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Abstract. The Morse molecular potential is used for the first time as an effective potential for
the overall interaction in charmonium. This procedure allows the calculation of the rotational
contributions of P states, the radii of five S states, and an absolute threshold for bound states.
The calculation of the latter provides important information on the character of the recently
found levels X(3915), X(3940), Ψ(4040), X(4050), X(4140), Ψ(4160), X(4160),X(4250),
X(4260), X(4350), Ψ(4415), X(4430), and X(4660).

1. Introduction
The pioneering work of Eichten et al. [1], and many other subsequent works, have shown that
the static potential plays an important role in the description of heavy mesons. Despite the effort
along more than the last three decades, some important features of the static interaction are
not yet fully understood. And that is why several approximate methods and effective potentials
have been proposed for the description of the overall interaction in quarkonia. A partial list of
the articles on these two subjects is found in reference [2].

The literature has established that for heavy mesons non-relativistic quantum mechanics with
constituent masses for the quark and antiquark can be applied. In this work we use the Morse
molecular potential for the first time for describing some low energy states of charmonium and
finding its effective potential parameters. This unique description allows us to calculate the
contribution of the rotational energy of P states, and the radii of some S states. It also permits
the calculation of the absolute threshold for the bound states of charmonium that sheds light
on the character of the recently found levels [3] X(3915), X(3940), Ψ(4040), X(4050), X(4140),
Ψ(4160), X(4160),X(4250), X(4260), X(4350), Ψ(4415), X(4430), and X(4660).



We do not need to worry about confinement because we only deal with low energy levels. And
anyway confinement is not well understood and there are models of hadrons that do not take it
into account. For example, the original MIT bag model treats confinement only at the wall by
making the vector current null at it [4]. In the case of the chiral bag model [5], confinement is
treated by means of the continuity of the axial vector current at the wall. All the experimental
data used below for the energies of charmonium states and the quark c mass were taken from
the Particle Data Group [3]. All energy values below are in MeV unless noted otherwise. This
work is based on the the recently published article by de Souza [6] on bottomonium.

2. The Morse Molecular Potential
The Morse molecular potential [7]

V (r) = D
(
e−2αx − 2e−αx

)
(1)

is widely used in the description of diatomic molecules. In the above equation D is the minimum
of the well, a is the distance where V = −D, x = (r − a) /a, and α is a parameter to be found
from the fitting. The first term in the above expression takes care of the well-known repulsion
of the strong force for very small distances [8] and the second term takes care of the overall
attraction due to QCD forces. For |x| < 1 this potential can be expanded about the minimum
up to order 3 in x and the expression

V (x) = −D +
1

2
ka2x2 − λka3x3 (2)

is produced where λ = α/2a. For this potential the solution of the Schrdinger equation yields
the expression [7, 9]
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for the vibrational and rotational levels above the minimum of the potential, where the quantum
numbers υ, L = 0, 1, 2, 3, ... In this last equation the first term describes harmonic vibrations,
the second term takes into account the anharmonicity of the potential, the third term describes
rotations with constant moment of inertia, the fourth term represents the centrifugal distortion
and the fifth term represents the coupling between vibration and rotation. This expression can
also be written as [9]
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where ω and D are related to α, a and m by

ω2 =
2α2D

ma2
(5)

In this above expression m is the reduced mass of the constituent quark and antiquark, that
is, mc2 = (1/2)Mcc

2 in which Mc is the mass of the c quark. The constant BL is given by
BL = h̄2/2ma2. In the fitting below we disregarded the last term of Eqs. (3) and (4).



Table 1. The levels considered in the fitting of charmonium.

(υ, L) Particle Mass (MeV/c2)

(0, 0) J/Ψ(1S) 3096.916± 0.011
(0, 1) χc(1P ) 3549.7± 37.9
(1, 0) Ψ(3686) 3686.09± 0.04
(0, 2) Ψ(3770) 3778.1± 1.2

3. The Fitting
The first two levels, ηc(1S) and J/Ψ(1S), are a hyperfine doublet due to the spin-spin interaction,
but as our Hamiltonian does not depend on spin, we can use the S states J/Ψ(1S) and
Ψ(2S) ≡ Ψ(3686) for the fitting. In the case of χc(1P ) states, we should take out the spin-
orbit interaction contribution which is given by

∆ESL = ∆ [J(J + 1)− L(L+ 1)− S(S + 1)] (6)

where J =
∣∣∣J⃗ ∣∣∣ = ∣∣∣L⃗+ S⃗

∣∣∣ in which S = 1 for χc(P ) states. Applying Eq. (6) to the states χc0(1P ),

χc1(1P ) and χc2(1P ) we obtain the average values ∆1P = 27.7 ± 13.6, E1P = 3549.7 ± 37.9,
where E1P is the energy of the degenerate level χc(1P ). The state Ψ(3770), which is assigned
as 13D1, is a very well established state, experimentally found with an energy of 3778.1 ± 1.2.
Table 1 presents a summary of the levels used in the fitting with the corresponding values of υ
and L.

4. Results and discussion
4.1. Results for the potential parameters
Fitting the levels of table 1 to Eq. (3) we obtain the following values for its parameters:
h̄ω = 8062.0 ± 0.1, A = 3736.4 ± 0.1, BL = 282.8 ± 58.3, DL = 28.3 ± 5.1. From Eqs. (3)
and (4) we obtain that A = (h̄ω)2/4D, and thus D = 4348± 0.5.

Using the values of D and h̄ω above in Eq. (5) we obtain a/α = (13.15± 0.05) × 10−2 fm,
and from the value of BL we find that a = (0.28 ± 0.05) fm which is a very reasonable figure
since the Compton wavelength of charmonium is about 0.69 fm if we use a constituent mass of
1.7 GeV/c2 . Using the above values of a and a/α we obtain α = 2.15± 0.39.

As we showed above, a molecular potential is harmonic about its minimum, and thus we
can calculate the value for the constant k = mω2 which can be written as k = mc2(h̄ω)2/(h̄c)2.
Using the above values we obtain k ≈ 1.44×103 GeV/fm2 ≈ 2.31×1023N/m which is a quite fair
number. For a distance of 0.3 fm it produces a force F ≈ 108N. The following simple calculation
shows that this is a reasonable number. If we calculate the average force necessary for producing
a work of 4 GeV in 0.3 fm we obtain a force of about 106N.

4.2. Number of S and P states
As we see in table 1 the quantum number n of QCD models correspond to υ + 1 in the present
model. The maximum number of υ can be calculated for a molecular potential by using the
simple following reasoning. In Eq.(3) the second term is always smaller than the first term, and
thus we obtain υ < h̄ω

A − 1
2 = 1.65792± 0.00004 and thus the possible values of υ are only 0 and

1. Therefore, the possible values for n are only 1 and 2.



Table 2. Radii of five states of charmonium calculated with the use of Eq. (7).

(υ, L) Particle Radius (fm)

(0, 0) J/Ψ(1S), ηc(1S) 0.35± 0.06
(1, 0) Ψ(3686), ηc(2S) 0.49± 0.09
(2, 0) Ψ(3S) 0.63± 0.11

We do a similar reasoning for calculating the maximum number of L. In Eq.(3) the fourth
term is always smaller than the third term, and so we obtain L(L+1) < BL

DL
= 9.99±2.06 which

is satisfied for L = 0, 1, 2, 3. This means, respectively, S, P,D and F states.

4.3. Discussion on the recently found levels
We found above that D = 4348 ± 0.5 which is a very important result and states that
there is no charmonium bound state above 4348.8 ± 0.5. Therefore, the states Ψ(4415),
X(4430), and X(4660) are not bound states of charmonium. On the other hand this result
shows that the recently found states X(3915), X(3940), Ψ(4040), X(4050), X(4140), Ψ(4160),
X(4160),X(4250), X(4260), X(4350) may be bound states of charmonium. But as we saw in
section 4.2 above the maxium number of n is two and, thus, if they are charmonium states,
none of them is a 3S state. They have to be 2P , 2D, and 2F states.

4.4. Radii of some S states
As it was shown above the Morse potential, when expanded about its minimum, yields Eq.
(2). For such a potential Robinett [10] obtained the following equation for the average value of
position for S states
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where we have taken into account that λ = α/2a. We can identify these average values with the
radii of charmonium states. We only calculate the radii of the states J/Ψ(1S), ηc(1S), Ψ(3686),
ηc(2S), and Ψ(3S) because the other upper states are far from the bottom of the potential.
Using the above values for the constants we obtain the results shown in table 2 for the radii of
five states of charmonium.

5. Conclusion
The fitting of some energy levels of charmonium to the Morse molecular potential makes possible
the calculation of parameters of the effective molecular potential, prediction of the radii of five
states and sheds some light on the character of the states X(3915), X(3940), Ψ(4040), X(4050),
X(4140), Ψ(4160), X(4160),X(4250), X(4260), X(4350), Ψ(4415), X(4430), and X(4660).
Therefore, the above results add important information for the understanding of charmonium
and complement information obtained from QCD models.
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