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      ABSTRACT: In this paper we study the methods of Borel resummation applied 
      to the solution of integral equation with symmetric Kernels K(xs) and to the study of the 
      Riesz criterion , which is important to the Riemann Hypothesis
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1. INTRODUCTION

     Divergent series are widely known and appear in many context involving Physics or 
      Mathematics , for example if we integrate by parts the error function :
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      Or if we apply a ‘Saddle point mehtod’ to evaluate n! For big ‘n’
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      But (1.1) and (1.2) are only convergent in the limit x 
      for small values of x both sieres diverge. 
      Another example with ODE’s is the following
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      For (1.3) Euler gave the series solution:   2 3 4( ) (1!) (2!) (3!) ...y x x x x x     (1.4)

      Which converges only for x=0 !!! , A similar thing happens with the series:

        2 3
0 1 2 3 .......a a g a g a g           g << 1   (1.5)

     That apear in QFT and Quantum Mechanics , here g is the ‘coupling constant’ 
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      in general series of the form (1.5) although divergent are used to calculate the   
      ‘mass’   or ‘charge’ , for a given physical theory.

      Also as a last example let be the next Taylor series around x=0 :
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      Convergent for |x| <1  However taking the limit 1x   (-1 by the left) we find 
       the amazing results  -1/2 and  -1/4 .
       
       Of course this paper pretends to be only a kind of introduction to the subject for 
       further references I strongly recommend ‘Divergent series’ by G.H Hardy or ‘Zeta 
       regularization methods’ by E.Elizalde and others for historical examples involving 
      divergent series and integrals.
      
     

2. BOREL RESUMMATION FOR SERIES AND INTEGRALS

               Let be the divergent (Numerical) series:

                  0 1 2 3 .........S a a a a                 (2.1)

                  Borel gave a very ingenious method to calculate it, first we multiply and 
                  divide each term by n! 
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                  Then we use (2.1) and (2.2) and supposing that ( ) ( )btf t O e for a real 
                   positive number b then we can writte the ‘sum’ of the series in (2.1) 

                  
0

n=0

( ) =B(S) t
ndtf t e a

     or     
0

n=0

( )  st n
ns dtf t e a s

             s> 0 (2.3)

          
                As a ‘toy model’ of our Borel resummation method we have:

                   1 1 1 1 1 1 1 1 ....... 1/ 2         ( ) exp( )f t t        (2.4)

                   Unfortunately we can’t always know an exact expression for f(t), 
                   To give an approximate evaluation of our Borel transform, we can use the   
                    ‘Euler-Abel’ transform applied ot our divergent series
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                  Also we need another well-known property of the ‘Laplace transform’
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                   The first expression in (2.5) is an approximate evaluation for f(x) ,let x=t 
                   the B(S) ‘Borel sum’ for our divergent series (3.1) is:

                    0 1
0 1, 1

1 1
( ) ( 1) [( 1) ] ( )

!

k kp
k k n cs

n nk k
k c s

B S b E s e
s k s c 

  

 
   

           (2.7)

                   With  !n na b n , only in case that the coefficients of our initial series (2.1) 

                   were of the form ( 1) ( )n
na P n  with P(n) a Polynomial  (2.7) is exact. 

                   The error term is given by the expression:
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                    In case (2.1) were convergent, then its ‘ Borel sum’ is equivalent to the 
                    term-by-term Laplace transform at s=1.

                    The formalism of Borel resummation for integrals is inmediatly 
                    acomplished if we define the Riemann sum multiplying and dividing each 
                    term by a Gamma function we have:
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                     Now we take the limit , 0x  ,the sums becomes the double-integral :              
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                      Of course in general, unless 
0

( )dxf x


 is convergent  ‘Fubini’s theorem’ 

                      does not hold for (2.9) and (2.10) so:
  

                         
0 0 0 0

( , ) ( , )dt dx x t dx dt x t 
   

         
( )

( , )
( 1 )

x tf x
x t t e

x



 

  
     

                                                  
                                                       (2.11)



4

                      Now if we define the integral transform 

                      
0

( )
( )

( 1 )
xf x

H t dx t
x 




                 With 2( ) ( )b tH t O e     (2.12)

                      If the 2 conditions inside (2.14) holds then the ‘Borel integral’ is just the 
                      Laplace transform of  ( )H t t , 0 

                      But. Can a ‘Borel sum’ be the real sum of the series?, let’s take :
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                      The alternating series has the Borel transform:        
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                      Using the result for the Laplace transform of 1/(t+1) ,we find:
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                     Setting s=1 we find that the ‘asymptotic’ expansion (2.14) can be 
                     ‘summed’ even for high values of x.

                      Also, if the integral is convergent then using the property of Laplace 

                      transform with s=1   
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                      (2.12) is the same as the usual definition for the integral in terms of 
                      convergent Riemann sums.

The relationship of this ‘Borel resummation’ for integrals can be written 
as this, using the next property for Laplace transforms:
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                     Valid for 0  and integer
                   
                  For   Z  ,we must apply the analytic prolongation of the Gamma  
                     function ( )z and use the definition of the differintegral   xD f .

                    For the case of Fourier sums 
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                     This last integral in (2.18) will only exist in Cauchy’s principal value sense  
                     due to the singularities of the integrand when   21 2 cos( ) 0t x t  

3. BOREL RESUMMATION AND INTEGRAL EQUATIONS

We could write a generalization to (2.3) as the integral expressions
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the advantage that now f(t) can grow faster than bte so ( ) ( )btf t O e , 

We will study the applications of this Borel resummtion to solve integral 
equations and to study the Riesz criterion for Riemann Hypothesis

In order to apply the Borel generalized resummation to integral 
equations, let be the Fredholm equation of first kind :
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Since the Mellin transform for Kernel K(u) exists, we will apply Borel 
resummation to solve the integral equation given in (3.2)
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Here ‘  ’ is a certain closed path on the complex plane
                        From expression (3.4) We have proven that a infinite power series in the 
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                         This method of the Borel transform can be extended to include integral 
                         equation with non-constant limit of integration or Volterra equations in 
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                        We can extend our method to include also negative powers of ‘t’ if the 
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                        The number   is chosen so the Mellin transform ˆ ( 1 )K n   has no 
                        zeros nor poles for integer ‘n’ 
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           4. RIESZ CRITERION AND THE BOREL TRANSFORM:

                        The Riesz function, introduced by Marcel Riesz , ref [ ] has the 2 
                        equivalent formulations
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                        (1) 1  is the Möbius function
                        

We will use the Borel transform method to give an integral equation for 
                        the Riesz(x) function using the Borel resummation method
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The last expression inside the integral in (4.2) is precisely the Riesz 
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Inside (4.2) and (4.3) we have used the definition of the Riemann Zeta 
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Inside (4.5) is the Mellin transform of the Riesz function, so our integral 
equation (4.3) is correct.

Also if we take the derivative with respect to ‘x’ on both sides of (4.3)
and use the fact that 
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left side of (4.3) the expression 1 xe , here  x is the floor function, the 

kernel of the integral eqution would be now 
x

t

 
 
 

.

In any case both Kernel can give two equivalent kernel and two 

equivalent integral equations, if we replace the function 
x

t
by 

1

2x

t


 
 
 

for any positive epsilon , then we find the regularized integral

30
0 2

lim ( ) 0
dx

R x

x
 



 
     since    1

1 2 ( )
2

O   


       0     (4.9)

                        This regularization is admissible since the Mellin transform of the Riesz 

                        function is equal to   
( 1)

( 2 )

s

s
 


for every  ‘s’ so 
1

Re( )
2

s  
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APPENDIX A: RAMANUJAN’S MASTER THEOREM AND BOREL 
RESUMMATION

Let be the function 
0

( ) ( 1) ( )n n

n

f x a n x




  , which can be expanded into a Taylor 

series in a neighborhood of x=0 , Ramanujan’s master theorem states 

1

0

( ) ( )
sin( )

sdxf x x a s
s





      (A.1)

We can prove (A.1) with the Borel generalized transform

0 00

( ) ( 1) ( ) ( 1) ( ) ( )n n n n

n n

f x a n x dt xt g t
 

 

 
    

 
     

0

( ) ( )na n dtt g t


    (A.2)

The sum 
0

1
( )

1
n

n

xt
xt





 
 can be evaluated without any problem, then we apply 

the Mellin transform to both sides of (A.2) , and use the Mellin covonlutio theorem 

for the expression  
0

( )

1

g t
dt

xt



   

   
1 1

0
0 0 0

( )
( ) ( ) ( )

1 sin sin
s s sg t

f x x dx x dx dt dtg t t a s
xt s s

 
 

  
     

      (A.3)

The last expression (A.3) is precisely Ramanujan’s master theorem, here we have 

used the identity 
1

0 1 sin( )

st
dt

t s




 


 , and the definiton of a(n) in terms of the 

function g(t)

APPENDIX B: RIESZ FUNCTION AND A SUM OVER RIEMANN ZEROS

From formula (4.1) 
2 2

1

( ) ( )
exp

n

Riesz x n x

x n n





   
 

 a question is could we express a 

sum involving the Möbius function using the Riemann Zeros ??.

Titchmarsh [8] used the Residue theorem and assumed that all the Riemann zeros 
were simple to obtain the following formula for the Mertens function

21

1

( 1) 2
( ) ( ) 2

'( ) (2 )! (2 1)

nn

n x n

x
M x n

n n n x






  



 

         
      (B.1)
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Valid for x >1 , if we set   ux e and differentiate respect to ‘x’ , since the Mertens 
function is just an step function its derivative must be a delta comb

/ 2 0

10

( ) ( )
( ) (log )

u
u

n

dM e n
due g u g n

du n

 




    (B.2)

Now if we write  the Riemann zeros as 1/ 2 i   , then after some trivial 
manipulations we get from (B.2) the formula

2
(2 1/ 2)

1 1

( ) ( ) 2(2 ) ( 1)
(log ) ( )

1 (2 )! (2 1)
'

2

n n
n u

n n

n h
g n dug u e

n nn i

  
 

 
 

  


 

  
 

       (B.3)

The right part of (B.3) runs over all the Riemann zeros on the critical strip 

0 Re( ) 1s  and  
0

1
( ) ( ) cos( ) ( )g x h u ux du g x





   is a  Fourier transform pair

A straight application to the Riesz function of (B.3) gives for big x>>1

  3 2

4

3 2
( ) 1 4

.    
' 1/ 2

2
i

i
R x

x
x i

x






   
 
 

  
  

    (B.4)

So if all the imaginary part of the Riemann zeros were REAL , Riemann Hypothesis 

true then  the Riesz function would obey the bound  
1

4( )R x O x
 

  
 

for any 

positive epsilon, at least for big values of ‘x’ 

APPENDIX C: A FUNCTIONAL DIFFERENTIAL EQUATION FOR 
INFINITE PRODUCTS

Let be the infinite product

0

( ) 1
n n

x
S x

a





 
  

 
              (0) 1S         (C.1)

     This product also can be defined (regularization) As

       (0, ) (0,0) log ( )s sZ x Z S x        
 0

1
( , ) s

n n

Z s x
x a








   (C.2)

       We may take the logarithmic derivative inside (C.1), this is equal to
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 0

'( ) log ( ) 1

( ) n n

S x d S x

S x dx x a





 
    (C.3)

      If we take now the (s-1)  derivative inside (C.3) we get

          
 

1

1
0

'( ) ( 1) ( )

( )

s s

ss
n n

d S x s

dx S x x a

 




   
  

 
    (C.4)

      Then, if we combine  and  , and set ( ) log ( )y x S x , we have a functional 
       differential equation valid for every infinite product of the form (C.1)

        
1 1

0 0

( ) (0) ( )
( 1) ( ) ( 1) ( )

s s
x x
s s

s s

D Dd dy d dy
x y x

ds s dx ds s dx

 

 

                      
(C.5)

        Where ( 1)s i se   and
1

1
1

s
s
x s

d
D

dx




 is the (s-1) fractional derivative operator, this 

        operator can be  defined by the Grunwald-Letnikov differintegral.

        1
10

0

11
( ) lim ( 1) ( )s m

x sh
m

s
D y x f x mh

mh







   
    

  
               (C.6)

         
1 ( )

( ) !

s s

m s m m

  
    

are the generalized binomial coefficients.
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