The First Noether theorem with taking account of second
derivativesin Lagrangian, space curvature and asymmetric
metric tensors.

Vyachedav Tenin

Abstract.

ThisPart VIl dealswith thefirst Noether theorem. It takesinto account not
only thefirst derivatives of the fields by the coordinates in Lagrangian, but
also the second (this permitsto apply thistheorem to gravity, since the second
derivatives from the metric tensor enter in the Lagrangian of the gravitational
field).

Also thistheorem is generalized on the curved spaces.

And at last it's generalized on asymmetric metric tensors.
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1) Action function.

It issaid in [1] that if g is the determinant of the metric tensor and S — the scalar function
constructed from a system of fields, then magnitude

A= 65X~ g (L1

is invariant relative to coordinate transformations. And so it is possible to take A as the action
function for this system of fields. That can be generalized and on N — dimensional spaces.

L=Sx/- g @.2) L - Lagrangian
2) Field equations.
Le L= L(ui;ui,k;ui,kI )

u i here isthe symbol for any field. Let usvary A by the Uj .
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A= oy + T sy

Ty TTu; Tu

;g )d " x=

gL ¢ T L N
_Qﬂui ﬂk(ﬂui,k)+ﬂk(ﬂl(ﬂui,kl))]>dUi>d x (2]

If at any dUi BapHaLUs dA=0, thenwe get the equations for u; .

L g L T
o Tl I =0 (2.2)

3). First Noether theorem.

We will follow [2], and in some places will add new formule.
. consider an infinitesimal transformation of ¢nnrdinates and ficld funchions:

XK = xK +dxX (3.0
u(x9 =u.(x) +du. (x) (3.2

The variatinns #x% and &1y can he expressed in terms of the infinitesimul lineary inds-

pendenl transfoomation parameters fol, as follows:

dXk= a Clmpdw, du(¥)= a Y;qdw, (3.3
1£nEs 1£nfs

The indices § and & oof e field funcions and the rransformanion paramesers may for may
nat} have 7 shimple tensonial significance, We shall not specity it, and will agree tointerpret
repedled indices a4 indicaling summalion.

We note that the wansformation law for the derivatives of the fizld funstions

u, (xQ = U (X)+ dui,k (X)

conlains the varialions bz that are nonderivalives of S In other wonds, he operstions
& and ¥hx do not commnte. The point is that Suy s the varfation of the field functon
due o hofli the change in its form and the change n it argument, The variation dae to
the change in the form of the function is defined hy

du (X) =ul(x) - u.(X)
which to within second-order terms can be written in the form
du () =du (¥)- u, dx<=(Y, " U Crm)dw, - (3.4)

Covariant derivative here takes into account the space curvature:

& U ) =T, (6 ) = (T.8)u +& 3y =& xG ' +€ " (34.])
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Bv definition, the operation & commutes with 873y
We now define the variation of the action hy

d A=daL(x)>dx=ALExG>dx¢ oL(x)>dx

L0 = LU0, (69, (:9) =LY +dIL (¥

and

ALY = - sy + - sy + T gy, = dL(X) + L, xdxXK
Tu Tu; U | |

Covariant derivative here takes into account the space curvature.

Iy these expressions, &% is the vardation of & due to variations in the form of u .u

i’k ’ui,kl :

- L - L L -~
L) =TE Gy + = sy, + I sy
ﬂu. : ﬂu. ! ﬂu. !
i ik ikl
and the second termy describes the toral w_l:iﬂtion due tn va&[atinns in the goordingtes.
Tllus: - ) ' .o . - . a1 M £ a

dA = &dL(X) + L(x) ., >0x*) xdx + oL (X) >dx¢- oL (X) xdx

We shall now consider the differcnce bebween the last two terms, whick describes the varia-
Hon in the volome of intepration.
Wi hasne

AxC® dxgPreixg XX xcix = ngxlf z‘é z‘i 2; x> (1+ dx¥.y )

Covariant derivative here takes into account the space curvature.
and therefors

OL(X) xdx¢ OL(x) xax = OL(x) xaix*.x xdx

dA = ddL(x) +(L(X) xdx")., ] xdx

Let usfind gmn;k for asymmetric 9, .

e Ae xg™y =(e,A8 g™, & = & G
gmn;k :Gmskxgsn +Gnrkxgm +gmn’k
g™ xg,, =d" g™k =-g" g™ xg, .\

gsl ik =" gsmxgrm;k xgnl = gsl k gss >GS| k = GrSk xgrl
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1 r
O« =(6,8), =G sy, +9, G ik
s =0 (3.4.0

From Q. = O itfollows /- g;k =0

Taking into account
L=Sx%x/- ¢ S'k:Sk - dxk;k:dxk,k'|'Gknk>(jXn

[The Christoffel symbols for the for the asymmetric metric tensor must be taken from [3] -
(2.35)]

1 'g’n

Gkn -1 kn +1 kn - = +n = +n
k ng Xgnk,n ng )bkn,n 2Xg Xg,n n ﬁ n

_ mn
r]n —2 Xg >bmn,n

we obtain

dA=ddL(x)+(L(X) 0Xk) | +n, x0xk [dx

Using the eguation of motion

(2.2):
i _ L L
Lo (g T
Ty, k(ﬂui,k ! T
wi obtain
R qL qL - qL -
dA= - xdu, + X, du, +
C{ﬂk(ﬂui,k ﬂl(ﬂui,kl )) ﬂui,k k
+ 9, ( I Xaui,k)'
Ui

- ﬂ.(ﬂLMTkan +91, (L(x)>dx< ) +n >dxk ]>dx =

Ui 1
qL qL — i =
=q1 -9 ))>du. + du, | +
: k[(ﬂui,k I(ﬂui,kl )[[VFT !
+Lodx* ] +n, >dx*}>dx

Taking into account (3.3) u (3.4) wehave:

dA=- & ANJIdm ()] () EXOeW,
1En£s
where
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j(n)_n xC¥ny = 1xg™ mnk>‘Ck(n) (3.4.2)

L
knx:—ﬂ-ﬂ Y. - U. xC"n) -
q m(X) [ﬂui,k I(ﬂuikl)]X( ) Ui XClm))

>(Y,(n). T[U. . )CMw])- LY CKm  (3.5)
ﬂu 1K

Singe the first variotion of agtion must vanish, and it we equate o ¥ero the coefficients
ol the independent transfomus lon paramclers Sy, we obtain

ﬂﬂv‘v‘n - ql[ekm ()]~ J,)ax=0 36

Since the region of integration is athitrary, we obtain the conlinuity equation

d :
@ qk(n) (X) = J(n) (37)
If j(n) :O,then:

Trunstorming the right-hand side of {2.6) by {rauss” thearem, we obtain the conserva-
len laws [or the cormesponding suclace nteprals, I0 we [urther soppoess Lhat the inlegral
in {2.0) 3 valoated over a volume thal expands withoul limit o space-like directions,
e is boumbed in lmedike direclions by space-like lhree-dimensional surfaces oy und
Ty, we find Lhat if the field is practically zern an the boundaries of the spatial wahumne,

k R k
0ds, " m- o ds, ¥ =0
S 1 S 2
In this expression, dog is the projection ol the surlace area ¢lemenl & onlo the tnse-
plane perpendicualar to the x% axis. The aheowve aquation shows that the surface integrals

C.(S)= ods 8 m)
S

are in fact indepondent of (he surface o, T ihe spocial case where the surfaces are ihe
threc-planes x" = ¢ = const, the integral is evaluated over the three-dimensional confignrs-
ot spacs, and the integrals

C(n) (x1) = ad3x>gYn) =const (3.8)
are mdependent of Une.

We have thus shown that to each continuous s — parameter transformation of coordinates
(3.1) and field functions (3.2), there correspond s time-independent invariants (3.8) Cn (n=1,

., ). That isthe first Noether theorem (at j, =0).

The guuntities If-'{kﬂ} are not unique. Eipressions of the funn
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ﬂjm o
can be added to them if
Xy =- £ ™)

This ambiguity does nod, however, afizel Lhe value of the congerved intoyrals (38)

If j(n) ! Othenwecangetfrom(3.6)
t
¢ s 0 m - iy X0l at =¢H's 9 m) (3.9)
S, t
Letus OOt Xjy =Dy (3.10) then
ty
Ot ¥jy =Dyt =t;) - D, (t=1,) (3.11)
Hencetlwe have :

1 S

1S 00 - QOO =t,) =S, 20 - @I XD (=) (312)

From here we see that the values
By (X7) = cgd°xX(q'em - 0dx" xj,)) =const  (3.13)

are independent of time. That is the first Noether theorem for the asymmetric metric tensors in
curved spaces with taking into account the second derivatives in Lagrangian.
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