2 Achosz(¢Q)+(A+]{]—£cos(¢Q)T_B:Zem
D’ D’ D’ D’ D’ &D
Q4COS2(¢Q)+2Q2COS(¢Q) 2Q2c0s2(¢Q) AQ_Z_AchasZ(¢Q)+ (A+1)—2(A+1)COS(¢Q)+(A+])COS2(¢Q)—B:zero
D’ D’ D’ D’ D’ &D’ e’ D’
2 2 2
(Q4—2Q2—AQZ+A+1)C"SD(Z¢Q):{ZEQD 24_2 )C"S(@)ﬂ% ) ey 19.63
e D) D D D

In this applying in the first parenthesis Q2:1+A we have:

(07 =207~ 40" + A+ )=|(1+ AY = 2(1+ A)- A1+ A)+ A+ 1|1+ 24+ 4 = 2= 24— A— £ + A+ 1)=zero
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In 19.63 applying in the second parenthesis O°=1+A4 we have:

20° 24 2 )\ [2(+4) 24 2
= =zero
eD &D D eD eD &D

The rest of the equation 19.63 is therefore:

409  (4+1)

7 gZDZ —B=zero

The data of the elliptic orbit of the planet Mercury is [1]:

Eccentricity of the orbit £=0,206 .

Larger semi-axis = a = 5,79.10'°m.

Smaller semi-axis b=a~1—&°=5,79.10""\/1-0,206° =56.658.160.305,80m .

eD=a(l-£)=5,79.10"(1-0,206° }=55.442.955.600,00m .

p_ali=e?)_3579.10"(1-0,206")
e 0,206

=269.140.561.165,00m .

The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are:
PT=3,16.10"s.

PM=7,60.10°s.
The number of turns that Mercury (m,) makes around the Sun (M,) in one century is, therefore:

3,16.107

N =100 -
7,60.10

=415,79.

Theoretical angular moment of Mercury:
2
LZ:(rZ%] :GMoa(I—gZ):6,67.10’”1,98.10305,79.1010(1—0,2062):7,32212937427.1030

Y 2
Az(GMomo)z =(GM0)2 =(6,67.10 ”) (1,98.103”) _265.10°"

mi’? S8 (30.100) (752,107

7" 2
B:(GMomo)Z _(Gm, )’ :(6,67.]() ”) (1,98.1030) _325.10°%

myL* L’ (r32.10"f

O=N1+A=+1+2,63.10"° =1,000.000.013.23

Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have:

2 -8 2 -8
AQZ I(/21+12) 520510 (1,000.000.013.223) L 20510741 325107 =8976.10"
D’ &°D (269.140.561.165,00) (55.442.955.600,00)

Result that we can consider null.
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables
we have:

AQ? (A+1 GM,) GM,) 1 GMm,) | (GMm,)
DQZ +(52D2) Bzisz”D)2 {Ia(ch’;) }521){“(&]402) } ( L"O) =zero 19.71

2 2
gL’ (GM,) {]+%}+L"c{]+%}—c%zDz (GM, ) =zero
c c

GM

2 2
e’ L’(GM,) +&’L*(GM, )’ %u%%ﬁcf%—c%mf(GM,, ) =zero
C C

(GMm,)

2
C

e’L’(GM ) +&’ +L'¢+17(GM ) —c’¢’ D’ (GM , )’ =zero

4

cL"+\I+e* \GM ) L +e"°~————c“¢“D*(GM, ) =zero 19.72

2,4 ( 2X 0)2 2 Z(GMZ()) 2.2 2( 0)2
c

2

—(1+£7 YoM, ) + \/[(1+g2)(GM0)2]2—4c2 gf(G]g ) —c2’D*(GM, )

L=
2¢?

L —(1+e2Yom, Y y(1+2 Y (GM, Y —42(GM, ' +4¢ 2 D* (GM, |

2c’
LZ_—(]+52XGM0 Y+ (1+267+6" \GM, ) 467 (GM, ' +4c'&’ D’ (GM,
- 2¢?
LZZ—(1+52XGM0 P ay(GM,) +267(GM, ) +£*(GM, ) —42° (GM, )’ +4¢*e” D* (GM, )’
2¢?
r —(1+&7 YoM, Y £y(GM, ) +&"(GM,) -25*(GM, )’ +4¢’ & D* (GM, )’

2¢?

e _—(1+52XGM0 )2+\/ (]—gZ)Z(GMO )Y +4c’e’D’(GM,) )
- 2

2c

=7.32212927328.10°° 19.73

This last equation has the exclusive property of relating the speed c to the denominated relativistic angular
moment that is smaller than the theoretical angular moment 19.66.

The variation of the relativistic angular moment in relation to the theoretical angular moment is very small
and given by:

30 30
AL:7,32212927328.]0 7,32212937427.10 138107 = 1 19.74

732212937427.10% 72.503.50900

That demonstrates the accuracy of the principle of constancy of the speed of the light.
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in
Ap=2r41 5,79(5—1}227[4 1 5,79(—0,000. 000.01 3.23)2—3,4 6.10"rad. 19.75

Converting for the second we have:

-5
A¢=_3’46'10 .180,00.3.600,00=_7,]3,,. 19.76
T

This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and
is shrouded in total observed precession of 5599. "
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§8§19 Advance of Mercury’s perihelion of 42.79”

If we write the equation for the gravitational relativity energy Er covering the terms for the kinetic energy, the
potential energy E, and the resting energy:

1 m c’
E,=mCc’| ——-1|+E_+mc’=—2—+F_. 19.77
u’? i w7
1-— 1-—
C C

Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the
radius tends to infinite, the speed and potential energy tends to zero, resulting then:

mOC 2
E.=————+E_=m_cC 19.78
R u2 P o
1_7
C2

Writing the equation to the Newton’s gravitation energy Ey having the correspondent Newton’s terms to the
19.77:

mou2 k 5 5
E. = ——4+mc =m.cC 19.79
N 2 r (e} (e}
2
m.u

-k
Where is the kinetic energy, —— the potential energy and moc2 the resting energy or better saying
r
the inertial energy.

From this 19.79 we have:

mu’ k 2 , o mu’ k 2k 2GM mg »  2GM,
__+moc :moc = =—=u = = —>u = 19.80
2 r 2 r m.r m.r r
Deriving 19.79 we have:
dE, d(mu® k 2
=— ——+m” |=zero
dt dtl 2 r
m Zudu k dr
—+——=zero
2 dt r°dt
pdu_ -k dr_=GMs dr
dt mor2 dt r’ dt
pdu_ =M dr
dt r® dt
du —-GM,
—=— 19.81
dr r

88/144



Making the relativity energy 19.78 equal to the Newton’s energy 19.79 we have:

2 2
m . c m. u k
E, =E, > —=—+E,=—>—-=+m.’ 19.82
uz 2 r
1-—=%
c
2 2 2
m_c E m.u° GM.m m.c
— 4+ F=-—0 o0, 0 19.83
m, ]__i mg m02 m,r mg,
2

E
(p:—p 19.84
mO
We have:
2 2 GM
C =% 0,7
1_i 2 r
o2
2 oM 2
<|>=u———o+c2—c—2 19.85
2 r 1_%
c

1 u’
~1+ 5 19.86
u? 2c
1-=3
o}
We have:
2 GM 2
o= -——24c? —c2(1+u—2j
2 r 2C

That simplified results in the Newton’s potential:

u’  GM, , u’ —GM,

2
¢:—— +c" —Cc  ——= 19.87
2 r 2 r

Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78:

m.cC u GM c
E, = o +m | —— ° 42 _ 19.88
U2 r U.2
1——2 1——2
C c

We have the Newton’s energy 19.79:
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in
the Newton’s theory:

—d
a= 4
dr

= = ———2+c' -
dr dr| 2 r u?
1-—
c
-dfu* oM, ,) d c’
a=—1/—- +ct |-——| -
dr\ 2 r dr u?
1-—=%
c

Where we have:

—d(u® GM, ,) —-d(E, Lo :
—_— = +C” |=——| — |=zero. Because the term to be derived is the Newton’s energy

dr{ 2 r dr | m,
- B, _u® GM, o, . .
divided by m, thatis — =————=+4¢C" that is constant, resulting then in:
m, 2 r
d c’
T A 2
r u
1-—%
C
u du
a=—- —

In this one applying 19.81 we have:

-1 GM,
a= - 19.89

2 r
u’ )2
1-—
C

The vector acceleration is given by 19.05:

2
2 24 .
5= M_r(d_ﬂ f{ggdiﬂd_ﬂ(,;
dt? dt dt dt  dt?
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The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (1)
thus we have:

d’r  (dgY’ -1 GM,
a= == |= - 19.90

dt? dt ( 02 jz r
1-—
C

Being null the transversal acceleration we have:

drd d’¢ |-
2—r—¢+r—f ¢ =zero 19.91
dt dt dt
drd d’
2——¢ +r f =zero
dt dt dt
: I 2 d¢
That is equal to the derivative of the constant angular momentum L=r a9t 19.92

=Zero 19.93

dL. d d dr d d’
G0 (00), drdd 0
dt dtl dt dt dt dt

Rewriting some equations already described we have:
1

W=—
r

0 —
dw=""dr = dw=—-dr
or r

dw —-1dr dr , dw dw —-1dr
—=—F—o —=-r —and —=——
d¢ r° d¢ d¢ d¢ dt r° dt

dr_d¢dtdr _Tdr -L ,dw_ dr__ dw

= = = rr— =
dt dtd¢dt r’d¢ r® d¢ dt d¢

d’r d(dr) dgdt d dw) L d dw) -I° d°w
—=— | — |=—Z~——|-L— == —| -L— |=—— 19.94
dt® dt\dt) dtdgdt d¢ d¢) r° d¢

From 19.90 we have:
1_3112 d’r _r(d¢)2 _ —GM,
2c” ) dt? dt r’
In this one we 19.94 the speed of 19.80 and the angular momentum we have:
[ 3 (2om | -2 d*w (LY | GM,
1- 2 2 2 Y2 =T
e r r- de¢ r r

3GMolj(d2w 1} GM,
1- +=|=

¢ rlag’ r) U
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36M, 1\d*w 3Gm, 1)1 GM,
l=—— cH = o=
c® r)d¢g c® r)r L
d’w 3GM, d*wl 1 3G6M, 1 GM,

2 2 2t T2 Tz TZero
dg c® d¢°r r ¢ r L

dw _dwl 1 1
s~ A———+——A—-B=zero
de¢ d¢"r r r

d’w d’w 2

P —A 2w+w—Aw —B=zero
dg¢ d¢
d’w d’w 5

2—A 2w—Aw +w—B=zero
d¢ d¢

Where we have:

3GM, GM
A= B
c L

The solution to the differential equation 19.95 is:

W ZL[]_—ECOS(¢Q+¢O)]:> w ZL[1—8005(¢Q)].
&D &D

Where we consider ¢ =zero

Then the radius is given by:

1 &D &D
r=—=———/—""-

w o 1—¢gcos(¢0) TS 1—¢gcos(¢Q)

Where ¢ is the eccentricity and D the focus distance to the directory.

d 2 2
Deriving 19.97 we have — = Qsen(¢0) and d ";’ _Q cos(¢o)
d D dg D

Applying the derivatives in 19.95 we have:

d V;—Ad V;W_AW2+W—B=ZQ]CO

d¢ dg

chos(¢Q)_AQ2COS(¢Q)i[
D D &eD

o’ COS(¢Q)_AQ2 COZS(¢Q) [1—ECos(¢Q)]_ 2A2 [1_25005(¢Q)+52 cosz(@)]J{
D D ¢D

0’ cos(¢0) AQ’cos(¢) N AQ’co S(m)gcos(@)—
D &D? &D?
A

eD? ep? D eD €D
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——igcos(géQ)

+i28cos(¢Q)—%82 cosz(¢Q)+i—i€cos(¢Q)—B =zero

19.95

19.96

19.97

19.98

19.99

l—gcos(¢Q)]—82—i2[l—gcos(¢Q)]2 +é[l—gcos(¢Q)]—B =Zzero

}—B:zero



cos(¢Q

o - 1J+AQ cos2(¢Q) Acos§(¢Q)_ A

=
cos(g) (Qz L 1J+AQ cos2(¢Q) _Acos’(g0) A 1
=SS

> —— ——=zero

AD AD Ag™D AeD A
cos(¢Q ? Q° 1 Q cosz(¢Q) cos2(¢Q)_ 1 N 1 B_

> o =zero
8D 8D A D gD AeD A
2 2 2
2 1 1 1 B

&2(@)(@2_1%&(4@ e 19.100

D D A ¢ &b A eD” AeD A

The coefficient of the squared co-cosine can be considered null because Q=1 and D’ is a very large
number:

cos’(4Q)

02 (Qz—l)=zer0 19.101

Resulting from the equation 19.100:

2 2
2 1) 1 1 B
cos(go)(@” ", 2 1) it P ero 19.102
D (a &D’ AsD A

e &b A

Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously
the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following
equations:

Q° 0° 2 1 1 1 B
A &b & A gD AeD A

These equations can be written as:

1 1 1(1 2
[a=b]m>—-—=—|=-—= 19.104
A &D Q A €D

e N S 19.105

1 1
In these ones the common term a = — —— must have a single solution then we have:
&D

1(1 2 DB
[b=c]= (———j=—g 19.106
0*\a D A

With 19.96 and the theoretical momentum we have:

3GM, GM, &DGM,
= B= L" = eDGM, EDB=—72= 19.107
2 2 I
c L
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It is applied in 19.105 and 19.106 resulting in:

1 1 1
[a=c]m> -1 =1

A & A

1(1 2 1
[b:c]:>—2(———j:—

Q°\A &b A
From 19.108 we have the mistake made in 19.105:
1 1 1 1
———=—= -—=]Zero
A & A &D

1 -1

- = =-1,80.10"" ~zero
D 55.442.955.600,00

From 19.109 we have Q:

1(1 2 1 5 2A 5 2 3GM,
—| =—=Q0 =1l-——=0"=1—— >
QO°\A &b A &éD D ¢

It is applied in 19.104 resulting in 19.110:

1 1 1(1 2)_ 1 1 1 (1 2) .1 1 1
A & 0°\A &) A D (1_2AJA &) A & A
&D

From 19.112 we have:

6GM \/1 ~ 6le67.107)1,98.10")

Q: 1——02
gDc’ (55.442.955.600,00)3.10°)

That corresponds to the advance of Mercury’s perihelion in one century of:

ZA¢:A¢.415,79:(l—1}1.296.000,00.415,79:42,79"
o)

Calculated in this way:

In one trigonometric turn we have 360x60x60=1.296.000,00"seconds.

The angle ¢ in seconds ran by the planet in one trigonometric turn is given by:

1.296.000,00
Q

$0=1.296.000,00=¢=

If 0>1,00 we have a regression. ¢ <1.296.000,00.

If 0<1,00 we have an advance. ¢ >1.296.000,00.
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=0,999.999.920.599

19.108

19.109

19.110

19.111

19.112

19.113

19.114



The angular variation in seconds in one turn is given by:

_1.296.000,00
Q

A¢ —l.296.OOO,OO=(L—1J1.296.OOO,OO.

Q
If Ap <zero we have a regression.

If Ap >zero we have an advance.

In one century we have 415,79 turns that supply a total angular variation of:

ZA¢=A¢.415,79:(l— J.1.296.ooo,oo.415,79:42,79"
Q

If ZAd) <zero we have a regression.

If ZA(I) >zero we have an advance.

§20 Inertia

Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of
the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires
that the spherical electromagnetic waves with speed c issued by a source located at point O' is always
observed by O', regardless of time, with spherical speed ¢ and therefore the uniform motion and rest are
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object
located in O’ will always be centered on the object itself and a beam of light emitted from O' will always
remain straight and perpendicular to the spherical waves.

Imagine another point O what will be the beginning of the coordinates of the observer which has the
same properties as described for the inertial observer O'.

Obviously two imaginary points without any form of interaction between them remain individually and
together perfectly meeting the law of inertia even though there is a uniform motion between them only
detectable due to the presence of two observers who will be considered individually in rest, setting in motion
the other referential.

The intrinsic properties of these two observers are described by the equations of relativistic
transformations.

Note: the infinite universe is one in which any point can be considered the central point of this
universe.

(§ 20 electronic translation)
§20 Inertia (clarifications)

Imagine in a totally empty infinite universe a single point O. Due to the uniqueness properties of O a
radius of light emitted from O must propagate with velocity c. If this ray propagates in a straight line, then O
is defined as the origin of an inertial frame because it is either at rest or in a uniform rectilinear motion.
However, in the hypothesis of propagation of the light ray being a curve the movement of O must be
interpreted as the origin of an accelerated frame. Therefore the propagation of a ray of light is sufficient to
demonstrate whether O is the origin of an inertial frame or accelerated frame.

Now imagine if in the universe described above for the inertial reference frame O there is another
inertial frame Q' that does not have any kind of physical interaction with O. In the absence of any interaction
between O and O' the uniqueness properties are inviolable for both points and rays of light emitted from O
and O' have the same velocity c. It is impossible for the velocity of light emitted from O to be different from
the velocity of light emitted from O' because each reference exists as if the other did not exist. Being O and
O' the origin of inertial frames the propagation of light rays occurs in a straight line with velocity ¢ and the
relations between times t and t' of each frame are given by table I.
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§21 Advance of Mercury’s perihelion of 42.79” calculated with the Undulating Relativity

Assuming ux

(2.3) u'x'=

=V

ux—v

-V

UxX=v

\/ 2
1+ —
2

v® 2vux

1+
=
(1.17) dt'—dt,/1+ _2vux _dt,/1+ VY gpr= dt‘/l——

V_'2+2VUX

v
2

v
2

c

2V

2
c

=>ux'=zero

Ux'=zero

+ﬂ—):>dt at'

fi=let=r

(1.22) dt= dt'\/1+ 5 =dt'
c c?
V2
dt'=dt, [1-7 dt=dt’ —2
c
2 e
l——2 1+—2:1
c c
__ v v
v= -V
e 1 v’
1+ f _v
c? c?
dt>dt' v<v' vdt=v'dt'
(1.33) 7= Z_V' - —ZV' N —V'2
v v X! v“ , 2v'(0 V'
\/1+ S \/1+ S+ 1+
c c c c c
(1.34) ¥'= —V = —V = —V
1+v2_2vux 1+vz_2vv 1_v2
2 2 2 2 2
c c c c c
GV =V
s v?
1+ 1-V_
V" & c?
r=rr=-7' P=-rr=-r
dr=drr+rdr=-dr dr'=—drr—rdr=-dr

rdr=drrr+rrdr=dr

g—df_duf)_drp, df;
dt dt dt dt

ﬁ.:d_f':i—_rf):{gfﬂdi
dt' dat' dat' dat

J

rdr'=—drrr—rrdr=

{5+

i)
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—dr
d_¢)2
dt

)2

at'

21.01

21.02

21.03

21.04

21.05

21.06

21.07

21.08

21.09

21.10

21.11



5_dv _dF_dirf)_|dr_ r(d¢) ,drdg d¢ 5
dt dt? dtt |dt? \dt dtdt e

2 ~
S_dv _ dr2 d(—r2r) r r( j . 2drd¢+rd¢2¢
dt' dt?  dt dt’ dt’ de'dt  dt'

dv v

— 2 2 2 4=
_g—_av' _ /1+V'2 1 . 1 1-2 1_v_2ﬂ+ 1.
dt' c (1_vj v c c” dt \/ Vv

c c c
- dv v 1 v2 \dv dv v
—a'= = l+—2 3 1——2 +V——2
dt' C 22 dt dtc
%)
c
—mE= -ma' __ T, adv'__ m, l_(l_v_zjd_v dv v
\/1+V'2 \/1+V'2 at' 2 i'_ c’)dt  dtc’
s e (g
F'=—mg=— & —m, dv
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F'=—m'a'= _moa' = — > 2‘7::}':: T, 3 [(1 sz ZV ZV V}
\/1+Vz \/1+V'2 £ (1_V2j2 ‘ te
c c o2

B = [F(-dp)=[F.ar=[=£raF
r

Ek:fﬁ' .(—df')zjﬁ.dfzjidv( df')Z_[ o

v at
1+7
C2

2 2
VeV -k
+—2j=J.—2dr
C r

1-=
\/ - 2 2k c
¢’ c2
B, J-mvdv monVé:ji _mv'dv'  mvdv —k
2

dE, = - 3° 2
1 2 '2 2\, r
+V_ 5 [l_vj 1+ [l_V)
c c? c? 2
\/7 ——+constant

2
1+
12 m c2
E,=mc? /1+v——£:constant Ep=—F= ~K=constant
¢ r r

B, J'mvdv _.[ myvdv (

dr

Emc

1-7
C
ITIC2 k II’IV2 k II’ZC’2 k
E. = Q ——=1n C'2+o——— E,=——/—»~%——-—="=m C2
R 2 r e} r R O 0 ¢}
\4 ‘ ’
1_72 l_ 2
c C
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i GM, GM,
1 Eg _+ k21 H=—E A-_XK oI;Zo: o
V2 mc® mcr mc mc® mcC c
¢
1 1 1

L=Fx7=Fx—=L —=rix =1 — [—(dr'f d—%ﬂ 1 =
1+%5 1+ dt dt 1+%5
c c c
f:r2d—¢]z’:L]:: = constant L:rzd—¢
dt dt
1 1
dEkszVdv _ mvdv :_—kdr:_]ff.df

AEy _po_ My odV_—k.df_-—k.o
dt o\, dt rPdt 1

2

C
P ma _—k.

=_ . om d’r _(d¢ ,drdd d’¢ k.,
F_( zjﬁ{[dtz r(dt)}[ (dtdt t e }b} r
-7

C

m, (drd¢ ¢
¢( ngkZdtdt dtJ¢ were

|

\%4
-7
C

. om | (deY | —k.
2)2 t dt r

_ . dw d*r _

dr_ _—Ldw
dt r? dt d¢ dt?

r? d¢?
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- 2 42 o
F=—1T0 j L dw_ LZH(:_]; 21.33
(1—‘/2J2Lr d¢* \r r
c2
1 (—L2d2w_ij_—GMo
( szgkrz dF r 2
C,2
1 (dZW ;](—LZJ —GM,
3 2 2 | 2
(l—vzjz d¢* r\Nr r
C,2
2 M
1 i dvg+; Gzo 21.34
\,\d¢” r) L
2
C
1\(dw  1)_cM
(H+A j eWi 2 |== 21.35
r)\d¢" r) L
2
(we3al] 1] S
rA\d¢” r) L
dW+H +3Adr’2Vl+3A—:GD240
d r r r L
M
HMH{ +3A—W+3A o zero
a¢ a¢’ T
F="5 a=—k G _GMo p=" 21.36
mcC moc mcC c L
d*w
H—+Hw+3A—w+3Aw —B=zero 21.37
_ 2 _R
v=L= 1 [y scosigo) d_—serigo) Ty =0 codgo) 2138
r &b d¢ D dg D
2 2
H%@m%@mos@)}m o 2o%0) 1 f 1 scosigo )]+3A{ D[1+gcos(¢g)]} Bzero  21.39
&l &.

2
_QzHﬂ@WLMLDgCOS@Q)ﬁQ_DA%@[l
& &

D &D
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—QZHM@+HL+H cos(@o) 3p*acosgo) 30%a COS;¢Q)ECOS(¢Q)+

D &D D &D D
3A 3A 2
= $0)-B=
5202 &°D? (o)~

+

gD
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_QzHMWLWcos(qﬁ@);&Acos(¢Q)_3QzAcos2§¢Q)+
D D?

gD gD

3A 6A cos(¢Q)+3Acosz(¢Q)
6‘ D 6‘D D D

B=zero

_ e Coslgo) , , coslgo) 30°acoslo)  6acoslgo)

D D &0 D eD D
357250 s(90) , 5,c05(#0) , ;1 34
D’ D’ o 2D

+3A —B=zero

2
(—Q2H+H—3QA+6—A)COS(¢Q)+(—3Q2A+3AM—)COS ) gl 32 posero

&D &b D D? eD  &D°

2
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=Zero
D? 3A 3A 8D &b ) D 34D &°D° 3A
2
o’ ~1 (l—QZ)%Z@Q)zzero
2 2
(QH H_Q?, 2)cos@), m 1 B__
3 3a e ep) D 3AgD 202 3A
J—WQ =zero— + - B =zero
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COS¢Q #£Zero——=— QH H_9o +——zero
3A 3A gD €D
2 2
“OH H O L2 ero H LB e
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[b= c]:i(iJrLj_@

Q 3A &D 3A
EDGM_ _ eDGM_
EDB= >
L 5DGM

101/144

21.40

21.41

21.42

21.43

21.44

21.45

21.46



[b:c]:i(iJrLj:L
O°\34 ¢&D) 3A

*=g+%4

gD

Q:Q(H) The regression is a function of positive energy that governs the movement.

g=fr _MC Q2:1+6—A Regression
mc® mc? &D
- b]:LjLL:#(LJFLj:L:ZerO
34 D (1 +6A) 3a ep) D
&D
2 2
3Agp(ﬂ+i_9_+ijzzem 3A52D2(L+ 1 _ﬁjzzem
34 3A &D €D 3AeD &°D* 3A
e ER2 2 G, B:Gl\élo
mc c? L

—Q°HeD+HeD—0°3A+6A=zero
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0°3A—0’¢D+&D—0°3A+3A=zero

—0’¢D+¢&D+3A=zero

HeD+3A—eD(eDB)=zero

HeD=-3A+¢&D

3A
&D

=1+

This regression is not governed by the positive energy

102/144

21.47

21.48

21.49

21.43



v=
v
1+
CZ
s_dv_d|_ —v |_dt d( —v' _vid| -
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dt c 2 c”)dt dt' ¢
(1+V2)
c
mEe_MA___ m dv__ -m (Hv_'jdv' dv' 7
\/l—v2 \/_‘/2 dt ( ,2)1 c’)dt  dt'c’
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1-2 v T r
\/ C2 1+C2j
dEk :E—'vv‘?: m, Vldvlzﬁfdf'zﬁfﬁl
dt' e\, dtt rfodt r
1+%5
o2 K
vee T
1+ 7
F'= m, 3 d Ié_r(d_¢j 2~ dr d¢ ¢2 ¢ 2r
( Vlzjz dt' dt' dt'dt' dt' r
1+%
2
c
— 2 ~
F‘q;: T 3( 2; gf' jt€j¢=zero
v )2
(chj

1+7
( c’
& ’
1 | dPr (dpY|._—cM
§L P N 2 T
( ,2)2 dt dt r
147
2
C
dg _r dr __;,dw d’r _—1¥ dw
dt' r’ dt' d¢ dt” r’ d¢’
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rzd—d)(fx&)):r

D= P xPl=—rpx—V _—ppx L [[dr A+r—&) =1
v de Tt at 2 dt
1- 1-v
c’ c

d’¢ _21” dw
dt” r’ d¢

2 A9 ¢

at’
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2

1 |V—L'2d2w_ gﬂz

1+
C

( V'ngL r2 d¢2 r

r* d¢’ r -

1 (—L‘Z dzw_L_'ZJ_ —GM,

~GM,
2
r

2

r

1 (w1 (—L'2)=—GMO
( ,2)2 kd¢ rh r r’
1+—
c
L (dw+1j ELh 21.70
'2 2kd¢ r I’
(1+2j
c
1Y(dw,1)_GM
_(H+A_j St =2 21.71
r)\d¢” r) L'
(H+3A j_d L1 :_Glgo
d¢’ r r
H—d Wy pgly3adw wlispl =M
d¢* r d¢” r r I
HM+H +3Adw >=zero
dg’ dg’
H=12 a=% =% 21.72
mc c r
e W+HW+BAZ aW 438w +B=zero 21.73
— 2 0P
w=2=1[l+ecos(po)] dw_~0serigo) d'y _~0"codg0) 21.38
&D d¢ D d¢ D
2 2 2
H%@)+H%[I+SCOS(¢Q)]+3A_Q C; 90 LD[l+gcos(¢Q)]+3A{LD[l+gcoS(¢Q)]} +B=zero 21.74
&. & &

—QZHM+HL+HLECOS(¢Q)—@%[1+gcos(¢Q)]+3—‘g +2ecos(@o )+52co 52(¢Q)]+B:zero
£

D &D &D

&D

—QZHJ—)COS #0)  p 1
D D

+2A 28cos(¢Q)
&0’ 8

Hcos(@_macos(m)_m@cos<¢Q>gcos(¢Q)+
D

&D D &D
“(p0)+B=zero
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_QzHﬂ@)+HL+HCOS(¢Q)_3QZA COS(¢Q)_3Q2AC0822!¢Q!+

D &D gD

N 32A2+6A COS(¢Q)+3Acosz2(¢Q)+B:zero
&D° e D D

_yycoslé0) coslg0) gfacodlgo)  eacoslgo)

D D gD D gD D
2 2
—3Q2ACOS 2(¢Q)+3ACOS §¢Q)+HL+%+B=zero
D D eED &D
2 2
(—Q2H+H—3Q A4 +6—A\COS(¢Q)+(—3Q2A+3A)MSZ¢—Q)+HL+%+B=zero
gD &D D D ED &D

2 2
(—3Q2A+3A)M€—Q}+(—QZH+H—3Q—A+6—A\COS(¢Q)+H L 32 B _cero
3AD eD D) 3AD  3AeD 3AED? 3A

oesten, (<G 5 @, 2)eoddd) 5, 1 .z

> 5 —=Zero
D 34 34 &D &D) D  3AeD &D* 3A
2
O’ ~1 (l—QZ)%Z@Q):zero
2 2
(ﬂ+£_Q_+L\COS(¢Q)+ H 1 B o
34 32 & &D) D  3AsD &D° 3A
cotO)_serom 2+l i Bosero
D 3AeD &°D° 3A
2 2
D 34 34 &D &D
2 2
_QH+£_Q_+L:ZGI’O H + 212+£:ZGrO
34 3A &D &D 34eD €D
[a=b]:>i+izi2(£+i) [a:c]:i+L:—@
34 &D Q°\3A ¢&D 3A ¢&D 3A
2
0?=1 H= ER2: moc2 -1 gDB:é:DGMO:5DGMOZl
mc®  mc I &DGM,
[a:b]:£+L:;(i+Lj:L:Zero S T A S P N
34 eD 1\32 ¢D) &D 34 e&D 34 &D

[b:c]:g(i+ijz_@
0°\34 &b 34

£DGM, _&DGM, _

1
I  &DGM,

EDB=
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b=cl= 1(£+2j—_i
0°\34 &D 34

6A
gD

QP=—H-

Q:Q(H) The advance is a function of negative energy that governs the movement

_ 2
o Br _TmCT_ 0*=—(- )— :>Q2 1-54 advance
mc®  mc? eD
et el L (Tl el e
34 &D (1_@4) 34 &b) eD
&D
. ER2 AZGZ\ZO 55N,
mc c ?
) 2
—OH H O, 2_ .0 H , 1 . B_,ero
34 3A &D &D 34AeD &°D° 3A
2 2
3A5D( OH,H_ O, ) zero 3A32D2(L+L
34 3A gD &b 34eD  &°D?

—QO’HeD+HeD—(?3A+6A=zero

eDGM, _ EDGM,,
eEDB= =1
*? gDGM

—0X~3A—¢£D)-3A—eD—-Q?3A+6A=zero

0?34+ 0%cD—eD—0°3A+3A=zero

HeD+3A+¢eD(eDB)=zero

HeD=-3A—-¢&D

Q2eD—eD+3A=zero ?=1-34
eD
This advance is not governed by negative energy
—0°HeD+HeD—Q?3A+6A=zero
—~QX~3A-¢£D)+HeD—Q0?3A+6A=zero
O?3A+0°¢D+HeD—Q°3A+6A=zero
2D+ HeD+6A=zero 2=—p LA
D
2 2
(QH H_? 23coslQ), H 1 B ___
34 3a &b ep) D 3meD £ 3a
3 34 & &) D 3AsD &0 3A

B
3A

O’H3AeD | H3AeD _(Q?3AeD , 2. 3a&D \cos(#0) L H3A’D? | 3A£D? | B3A’D?

ED( —
3A 3A

&D &D

D 3AgD &°D?
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—jzzero

=zZero
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eD(~0?HeD+HeD—0%3A+ 6A)ﬁ@ +HeD+3A+¢&D(¢DB)=zero
D

DGM DGM E -
epp=22 _EDGM, _y H=—r ="TC
¥  &DGM, mc®  mgc

ED(—QZHgD+H8D—Q23A+6A)ﬁ¢—Q)—£D+3A+8D —zero
D

(-oPHeD+ HeD—-0?3A+6A COS@Q) - 32 _zero
&
2:1_3_A
&D
1—— £D+HeD— ( 3AJ3A+6A}COS¢Q +32 = zero
&D D D

H£D+H£D +HgD 3A+3A3A+6AJCOS¢Q +32_sero
D

&D &D
2
—HeD+H3A+HeD—3A+ 242 +6AjcoS #Q)  3A_ ,ero
&D D &D
H3A+2 +3AJCOS(¢Q)+3—Azzero
D &D
2
H= ER z_moc =—1
mc®  mc’
3A+9A +3A\COS(¢Q) =~=zero
eD ) D D
2
94” cos(go +32 _sero cos(go) +L —zero
gD D &D D 3A

(—Q2H5D+H5D—Q23A+6A)ﬁ@+3—‘4:zero
D

gD

(1—— £D+HeD— (1 6Aj3A+6A}COS¢Q 34 _ero
eD D eD

H8D+H8D—+H8D 3A+3A6A+6Ajcos #9)  3A_ ,0ro
&D D &D

\cos(¢o) , 3a

184° _
—HeD+H6A+HeD—3A+ +6A) =zero

&D D &D
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(H6A+ 184° +3A} COS'§¢Q)+3—A: zero

&D &D
2
H: ER z_moc =—l
moc2 moc2

(_6A+ 1847 +3A\ COS(¢Q)+3—A: Zero
&D ) b &D

2
L[(—3A+%) coslgo +3—A} =zero
3A gD D gD

(_1_,_6_14)005 #), 1 _ero
gD D gD

_(1_6_AJCOS ). 1 _ . ero _pecoslgo) 1 _ o 21.93

gD D &D D gD

(-0?HeD+HeD-0%3A+6A Coi¢Q)+3—ézzero 21.91
&

E, -mc®
0°=1 H=—R —_"0o” —_1
mc®>  mc?

(8D—8D—3A+6A)COSD¢Q +32-zero

gD

+3—Azzero =zero 21.94

(3A) = SD§¢Q) gD

cos(¢Q) + 1
D &D

o?=1-62 0?=1 o?=1-34

&D &D

‘_Qz COS§¢Q)+L|<< %@JFL*««« cos(g0) , 1 21.95
D gD D gD D

3A
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Energy Newtonian (Ey)

2____ =Zero
dt r mor mo
d_¢:£ dr L@ d2r —I2 d%w
dt r? dt de¢ dt2 12 dg?

oy ST =zero
de r- m,r m,
’ 2F
a +L2_ 2_k2 l——Nz =zero
d¢) r° mIL°r mlL
’ 2F
au +L2_2—k2l——N2 =zero
d¢) r° mIL°r mlL
’ 2E
dw +W2 _ 2k2 N2 —zero
d¢ mI° mL
2FE
X= 2k2 _ N2
m,L m, L

2
aw +w’ —XW—y=Zero
d¢

w

1_1
- [L+&cos(g)] gy =

dw _—0senl($Q)

d%p _ 21 dw

dt? r* dg¢

dZw _ —QPcos(¢o)
d¢’ D

[=0=eld)] [ L pcostgolll - v scosgol-y=sero

D

Zli-cosgol+
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21D2 [L+2scos(go)+&2cosi(po)- Xi —x

—¢cos(go)-y=zero
eD



Q—Z——cos Apo)-=--x

&gD
o Q20052(¢Q) 42 COS(¢Q)+Cosz(m)—i—xﬂ@—y:zero
D? D? 52D2 &0 D D? 22 D

cosz(¢Q) 2cosz(¢Q)+ 2 COS(¢Q)—XCOS(¢Q)+Q—2+L—£—y=zero

%@_ y=zero

D? D? eD D D D> &°D° &D
2
i QZ)M@ ( X)M+Q_+L_i_yzzero
D? eD D D> &°D° &D
2
CcOs
0% ~1 (l—QZ)%=zero
D
(L—x\cos(¢Q)+ Ly L X overo
&b D D?> &°D° &D
(A_ijzem O S S
eD D? &D* &D
2F
m,[ m,L
GM m
2 _y—zeromx=->2-2k 1 _GHM_ o EDGM,
&D eD mI eD mI?
212 212 212
&“D +5D _‘9DX—g2D2y:zero
D*  &°D° &D
&’+1-eDx—&’D’y=zero
2F 2F 2¢DE,
£Dx = £D-2-=> £Dx =2 & D’y =g?D*—IL = g?p? i = i
eD mI? meDGM,  k
2&DE
g2+41-2-2P _ poro EN=L(52—1)
k 2&D
11 5 -k
==—(l-¢ E =—=
a gD( ) N 2a
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§22 Spatial deformation

t:% £> ¢
1__51,
CZ
t=ti+t,=—L—+-L =20 1 =2
c—-v c+v c(l_vz) c
2
C
2Ll
o 2
p=2L__1 ____c —=>1=11-% '>1
C

This is the spatial deformation.

The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with
velocity relative v on reference frame the observer O.

Now compute to the observer O' the distance d'=vt' between O <> O':

'zvt'zvﬂ
c

Thus we obtain the velocity v: d'=v oL

Now compute to the observer O the distance d =vt between O <> (O':

_Vv_

C2

dzvt=V(t1+ta):V%ﬁ

2
Thus we obtain the velocity v: d = Vi% =>v= ﬂ(l—%j :
c (if_‘/J 2L
2
c

The speed v is the same to both observers so we have:

VZCd:QQ@_Ka

2L' 2L c’

2
Where applying the relation L=1'_[1 —V—2 we obtain:
c

cd' _ cd (l—v—j)édfd —V—j a>d
21! 2L.\/1_v2 c c '

Where the distance d and d’ varies inversely with the distances L and L.
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In general, we obtain (14.2, 14.4):

d(l _ Vuzxj
d=———C 7/ or

2
_Vv_
1 2

uUx'=zero d= <
v
C'2
d'(1+V§)
uUx'=c d= c2
1=z
d'[1+ iov }
vor_ _ c’
ux'=—v d= >
l-z
-]
ux=v d'= C2
-z
d(l—vgj
ux=c d'= c2
1-2
d[l—i)"g]
ux =zero d'= =
s
C2

cl'(1+Vu
d= <
1=V

C

d=d 1-%
C

d'=d,1-
C
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§23 Space and Time Bend

Variables with line t',v',x',y',r' etc .. They are used in §21.

Geometry of space and time in the plan xy —>y 1 x.

y=£(x)

x=ct' yzj.ds'zj.m
Ids’zf(ct’)

dx=cdt' dy=ds'=/dr" .dr’
fzxi+yj=ct'£+jds'3 F=x'i+y’]
df=dxi+dyj=cdt'i+ds'] df'=dx'i+dy"'J

erMZKdX-FXdy

r r r
_df _dx; AV cdt'z ds's 75 gr=dff _dx'z dv's
gt ae’ gl ar o atr ar 4t dt
d
ax _ Y _ds' Cc=vCcosQ v'=vsen@
dt’ dt' dt'
dy ds' ,
rgp=dY _dt' _dt'_1ds' dy:g(dy _1d (1dsj 1 d%s'
dx dx ¢ cdt' dx’ dx\dx) cdt'\cdt') & at?
dt’
F=G+7 g=ci v'=v'j
5=dv _dc  dv € _zero v _dv’_, 5z
de' dt' dt’ dt' de' dt'

ds’ =d7.dr=(dxi+dy3)dxi+dy])=(cati+ds j\cdti+rds')=dx’ +dy’ =c*dt’ +ds”

ds=+c’dt"”+ds" ds'=+ds’ -c*dt"’
2
:Q: c2+(d_’s) :",C2+V'2 >C Vy dS ( j l —C
dt' dt’ dc' \\dr'
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K= d_(P —>0=L theoretical curve
s
d’y 1.d%s
d d 2 2 72
tg(p=—y (p=arctgﬂ 9p__ dx ~=—2FC dt
ax ax ax 1+ dl 1 (dS’
dx c’\dt’
2
ds_ |14[d¥) _ {4 1(ds
dx dx c\dt’
1d°s'
c’ dt'”
2
de 1[ds’) 1 d*s'
_A9_dx___ co\dt') _ c’ dt"”
ds ds \? P
dx \/1+12(ds') 14 1fds) |
C dt c2 dt'
1ds'd’s' 1 dv’
r r 2 r 2 r
dS'K:ds'CZ(PZV,KZV,@= c’ dt'dt = d‘t3
dt dt'ds ds 277 2\2
1+L @ 1+V
2 dt! C2
c
1 = dv’ 1 d¥’
. 2 ] — 0 2 v
FR =30 < dt g=30_ c’dt :
S 12 \2 S 12 \2
(1+V2j (1+V2j
c c
d 'av' .
dE, = mvav _ MV av %drz%rdr’
v 2\2 r r
o (e
c
m c _"d7‘7’
dEk_ﬁr et 2 OC2 dt' k -dr'_ k o=,
=B vi= 3 T 2 -2
dt' 2\, r- dt' r
[+2)
c
dE = 0
k _r *r:moc2‘77 P_k oo
dt' s r?
F'=mc? (P—k2A K:d—: k2%f
S r ds mc'r

§ 23 electronic translation
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§24 Variational Principle

m_c
E, =72 2:k+constant 21.21
r
v
e
2 2
m_v 2 mgc
E, =——+m? [1--=—=2 =K constant
l—ﬁ c v T
c? c?
2
m_v 2 m v
o —m,c? [1-Y +k =m_c? p=i m_c?. |1 V2 =0
¢t r dv c 2
l—V I_L
c? o2
2
L=-m_c?,| 1—V—2+k Lagrangeana.
cc T
m,v? ) R ,
—L=m_c” What is the initial energy of the particle of mass mo.
v
s
T 2 v 2__ 2 _V_2 k
v—L=m_c L=pv—m_,c”=-m_c-,[] +
p o p o 0 C2 r
Variational Principle
tZ
A950:S=IL[X(t),X(t),t]dt x=9X—ux This is the velocity component in x axis.

! dt
t2
SS:SIL(X,X,t)dtzzerO Variation of the action along the X axis.
t1
Building the variable X'=x+¢€1 in the range t;<t<t, we have seen this when €—>zero=x'=x and
where €#zero we will have the conditions:

%:ZCI‘O n:n(t) n(tl ):ZCI’O 1’](t2 ):ZCTO %:Zero n:%

t2 t2
Then we have a new function 1(8)2JG(X+81’],X+8f],t)dt=JF(X',X',t)dt and where:

4 t

t, t,
8zzer0—>x':x—>X':X—>F:L:>JF(X',X',t)dtzIL(X,X,t)dt

t t

tZ t2
8;tzero—)x';tx—>X'¢X—>F;tL:JF(X',X',t)dt;tjL(x,X,t)dt
t1 tl
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So we have (g J F [X t]dt that provides derived:

81(8)_t28F(X x',t dX 8F x X't dX
i _J % d I dt I ndt+j mndt=zero

4

d(oF \_d(oF)  oFdn_ oF. _g(aF ) d(&F)
dt(&x'n) dt(&x')n ocdt o diloe™) “adox

J‘g}:, dt+j ndt= j ﬂdt+J[§t(g£,n) éit(g)lz,) }dtzzero

SNe)_foF .. fof OF ) fd( oF
de —tax,ndt+tfd(ax,n) Jd [ax,jndt zZero

w
Iax'” Idt( ) I[aF' gt(gg'ﬂ”dt:zem

1

8F()8F

aX'T] aan( ) Ze1o

83(8) I[gf, St(gf,)}ndt zero:>n¢zero—>g£ St(g;)zzero

azzero—>x':x%X':X%F:L:a—L—Q(a—L):zero
ox dt\.ox

[ 2
%=%(%j This is the X axis component L=-m_c? I—Z—2+%

ot o)

ox dt dt

Ok 0 H0r__ 3. 1Xx X
axrjkéx( ) k(-1 ox krr kr3
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2

2 2 2
Q(—m c? I—V—zjzzero a(kj Zero V:\/Q _,_Q dz

=\ X2 +y2+27?

r’=x2+y%+z>



2 m.v . m.v 2 m_ X
8 1’1’1002 \ — 0 1(x2+y +7 ) 2% o X _ 0
0% c? v2L2 v? \/X2+'2+Z v?
1_72_ 1— ) y l 5
C C C

2 7 |
1 V2 jy+v((1i¥ Y j|] Y axis
c?

[S10%)
7N\
(@]

zo  mg [ 2 dv z .
_k—3 = gL(l )Z+Vd (o2 }k Z axis
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2 2\ A
-V dv x* (1 ) dv ¥ » (1 A )"k dVXk _k
( 2 )X1+Vd (o2 i+ yJ+th 2]+ 2 Z +Vd (o2 2

0 Kl ZZZ)(ﬁif+yj+2f<)—#clz((li—f[’(xf++yﬁ'+il§)}=_—%<f

T

a=xi+yj+212_((11t(x1+yj+zk ((11¥ V=Xi++yj+zk
7 m, l_ dv,. dvv |_—ka
F: 1 =— = i
; ﬂ( )dt—wdtc } ot 21.16
1-¥Y=
( cz)
po Mo [ v2\dv, dvy |_—k;
F: —_— = = i
SL( jdt thCZ} ot 21.19

%)

§ 24 electronic translation

§24 Variational Principle Continuation

Ek—mczwll+— ——+constante 21.21
12 m,v> 2 m,c?
By =myc’, 1+ =—2 2+moc2 1-¥ == = ~ K constante
¢ 1-v- ¢ _v- T
c? c
k 2 vk myv? 2 _v: _k_ me® kK _k_k
Ey - =myc” [I+-—F - =——"—+m," [l --—F ->=—"—-"="—"+constante
r c r 1_L2 c r l—ﬁ r r r
c c?
E, - K=m,? 1+V—2—k= °F | —m,c’ I—V—2 =m,c® = constante
r c r l—ﬁ c
C
12 2 mV2
T'=m,c’ 1+V—2 T=-m,c’ I—V2 Ep=—k pv=—=
c c r 2
1=-¥_
o2
mOV mOV' (Y] ' V'2 ' V2
pv= =V=V ==V'p p=p'\/1+-> p=py/l—>
\/1—V \/1+V ¢ ¢
c? c?

Eg =E +E,=T+E,=pv—(T-E,)
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E, =T Ey=pv-T T=pv-T T=p'Vv'
L'=T'+E, L=T-E,

Ep =B, +E, =L'=pv-L

L'=pv-L L=p'v'-L' L+L'=pv=p'v'
p'=" dr'_ d moc’ l+ﬁ _ MoV’ =myV p:d—T:i — myc? 1—ﬁ =MV =myv'
dv' dv' o2 2 dv dv 2 2
1+ 3 1=

C C
dr'=dx'i+dy'j+dz'k =—dxi—dyj—dzk =—df 21.08
godr'_dxn Ay dz'p -1 (dxi dys dzp) -1 dF v

. Fek= E2i+—=j+=2k |=
V=ar T de T ae v dt' Tar! "t ) dt v2
o2
[} dX' -1 dX: _VX —_ X
AT I_det v v?
c? c? c?
pP'x= ar_ d m,c? 1+ﬁ =HoX =—-myX Px dr _ d myc?,[1-Y |= MoX =—-myX
dx'  dx' V2 2 dx  dx 2 2
1+V 1-Y-

02 C2
f':x'§+y'3'+z'f<=—xf—y3'—zf<=—f 21.07
X'=—X y'=—y 7'=—7
ox' oy' oz'
| —==-—1 |
19).4 oy 0z
o4 (L) ger
ox dt\ox
oL d(@Lj_@x'@L dt'd(aLj_ ot 1 oL _ oT

oL = oL = L=p'v'-L OL_0l_p =—
ox dt\ox) oxox dtdtlox ) ° PV gk ok TxT ot

ox'OL_dt' d(OL)__ 8 (i 1 dy
Ox Ox' dtdt'(axj a'(p -L)- (

0 (p'V' Lv\i m, dX'__ vap' ov' | aL'i m, dx'

Tox' v dt . ax Pox ox' [ yedt o0
1+ 1+
c c
! 1 12
%zzero gz'—zero L'=m,c? 1+Z—2—%
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oL', M, dx' 2

Il
N
(¢}
=
©)
-

=Zero
1 2 ' 3 2
ox 1+ ae 1+
c c
mX' _ X' x'? y'A' Z'A_—k n e " _—k*v_—k"v
OV'Z —_kr_3 —kr—31—k—3_]—kr—3 _r_3(X 1+yJ+z k)—r—3r —r—zr
1+
2
c
mxX » my -~ mzZ ~ mga _g,
v lT VzJ= V12 - sz_r_%(r
I+ 1+ 1+ 1
\/ c? \/ c? \/ c? \/ c?
ma _}. ko -ma' .
e —f'=f o”__—K; =21.19
PR o V2 r’
c? o2
§25 Logarithmic spiral
d’w d’w 2 a0
H—2+HW+3A—2W+3AW —B=zero r=e 2137
_ 2 _0?
w=l=L[l+scos(¢Q)] dw _ Qsen(d)Q) d \;v: Q COS((I)Q)
r €D dé D do D
2
w=l=o1 _ea dw _ _pead d—?:aze—w
e dé dd

HaZe ™ +He ™ +3Aa% % **+3A (e ) ~B=zero
Ha’e ™ +He *+3Aa’e > +3Ae " ~B=zero
(1+a2 )He ™ +(1+a? BAe 2 —B=zero

(1-+a BAc 2 +(1+a? )He ™ ~B=zero

(1+a? BAW? +(1+a> )Hw—B=zero

3AW? + Hw — . B2 = 7€ero
+a
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- 2
3 =Ho L H2+12AB} +H[—_iL H2+12AB} B sero

| (G A 8 () |-
_61112 i%\/% ) (1+Baz):Zero

(o) s P2 s 228
3A[3I6{22 : 1%22 \/% " 36142 (Hz +(112+%)ﬂ_
%—Tiim _(1+Baz)zzem

e O Gl

H> , 1 ({2, 12AB) H> B
12A 12A0  (1+a?)) 6A (1+a’

=ZCro

2 172 2
H° ,H", B H° B

A 12A (142%) 6A (1+a?)

§25 Logarithmic Spiral (Continuation)

302
—(H+Alj d ‘;’+l =GN§° 21.71
r)lde* ) L
1) [d?w, 1)]_-GM
(H+A—j Tt |=—72
r)(d¢” r L'
312
(H+Alj e H=—R_ A= p=M.
r){d¢” r m,c c L'
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(H+Al) dW 1 +B=zero
r) | d¢? r

(H3+3H2Al+3HA2%+A3LJ(d Wy 1J+B zero

r r ) d¢* T

H +3H°AL3HA LA’ Lap’ 3n7Al 3HA' L+ A" L=zero
r r r r r’ r

(H3+3AHzlj(dW lj+B Zero
r

(H3+3AH2 {—+WJ+B Z€ero

2 2
H3—((11¢‘;V +H3W+3AH2((11T‘;VW+3AH2W2+B=Zer0

21.38

[1+5c0s(4Q)] dw_~Qeen(§Q) dy_-Q'cos4Q)

welo 1
r eD do D d¢?

HS{_QZ CI(;S(¢Q)j|+H3 8}) [l+8COS(¢Q)]+3AH {Q+S(¢Q)j| D[1+gcos(¢Q)]

+3AH? }) [1+SCOS(¢Q)]}2 +B=zero

eD eD D

~H'Q? ""S]()"’Q)JrH3 L u? })scos(¢Q)+3AH2{—Q CSS("’Q)} +3AH2{—Q COS("’Q)} gcos(¢Q)+

+3AH? { 2]1)2 [1 +2ec0s(¢Q)+&2 cos? (¢Q)]} +B=zero
€

—H3Q2 cos(¢Q) +H—3+H3 COS(¢Q)_ 3AH2Q2 COS(¢Q)—3AH2Q2 cos’ (¢Q)+
D eD D eD D D?

3AH [1+2scos(¢Q)+s cos2(¢Q)]+B Z€ero
g’

) I cos8Q) IAIQ e0slh0) 220 00),
D eD D eD D?

3A§z 3AH 2ecos(¢Q)+3AH : 0082(¢Q)+B zero
&€ 8

_HQ? cos(¢Q) LB cos(¢Q) 3AH’Q’ 008(<I>Q)_3 AH2Q? cos’(¢Q) N
D eD D eD D D?

+3AH? | 6AH? cos($Q) 3AHz<:os2(d>Q)
D

5 +B=zero
&’D eD
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~H’Q’ cos(¢Q) ,

H , H® cos(¢Q) 3AHQ”cos(¢Q) 3AH’Q’ cos’(¢Q)

3AH> D
_ 3AH?

6AH? cos(¢Q) , 3AH? cos*(¢Q)

D 3AH’:D D 3AH? D?
B

3AH28D 3AH?

" 3AH%2D?

—HQ® cos(¢Q) ,

3AH?:sD D

=ZCT1ro0
3AH2 D? 3AH?

3A D
1

3A¢D 3A D
L 2 cos(§Q) , cos*(4Q)

L H cos(0Q)_Q” cos(§Q)_ 2 cos”(4Q) ,
2
eD D D

B

82D2 eD D

cos” (9Q)

=ZC1ro0
D? 3AH2

208" (9Q) HQ” cos(6Q) | H cos($Q) Q° cos(9Q)

D2
L2 cos(¢Q)

D2

3A
1

D
B

3AD eD D

SDD

2 \COSZ ((I)Q)

3A8D g’D?

3AL 7= Z€1ro

HQ , H _Q°, 2 cos(¢Q), 1, B

1-Q* =

H=IR _

_m c2

=Z€10

+
3A8D ¢’D? 3AH?

{

3A 3A €D &D) D

|_6A

=—1 Q=

ch m,Cc?

2 \eos” (6Q)

eD

(-DQ* (=D Q’ 2 JeoswQ) (<D . 1 . B

(I_Q / D2

2)cos” (9Q)

(QD

(I_Q D2

eDGM,

L’

eDB= =1

(I_Q D2
2)eos” (¢Q)

(QD

2| 6A

Q eD

_6A

{_
2\cos” (0Q) N

2\cos” (0Q) N

3A  3A D gD} D 3AeD  op?

3A(-1)°

cos(9Q)
D

1 1

. B
3AeD ¢ p?

3A

=ZCro

cos(¢Q)
D

1 1

+.cDB
3AeD ¢*p?

3AeD

=ZCro

cos(¢Q) _
D

1 1
3AeD  ¢*p?

1
3AeD

=ZCro

cos(§Q) ,
D

=Z€ro

1
2

8D2

11 2 Jeos(9Q) , 1

11

eD /]

)1 COSD(¢Q)

=ZCro

y

32( _g_g)

(-5)

2

3A €D eD) D

8D
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> Gl e e =Zero

(1 1+6A)COS (4Q) ( 16A_ 1 1, 16A, 2)\c0s(9Q) 1
3A 3AED 3A oD eDeD D) D op?

eD D
(6 )cos (9Q), [ 2, 6A , 1)cos(¢Q), 1 _
eD) p? eD ¢2p? sDj D 8D2

=ZCro

(6A)(8LD)%+(_L L, _6A |cos(dQ), 1

eD SZDZJ D ¢'D’
e SO E

cos’ ((I)Q) 6A COS((I)Q)
(o) e TR (14 S8 ST

——=Z€T10

otsq) (A (1 88Y 4o L
D 2.6A

(1Y +2(- 1)6A (6A)2-24A

cOS(<I>Q) eD) €D

PG
R

6A + 1124 _24A
coS((l)Q) B eD
D 12A
6A + \/1 36A 36A
cos(d>Q) e'D’
D 12A
(1 6A) \/1 36A, 36A°
2.2
cos(¢Q) _ gD ¢D
D 12A
|_36A 36A ~ ||_36A 36A L oo A=SM,
aD D eD 2D’ ¢’
2 2 -11 0
36A° _ 36 (GMOJ _ 36 | 6.67.10"11,989.10 _rs510™
£D &’D’\ o ) (55442.955.600) L99702458.10°) |

cos(9Q) _ (-85 )= 1382
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( 6Aj 1_36A |_6A (1 136Aj 1_6A 4 (1 18A)
COS(¢Q) eD __ €D 2eD/__ €D eD

D 12A - 12A 12A
6A 18A _6A ,18A 12A
1- 1 1+
COS(¢Q) eD)___eD gD _eD _ 1
D 12A 12A 12A €D
oos0Q), 1 e
D eD
zero<r($Q)<oco—> M, #zero > Q= 1-0A COS(d)Q) ——=Z€ero
eD D sD
Q@) (@ 1 @ 2 Jeoste0) 1
D> 3A 3A &D D) D T
r=0—>M,=zero>Q=1 Q= _6A _ 1_6 G_l\;[o - l1-_6_ G(zgro) -1
eD eD{ ¢ eD c
2
(-pe R (111 20, g
3A° 3A eD €D D ’D
( 1Yeos0Q), 1 _ o cos(dQ) , 1 _ ..o
eD) D  p? D ¢D
r=o—>M,=zero>Q=1->w =L=L[1+SCOS(¢Q)] COS(d)Q) ——=zero
r=0w gD D sD
The presence of Q in the formula r=1(¢$pQ) :L’ allows it to also describe a spiral.
1+&cos(9Q)
£ GraphFunc Onli E=mE X

Math Utilities  Help

()= [3(1+0.2°cos(0.02¢

lew20 | Jea+
Graph It! | [Multipie Graphs ?v|
tfrom 0 1o fiotei
stz ﬂ,

fx) =
1'(x) = First Derivative of f(x)
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From To
Find Area | 0
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]| _tangent

Zoomin_ | ZoomoOut | _ Reset

Developed by T.V.
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§25 Logarithmic Spiral Continuation I1

3A 3A aD gD) D 2p’

h_12A
zero<r(§Q)<o0—> M, #zero—>Q="_€D_
[1_6A
eD
i 112AW [ (1=12A (1_12A 1
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D 12A
eD
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D 12A
eD
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1i1(1_12A)
cos(¢Q) _eD €D eD
D 12A

eD

+ 1_112Aj

"
cos(dQ) _eD \eD D eD
D 12A

eD

1_(1_112A)
cos(9Q) _eD \eD D eD

D 12A
eD
11, 1 12A
cos(9Q) _eD eD €D €D
D 12A
eD
1 12A
COS@Q): eD eD
D 12A
eD
cos(¢Q)_ 1
D eD
——COS((I)Q) +L —zero
D eD

h-12A
zero<1(¢pQ)<oco— M, #zero— Q= eD _, cos(¢Q) + 1

=Z€ro

1—6A D eD
eD
|_12A o
2__eD 4 6A =1-6A A=
Q 1—6A eD Q eD ¢’
eD

eD=a(l-£2)=57.909.227.00000]l —(020563593) |=55.460.469.568.40

_GM, _6,6740831.10-".1,9891.10°°

A =1.477,089.535.42
2 (2,99792458 108
1-12A

Q= [—=2D -0,999.999.920.1 Q= /1-A -0,999.999.920.1
1_6A eD

eD
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1.296.000,00

0.Q=1.296.000,00=¢= Q<1 Advance Q>1 Regression
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Ap= é—ljl.Z%.OO0,00 Ad>zero Advance

Adp= 1 r—11.296.000,00=0,103.549.893.544"
1_12A )2
eD
1—6A
L eD
Adp= %—l 1.296.000,00=0,103.549.876.997"

5]
L\ €D

N=100L2T :100365,256.363.004
PM

87,969

=415,210.316.139

Ad<zero Regression

> Ap=ApN=0103.549.893.544 x 415210.316.139=42,994.984.034.7"

> Ap=ApN=0103.549.876.997 x 415210.316.139=42994.977.164.2"
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2
)oos (9Q) ( JCOS(¢Q) Q. 1 x
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2
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2
1- 2( 1 j X ;2 +Q b1 X =Zero
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§26 Advancement of the Periélio of Mercury of 42,99 "

Supposing ux=v

3) ux=—Fr=Y = V-V
v’ 2vux v 2vv
752" It =2
C C C C
UX=v

2 2

(1.47) de'=dt |1+ —2VUX _g¢ [, V__2VV

2

C’2 C’2 (e} C

=>ux'=zero
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2
Sdt'=dt,[1-2
c

2 2 ] 2
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2 2
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C'2 CZ 1+?

B =[Far=[F (-d2’)=| ;—ff(— dr')
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2
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dv'  _,dv'v
jdt' v } 21.53
21.54
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c
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c c
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2
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\/1—" A
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myvdv _ mv'dv' ——kdr

myvdv mvdv
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v 2 _v 22 r’
\/1 ) 1+—' \/1 > (140
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\/1_2 2\, I r
C2 (1+C2j
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(1+Cz)

- om | dr d¢ dr d¢ d’¢ \; _k;
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(2dr d¢+ ¢2 ¢ Zero
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—L—(d—¢) =X p 21.68
dt' r
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}_—GMD
2
r
%) —GM,
2
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2 2
r r
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L
§25 Logarithmic Spiral continued
M
]:GL'ZO 21.71
__GMO
- L12
__B He Er A_GM0 B_GM0
moc2 o2 L2
+B=zero
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(H3+3H2Al+3HA2L+A3%j£d Wy 1J+B zero

r r’ )\ d¢* T

H +3H° AL 3HA LA’ Lap’ 13n7Al 3HA' L+ A" L=zero
r r r r r r

(H3+3AHzlj(dW lj+B Z€ero
r

(H3+3AH2 {—+wj+B zero
2 2
H3—(31 \;V+H3w+3AH2iT‘;VW+3AH2w2 +B=zero

21.38

11 dw _—Qsen(¢Q) d>w _~Q’cos(¢Q)
w==—r [1+&cos(9Q)] . D e 5

The first hypothesis to obtain a particular solution of the differential equation is to assume the infinite radius
r=o0, thus obtaining:

2 2
w= rzloo = %)[1+SCOS(¢Q)] zero=>ecos(pQ)=-1 ((:1124)\72&/ _=Q CI(;S(d)Q):_Q S:SS@)Q) 2%

2 2
H3—‘(11¢V2V+H3w+3AH“(11TV2VW+3AH2w2+B=zero

2 2 — 2
dW:Q H= ER m,C =1

do> €D my,c?  m,c2

W=ZCro

(- 1)( )+( 1)’(zero)+3A(- l)( )(zero)+3A( 1)*(zero)’ + B=zero

2
—(Q—) +B=zero SDQ +eDB=zero
eD eD
~Q’+1=zero Q=1

This result shows that in infinity the influence of the central mass is zero M =zero .
The second hypothesis to obtain another particular solution of the differential equation is obtained by
observing that the angle (¢Q) of the equation ecos(¢Q)=—1 indicates the direction of the infinite radius

r=oo0 where the influence of the central mass is zero M =zero and szl therefore the direction of the
center of mass is given by the angle (¢Q+1) that replaced in the equation £cos(¢pQ)=—1 results in the

new equation £cos(¢Q+m)=—1 that indicates direction opposite the direction of the infinite radius which is
the direction of the center of mass.

gcos(pQ+m)=-1 cos(¢Q+m)=—cos(¢pQ) g[—cos(¢pQ)]=-1 ecos(9Q)=1
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2 Gy Q' po Br _ome
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2
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eD eD 1—6A
eD

Applying the results of the second hypothesis in the differential equation:

2 2
H3—‘(11¢‘§ +H3W+3AH2((1iT‘;VW+3AH2W2 +B=zero

21.38

[1+ccos(6Q)] dw _~Qsen(9Q) dw _~Q’cos(4Q)

w=lo 1
r eD do D d¢® D

HS{_QZ CI(;S(¢Q)j|+H3 8}) [l+8COS(¢Q)]+3AH {Q+S(¢Q)j| D[1+gcos(¢Q)]

+3AH? {i[lﬂzcos(d)Q)]}2 +B=zero
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372908(0Q) , 113 1 143 1 2| Q% cos(¢Q)
~H%Q b — T H—+H Dscos((I)Q)+3AH[ o }

L +3AH2|: Q COS(¢Q):| ecos(9Q)+

eD D

+3AH? { 2]1)2 [1 +2ec0s(¢Q)+ &2 cos? (¢Q)]} +B=zero
€

—H3Q2 cos(¢Q) +H—3+H3 COS(¢Q)_ 3AH2Q2 COS(¢Q)—3AH2Q2 cos’ (¢Q)+
D eD D eD D D?

3AH [1+28COS(¢Q)+8 c0s2(¢Q)]+B zero
g’

Q2 cosl()d)Q) H®, 3008(0Q) 3AH’Q COS(¢Q) _3AH%Q? cosD(d)Q)

eD D eD

3A§z 3AH 28€OS(¢Q)+3AH : 0082(¢Q)+B zero
& 8

-H Q2 COS(¢Q) H H3 COS((I)Q) 3AH Q COS(¢Q) —3AH Q2 cos (¢Q)
D 8D D eD D’

L3AH? | 6AH? c08(9Q) , 5, 1y2€0s"($Q) (d)Q)
2D2 eD D

~H'Q’cos(9Q), H’ . H’ cos(¢Q) 3AH’Q’cos(¢Q) 3AH’Q’ cos’(¢Q)
3AH> D 3AH28D 3AH> D 3AH’¢D D 3AH? D?

L 3AH® , 6AH’ cos(¢Q),3AH2cos’(9Q), B
3AH?%¢’D? 3AH?¢D D 3AH2 D? 3AH2

+B=zero

=Z€1ro

~-HQ’ COS(¢Q) L H cos(¢Q) Q7 cos(¢Q) _Q? cosz(¢Q)
3A D 3A8D 3A° D eD D D?

1, 2008(¢Q) cos’(9Q), B _

82D2 eD D D? 3AH2

cos’(¢Q) _Q? cos’(¢Q) HQ’ cos(¢Q) H cos(¢9Q) Q° cos(¢Q)
D? D2 3A D ' 3A D eD D

L20cs(0Q. H . 1 . B
sD D 3A8D ?D? 3AH?

=ZCro

=ZCro

2)c0s*(¢Q) ( HQ* , H Q 2 )cos(4Q, H , 1 , B

1- +
(-<7) D’ 3A 3A &D &D) D 3A8D ¢’D?> 3AH>

Er _—mgc?

H= =-1

ch m,c?

=ZCro

1) 0@, CDQ” D Q% 5 Jeos9Q), D, 1, B
' p? 3A°  3A €D SDJ D 3A8D e’D’ 3A(-1)°

(I_Qz)cos2((|)Q) Q 1. Q, 2 Jeos(¢Q) 1 L1 +3£A=Zem

D> 3A 3A €D SDJ D 3AeD ¢ p?
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" DB

(1-Q? 0082(<1>Q)+(Q2 1 Q2 )eos6Q) 1 1

= __ < =Z€Tro
D> 34 3A D eD) D 3AeD ’p’ 3AeD
cDB= sDGi\/IO _eDGM, 1
L?  ¢DGM,
2 0052(¢Q) Q2 1 Q2 2 |cos(¢Q) 1 1 1
(1—Q P e - +— =zero
D 3A° 3A eD €D D 3AeD ¢"D° 3AeD
2)cos’(9Q) ,(Q° 1 Q1 2 Jeos(d9Q) 1
(1—Q S| ot +— 5 =zero
D 3A 3A eD €D D D

h-12A

Zer0<r(¢Q)<oo—>Mo¢zero_>Q=ﬁK
1-6A
eD

12A

]-0A D? 3A| 1-0A

SDL 1—® SDJ
L eD L eD

1_7—‘ [ (1_12A (1_127A —|
1| __€D_||c0s(6Q) | 1 sD] 1 _ 1| eD |, 2 |cos(0Q), 1
3A

D e2D?

. eD U eD/J] D2 [3A0 eD/) 3a0 eD) DU D/ eD\

1_6A (4 12Aj-|0052(¢Q)+_L(1 12Aj L(; 6Aj 1L(; 12A). 2 (1 6A)1005(¢Q), 1 (]_6A

eD)I D  &2D2\ D

(1 6A 1 12ANcos*(@Q) (1 1 12A 1 , 1 6A 1 , 1 12A, 2

2 6A)cosl9Q) 1
e2D? ¢2D? eD

eD  eD/) D2 \3A 3AeD 3A 3AeD eD gD eD gD eDeD) D

[@\Co@@’Q) +[ I\COS(¢Q)+ 1 1 6A_ e
eD) D2 eD) D  &D? £D?eD

_(_l)i \/(_lj2_46A( L 6A)

COS(¢Q)= eD eD eD\e2D? &2D?eD
D 76A
eD

L1 2aA( 1 1 6A)

cos(dQ)_ D Ve2D?  eD \2D? 2D?2eD
D 12A
eD

1+\/ 1 _24A 1 ,24A 1 6A

cos(0Q) _eD " Ve2D? gD £2D? gD g2D? gD
D 12A
eD

14 1 [[C24A 24A6A

cos(¢Q) _eD " eD eD €D ¢D
D 12A

eD
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1 12A | 144A2

Ly 1 124 144A2

COS(¢Q) sD eD eD  ¢D?
D 12A
eD

141 (1_12Aj
COS(¢Q): eD €D eD
D 12A
eD

1i1(1_12A)
cos(¢Q) _eD €D eD
D 12A
eD

1_(1_112A)
COS(¢Q): eD \eD eD eD

D 12A
eD
11, 112A
COS(¢Q) 8D 8D eD eD
D 12A
eD
1 12A
cos(¢Q) _eD eD
D 12A
eD
cos(¢Q) _ 1
D eD

Where applying the result of the second hypothesis sscos(d)Q)zl:>cos((1)Q):l
€

11_1
eD ¢D

That it is an identity demonstrating that the result of the second hypothesis is correct.

_12A .

2___eD _6A 2_1_6A A="o

Ve T &
eD

eD=a(l—£2)=57.909.227.00000]1 —(020563593 |=55.460.469.56840

GM, _6,6740831.10"".1,9891.10%°

A= (2,99792458.108

=1.477,089.535.42
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_12A

eD _
T6A 0,999.999.920.1

eD

1,276.789.102.53

$.Q=1.296.000,00=> =

Ap= é—ljl.Z%.OO0,00

1.296.000,00

Q= /1-04-20,999.999.920.1

eD

Q<1 Advance

Ad>zero Advance

A= 1 —1]1.296.000,00=0,103.549.893.544"
1-12A )2
eD
1—6A
L eD
Ap=| ——~11.296.00000=0,103.549.876.997"

5]
L\ €D

N=100.PT _100365:256.363.004
"PM

87,969

=415,210.316.139

Q>1 Retrocess

Ad<zero Retrocess

> Ap=ApN=0103.549.893.544 x 415210.316.139=42,994.984.034.7"

> Ap=A¢N=0,103.549.876.997 x 415210.316.139=42994.977.164.2"

Newtonian Energy Ey
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d¢ L dr__.dw d’r _ —I7 d*w d*¢ _ 217 dw

“Y_ 4 ar __pdw af o dw

dt r? dt d¢ dt? r? d¢? dt? r’ dg¢

+—=——=-=———=zero
d¢) r° mIL°r mlL
’ E
dw 2__2k N2 —zero
d¢ m,L mL
2E
o= 2k2 y= N2
m,L m,L

2
dw | 4,2 —XW—y=Zero
d¢

—1_ 1 [14ecos(go)] dw _—0sen(¢Q) dZw _ —Q*cos¢0)

r &b d¢ D d¢’ D
[%@} { [1+gcos(¢Q)]} —xLf+zcoslgoll-y=zero

Zl-cosgoll— i +2scodgo) cos (o)l x-L—x-Lscoslgo)-y=zero
£2D D &D

Z(m)—g%—x%@—y =zero

2 2
%—%coé(@ﬁ%

D
Q_2_Q2cosz(¢Q)+ 1,2 cos(¢Q)+cosz(@)_i_xﬂ@_yzzero
D? D? gD b D D? &D D
cosl§0)_pcostpo) , 2 codldd) cod0) 0, 1 _x .
D? D? eD D D D? &°D* &D
(1—Q2)ﬁ¢—Q)+(é—xjﬁ¢—Q2+Q—2+L—i—y=Zero
D? D D D &°D° &D

Newtonian Energy Ey

y =Zzero

2 cosz(d)Q) 2 Ycos(¢Q) Q. X
R O ey

r:oo—>Q:1—>w:r=LOO D[1+acos((|)Q)] cos(d)Q) D—zero
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2
-5l b b et oy
( Q eD eD eD eD) D?> ¢D* D Y

2
1- 2( 1 j X 2 +Q p—1 X _y=zero
( Q D 2D’ D’ e y

2 2
1 Q X 2 Q1 X__y=zero

&D? ¢’D? €D | ¢’D? | D* ¢D’ ¢
Q Q. 4 i 2
+ } =Zero =1
gD? D* &¢D* €D y Q
1 1, 4 2x y=zero

¢’D? | D’ I 2D’ eD

22 22 242 22
SzDz +& ]2 : 482 D2 2xe D22y zero
eD” D eD eD
—1+82+4—2st—82D2y=zer0
x=—2 y=2Ex I’ =¢DGM 1_=1(2)
eD m,L a €D
—1+82+4—2L8D—82D2y226r0 —1+82—82D2y=zer0
€
—1+82—82D2£NZZZ€1‘0 gD —2EN e
m,L m,eDGM,
—1+82—8D2E—szero L(Sz_l):ﬁ
M m, eD k
o=k
N0

"Although nobody can return behind and perform a new beginning,
any one can begin now and create a new end"
(Chico Xavier)
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