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The gravitational field potentials outside and inside a uniform massive ball are determined using the 
superposition principle, the method of retarded potentials and Lorentz transformations. The gravitational field 
strength, the torsion field, the energy and the momentum of the field, as well as the effective masses associated 
with the field energy and its momentum are calculated. It is shown that 4/3 problem exists for the gravitational 
field as well as in the case of the electromagnetic field.  
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1. INTRODUCTION 
 

In field theory, there are a number of unsolved problems, which need deeper analysis and logical 

understanding. An example is the problem of choosing a universal form of the stress-energy tensor of the 

body, which would include the rest energy of the substance as well as the field energy and at the same time 

would provide an univocal connection with thermodynamic variables of the substance in the language of 

four-vectors and tensors. Another interesting problem is 4/3 problem, according to which the effective mass 

of the body field, which is calculated through the field momentum, and the effective mass of the field, found 

through the field energy, for some reason do not coincide with each other, with the ratio of the masses 

approximately equal to 4/3. 

The problem of 4/3 is known for a long time for the mass of electromagnetic field of a moving charge. 

Joseph John Thomson, George Francis FitzGerald, Oliver Heaviside [1], George Frederick Charles Searle [2] 

and many others wrote about it in the late 19-th century. There is a paper of Hajra [3] among recent works on 

the problem. We also discussed this question previously with respect to the gravitational field of a moving 

ball [4]. Now we present a more accurate description of the problem, not limited to the approximation of 

small velocities.  

 

2. METHODS 

 

In the calculation of the energy and the momentum of gravitational field of a uniform massive ball, we 

will use the superposition principle by means of summing up the field energies and momenta from all point 

particles forming the moving ball. This approach is reasonable in the case of a weak field, when the general 

theory of relativity changes to gravimagnetism and the covariant theory of gravitation – to the Lorentz-

invariant theory of gravitation [5]. The field equations then become linear, allowing the use of the 

superposition principle. We will note that the gravitational field can be considered weak if the spacetime 

metric differs insignificantly from the Minkowski spacetime metric (the spacetime metric of the special 
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theory of relativity). If the effects of gravitational time dilation and sizes contraction are significantly less 

than the similar effects due to the motion velocity of the reference frame under consideration, then this 

gravitational field can be considered weak. 

 

3. RESULTS AND DISCUSSIONS  

 

3.1 The gravitational field outside a uniform massive ball 

 

We will first define the gravitational field potentials for a ball moving at a constant velocity V  along the 

axis OХ  of the reference frame K . We will proceed from the so-called Liénard-Wiechert potentials [6, 7] 

for any point particles that make up the ball. Popular presentation of the problem (for the electromagnetic 

field) can be found in Feynman’s book [8]. Similarly to this, the differential scalar Liénard-Wiechert 

potential for the gravitational field from a point particle with mass dM  has the following form: 

 

/ g

dMd
r c

γψ = −
′ ′− ⋅V r

,                                                           (1) 

 

where γ  is the gravitational constant, 

gc  is the velocity of gravitation propagation, 

vector ′r  is the vector connecting the early position of the point particle at time t′  and the position 

( , , )x y z=r  at which the potential is determined at time t . In this case, the equation must hold: 

 

g

rt t
c

′′ = − .                                                                    (2) 

 

The meaning of equation (2) is that during the time period t t′−  the gravitational effect of the mass dM  

must cover the distance r′  at velocity gc  up to the position ( , , )x y z=r  so that at this position the potential 

dψ  would appear. 

Suppose there is continuous distribution of point particles and at 0t =  these particles are described by 

the coordinates 0 0 0( , , )x y z  and the center of distribution of point particles coincides with the origin of the 

reference frame. Then at time t  the distribution center of the point particles would move along the axis OX  

to the position x Vt= , and the radius vector of an arbitrary particle of distribution would equal 

2 0 0 0( , , )x Vt y z= +r . At the early time t′  the position of this point particle is specified by the vector 
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1 0 0 0( , , )x Vt y z′= +r . Since 1′ −r = r r  and ( )gr c t t′ ′= −  according to (2), then for the square 2r′  we can 

write down: 

 

2 2 2 2 2 2
0 0 0( ) ( ) ( ) ( )gr x x Vt y y z z c t t′ ′ ′= − − + − + − = − .                              (3) 

 

The right side of (3) is a quadratic equation for the time t′ . After we find t′  from (3), we can then find 

r′  from (2). If we consider that in (1) the product of vectors is 0( )V x x Vt′ ′⋅ − −V r = , then substituting r′  

also in (1), we obtain the following expression [9]: 

 

2
2 2 2 20

0 02 2

( )
1 ( ) ( )

1g
g

dMd
x x V tV c y y z z

V c

γψ = −
− −− + − + −
−

.                             (4) 

 

According to (4), the differential gravitational potential dψ  of the point mass dM  at the time t  during 

its motion along the axis OX  depends on the initial position 0 0 0( , , )x y z  of this mass at 0t = . If we use the 

extended Lorentz transformations for the spatial coordinates in (4): 

 

0

2 21 g

x x V tx
V c

∗ − −=
−

,           0y y y∗ = − ,           0z z z∗ = − ,                              (5) 

 

and then let the velocity V  tend to zero, we obtain the formula for the potential in the reference frame 

K ∗  the origin of which coincides with the point mass dM : 

 

2 2 2

dMd
x y z

γψ ∗

∗ ∗ ∗
= −

+ +
.                                                       (6) 

 

In (6) in the reference frame K ∗  the vector ( , , )x y z∗ ∗ ∗ ∗=r  at the proper time t∗  specifies the same 

point in space as the vector ( , , )x y z=r  in the reference frame K  at the time t . If we introduce the 

gravitational four-potential ,
g

D
сμ
ψ 

= −  
 

D , including the scalar potential ψ  and the vector potential D  

[10], then the relation between the scalar potential (6) in the reference frame K ∗  and the scalar potential (4) 

in the reference frame K  can be considered as the consequence of extended Lorentz transformations in four-

dimensional formalism, which are applied to the differential four-potential of a single point particle. These 
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transformations are carried out by multiplying the corresponding transformation matrix by the four-potential, 

which gives the four-potential in a different reference frame with its own coordinates and time. 

Since in the reference frame K ∗  the point mass is at rest, its vector potential is 0d ∗ =D , and the four-

potential has the form: ,0
g

ddD
сμ
ψ ∗

∗  
=   
 

. In order to move to the reference frame K , in which the reference 

frame K ∗  is moving at the constant velocity V  along the axis OX , we must use the matrix of inverse 

partial Lorentz transformation [5]: 

 

2 2 2 2

2 2 2 2

1
0 0

1 / 1 /

1
0 0

1 / 1 /

0 0 1 0

0 0 0 1

g g g

k
g g g

V
V c c V c

V
L

c V c V c
μ

 − − − 
 
 −=
 − −
 
 
 
 

, 

 

2 2 2 2 2
, ,0,0 , ,0,0

1 / 1 /
k k x

gg g g g

d V d ddD L dD dD
сс V c c V c

μ
μ

ψ ψ ψ∗ ∗
∗

   
 = = − = −   − −   

.            (7) 

 

From (7) taking into account (6) and (5) we obtain the following relations: 

 

2 2 2
2 2 2 20

0 02 2

1 / ( )
1 ( ) ( )

1
g

g
g

d dMd
V c x x V tV c y y z z

V c

ψ γψ
∗

= = −
− − −− + − + −

−

, 

 

2x
g

d VdD
c

ψ= ,             0xdD = ,              0zdD = .                               (8) 

 

The first equation in (8) coincides with (4) and the differential vector potential of the point mass is 

directed along its motion velocity. 

After integration of (8) over all point masses inside the ball on the basis of the principle of superposition, 

the standard formulas are obtained for the potentials of gravitational field around the moving ball, with 

retardation of the gravitational interaction taken into account: 
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( )2 2 2 2 2(1 )( )g

M

x V t V c y z

γψ = −
− + − +

,                      2
gc

ψ= VD ,                       (9) 

 

where ψ  – the scalar potential of the moving ball, 

M  – the mass of the ball, 
( , , )x y z  – the coordinates of the point at which the potential is determined at the time t  (on the 

condition that the center of the ball at 0t =  was in the origin of coordinate system), 
D  – the vector potential of the ball. 
 

In (9) it is assumed that the ball is moving along the axis OX  at a constant speed V , so that 
2x
g

VD
c

ψ= , 

0yD = , 0zD = . With the help of the field potentials we can calculate the field strengths around the ball by 

the formulas [10]: 

 

t
ψ ∂= −∇ −

∂
DG ,                           = ∇× DΩ ,                                  (10) 

 

where G  is the gravitational field strength, 

Ω  – the gravitational torsion in Lorentz-invariant theory of gravitation (gravimagnetic field in 

gravitomagnetism). 

 

In view of (9) and (10) we find: 

 

( )
( )

2 2

2 2 2 2 2 3

(1 )

[ (1 )( )]

g
x

g

M x V t V c
G

x V t V c y z

γ − −
= −

− + − +
,      

( )

2 2

2 2 2 2 2 3

(1 )

[ (1 )( )]

g
y

g

M y V c
G

x V t V c y z

γ −
= −

− + − +
, 

 

( )

2 2

2 2 2 2 2 3

(1 )

[ (1 )( )]

g
z

g

M z V c
G

x V t V c y z

γ −
= −

− + − +
,                                  0xΩ = ,                (11) 

 

( )

2 2

22 2 2 2 2 3

(1 )

[ (1 )( )]

g
y

g g

M z V V c

c x V t V c y z

γ
Ω

−
=

− + − +
,   

( )

2 2

22 2 2 2 2 3

(1 )

[ (1 )( )]

g
z

g g

M y V V c

c x V t V c y z

γ
Ω

−
= −

− + − +
. 

 

The energy density of the gravitational field is determined by the formula [10]: 
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( ) ( )
( )

22 2 2 2 2 2 2
2 2 2

2 2 2 2 2 3

(1 )[ (1 )( )]1

8 8 [ (1 )( )]

g g
g

g

M V c x V t V c y z
u G c

x V t V c y z

γ
Ω

π γ π
− − + + +

= − + = −
− + − +

.          (12) 

 

The total energy of the field outside the ball at a constant velocity should not depend on time. So it is 

possible to integrate the energy density of the field (12) over the external space volume at 0t = . For this 

purpose we shall introduce new coordinates:  

 

2 21 cosgx V c r θ= − ,       sin cosy r θ ϕ= ,       sin sinz r θ ϕ= .                  (13) 

 

The volume element is determined by the formula d J dr d dθ ϕϒ = , where J  is determinant of 

Jacobian matrix: 

 

( , , )

( , , )

x x x
r

x y z y y yJ
r r

z z z
r

θ ϕ

θ ϕ θ ϕ

θ ϕ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

. 

 

It follows that 2 2 2sin 1 gd r V c dr d dθ θ ϕϒ = − . The integral over the space of the energy density (12) 

will equal: 

 

2 2 2 22

22 2 2

[ (sin cos )] sin

8 1

g
b

g g

c V dr d dMU u d
rc V c

θ θ θ θ ϕγ
π

+ −
= ϒ = −

−  .          (14) 

 

We shall take into account that due to the Lorentz contraction during the motion along the axis OX  the 

ball must be as Heaviside ellipsoid, the surface equation of which at 0t =  is the following: 

 

2
2 2 2

2 21 g

x y z R
V c

+ + =
−

.                                                      (15) 

 

After substituting (13) in (15), it becomes apparent that the radius r  at the integration in (14) must 

change from R  to ∞ , and the angles θ  and ϕ  change the same way as in spherical coordinates (from 0 to 
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π  for the angle θ , and from 0 to 2π  for the angle ϕ ). For the energy of the gravitational field outside the 

moving ball we find: 

 

2 2 2 2 2
0

2 2 2 2

(1 3 ) (1 3 )

2 1 1

g b g
b

g g

M V c U V c
U

R V c V c

γ + +
= − =

− −
,                                     (16) 

 

where 
2

0 2b
MU
R

γ= −  is the field energy around the stationary ball. 

 

We can introduce the effective relativistic mass of the field related to the energy of moving ball: 

 

2 2 2 2
0

2 2

1 (1 3 )b g b g
gb

g g

U V c U V c
m

c c
− +

= = .                                         (17) 

 

We shall now consider the momentum density of the gravitational field:  

 

2
gc

= Hg ,                                                                    (18) 

 

where 
2

[ ]
4

gc
πγ

= − ×H G Ω  is the vector of energy flux density of the gravitational field (Heaviside 

vector) [10]. 

 

Substituting in (18) the components of the field (11), we find: 

 

( )

2 2 2 2 2 2

22 2 2 2 2 3

(1 ) ( )

4 [ (1 )( )]

g
x

g g

M V c y z V
g

c x V t V c y z

γ
π

− +
= −

− + − +
,                               (19) 

 

( )

2 2 2 2

22 2 2 2 2 3

(1 ) ( )

4 [ (1 )( )]

g
y

g g

M V c x V t y V
g

c x V t V c y z

γ
π

− −
=

− + − +
, 

 

( )

2 2 2 2

22 2 2 2 2 3

(1 ) ( )

4 [ (1 )( )]

g
z

g g

M V c x V t z V
g

c x V t V c y z

γ
π

− −
=

− + − +
. 
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We can see that the components of the momentum density of gravitational field (19) look the same as if a 

liquid flowed around the ball from the axis OX , carrying similar density of the momentum – liquid spreads 

out to the sides when meeting with the ball and merges once again on the opposite side of the ball. 

Integrating the components of the momentum density of the gravitational field (19) by volume outside the 

moving ball at 0t =  as in (14), we obtain: 

 

2 3 2

22 2 2 2 2 2

sin 2

4 1 3 1
x x

g g g g

M V dr d d M VP g d
rc V c Rc V c

γ θ θ ϕ γ
π

= ϒ = − = −
− −  .           (20) 

 

0y yP g d= ϒ = ,                        0z zP g d= ϒ = . 

 

In (20) the total momentum of the field has only the component along the axis OX . By analogy with the 

formula for relativistic momentum the coefficient before the velocity V  in (20) can be interpreted as the 

effective mass of the external gravitational field moving with the ball: 

 

2 2 2
0

2 2

1 42

3 3
x g b

pb
g g

P V c UMm
V Rc c

γ−
= = − = ,                                        (21) 

 

where 
2

0 2b
MU
R

γ= −  is the energy of the external static field of the ball at rest. 

 

Comparing (21) and (17) gives: 

 

2 23(1 3 )

4
g pb

g b

V c m
m

+
= .                                                     (22) 

 

The discrepancy between the masses g bm  and pbm  in (22) shows the existence of the problem of 4/3 for 

gravitational field in the Lorentz-invariant theory of gravitation. 

 

3.2 The gravitational field inside a moving ball 
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According to [9] for a homogeneous ball with the density of substance 0ρ  (measured in the comoving 

frame), which is moving along the axis OX , the potentials inside the ball (denoted by subscript  i ) depend 
on time and are as follows: 

 

2
2 2 20

2 22 2

2 1 ( )

3 11
i

gg

x V tR y z
V cV c

π γ ρψ
  −= − − + +   −−    

,                  
2

i
i

gc
ψ= VD .            (23) 

 

In view of (10) we can calculate the internal field strength and torsion field: 

 

( )0

2 2

4

3 1
xi

g

x V t
G

V c

π γ ρ −
= −

−
,       0

2 2

4

3 1
yi

g

yG
V c

π γ ρ= −
−

,       0

2 2

4

3 1
zi

g

zG
V c

π γ ρ= −
−

, 

 

0xiΩ = ,           0

2 2 2

4

3 1
yi

g g

zV
c V c

π γ ρΩ =
−

,           0

2 2 2

4

3 1
z i

g g

yV
c V c

π γ ρΩ = −
−

.               (24) 

 

Similarly to (12) for the energy density of the field we find:  

 

( ) ( )22 2 2 2 2
02 2 2

2 2

2 [ (1 )( )]1

8 9(1 )
g

i i g i
g

x V t V c y z
u G c

V c
π γ ρ

Ω
π γ

− + + +
= − + = −

−
.               (25) 

 

According to (25) the minimum energy density inside a moving ball is achieved on its surface, and in the 

center at 0t =  it is zero. 

The integral of (25) by volume of the ball at 0t =  in coordinates (13) with the volume element 

2 2 2sin 1 gd r V c dr d dθ θ ϕϒ = −  equals: 

 

2
2 2 2 2 40

2 2 2

2
[ (sin cos )] sin

9 1
i i g

g g

U u d c V r dr d d
c V c

π γ ρ θ θ θ θ ϕ= ϒ = − + −
−  .          (26) 

 

According to the theory of relativity the moving ball looks like Heaviside ellipsoid with equation of the 

surface (15) at 0t = , and in the coordinates (13) the radius in the integration in (26) varies from 0 to R . 

With this in mind for the energy of the gravitational field inside the moving ball, we have: 
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2 2 2 2 2
0

2 2 2 2

(1 3 ) (1 3 )

10 1 1

g i g
i

g g

M V c U V c
U

R V c V c

γ + +
= − =

− −
,                                      (27) 

 

where 
2

0 10i
MU

R
γ= −  is the field energy inside a stationary ball with radius R . 

 

The effective mass of the field associated with energy (27) is: 

 

2 2 2 2
0

2 2

1 (1 3 )i g i g
g i

g g

U V c U V c
m

c c
− +

= = .                                         (28) 

 

Substituting in (18) the components of the field strengths (24), we find the components of the vector of 

momentum density of gravitational field: 

 

2 2 2
0

2 2 2

4 ( )

9 (1 )xi
g g

y z Vg
c V c

πγ ρ += −
−

,      
2
0

2 2 2

4 ( )

9 (1 )yi
g g

x V t yVg
c V c

πγ ρ −=
−

,     
2
0

2 2 2

4 ( )

9 (1 )zi
g g

x V t zVg
c V c

π γ ρ −=
−

. 

(29) 

 

The vector connecting the origin of coordinate system and center of the ball depends on the time and has 

the components ( ,0,0)Vt . From this in the point, coinciding with the center of the ball, the components of 

the vector of the momentum density of the gravitational field are always zero. At 0t =  the center of the ball 

passes through the origin of the coordinate system, and at the time from (29) it follows that the maximum 

density of the field momentum 
2 2 2
0

max 2 2 2 4 2 2 2

4

9 (1 ) 4 (1 )g g g g

R V M Vg
c V c R c V c
πγ ρ γ

π
= − = −

− −
 is achieved on the 

surface of the ball on the circle of radius R  in the plane YOZ , which is perpendicular to the line OX  of the 

ball’s motion. The same follows from (19). 

We can integrate the components of the momentum density of gravitational field (29) over the volume 

inside the moving ball at 0t =  in the coordinates (13) similar to (20): 

 

2 2
4 30

2 2 2 2 2 2

4 2
sin

9 1 15 1
xi xi

g g g g

V M VP g d r dr d d
c V c R c V c

π γ ρ γθ θ ϕ= ϒ = − = −
− −  .            (30) 
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0yi yiP g d= ϒ = ,                        0z i z iP g d= ϒ = . 

 

As in (20), the total momentum of the field (30) has only the component along the axis OX . By analogy 

with (21) the coefficient before the velocity V  in (30) is interpreted as the effective mass of the gravitational 

field inside the ball: 

 

2 2 2
0

2 2

1 42

15 3
xi g i

pi
g g

P V c UMm
V R c c

γ−
= = − = ,                                      (31) 

 

where 
2

0 10i
MU

R
γ= −  is the field energy inside a stationary ball. 

 

Comparing (28) and (31) gives: 

 

2 23(1 3 )

4
g pi

g i

V c m
m

+
= .                                                     (32) 

 

Connection (32) between the masses of the field inside the ball is the same as in (22) for the masses of the 

external field, so the problem of 4/3 exists inside the ball too. 

 

4. CONCLUSION 

 

A characteristic feature of the fundamental fields, which include the gravitational and electromagnetic 

fields, is the similarity of their equations for the potentials and the field strengths. As it was shown above, the 

external potentials (9) of the gravitational (and similarly, the electromagnetic) field of the moving ball are 

similar by their form to the potentials of the point mass (point charge) (8), and can be obtained both using the 

superposition principle of potentials of the point masses inside the ball, and using the Lorentz transformation. 

We also presented the exact field potentials (23) inside the moving ball, for which both the superposition 

principle and the Lorentz transformation are satisfied. 

From the stated above we see that the 4/3 problem is common for both the electromagnetic and the 

gravitational field. It also follows from this that considering the contribution of the energy and the 

momentum of both fields into the mass of the moving body must be done in the same way, taking into 

account the negative values of the energy and the momentum of gravitational field and the positive values of 

the energy and the momentum of electromagnetic field. 
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