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Abstract

We present an image representation method which is
derived from analyzing Gaussian probability density func-
tion (pdf) space using Lie group theory. In our proposed
method, images are modeled by Gaussian mixture models
(GMMs) which are adapted from a globally trained GMM
called universal background model (UBM). Then we vector-
ize the GMMs based on two facts: (1) components of image-
specific GMMs are closely grouped together around their
corresponding component of the UBM due to the charac-
teristic of the UBM adaption procedure; (2) Gaussian pdfs
form a Lie group, which is a differentiable manifold rather
than a vector space. We map each Gaussian component to
the tangent vector space (named Lie algebra) of Lie group
at the manifold position of UBM. The final feature vector,
named Lie algebrized Gaussians (LAG) is then constructed
by combining the Lie algebrized Gaussian components with
mixture weights. We apply LAG features to scene catego-
ry recognition problem and observe state-of-the-art perfor-
mance on 15Scenes benchmark.

1. Introduction
Image representation (feature) is one of the most impor-

tant tasks in computer vision. Recently Gaussian mixture
models (GMMs), which have been widely used for audio
representation [13] in speech recognition community, have
been adopted to describe images [19][20]. Compared with
the popular histogram image representation, GMMs have
some attractive advantages ( e.g. soft assignment, flexible
to capture spatial information) and show better performance
in many visual recognition applications [12][19][20][18].
One of the major problems of GMMs is that they do not
form a vector space and can not convert to vectors triv-
ially. Various vectorization methods for GMM representa-
tion have been developed in speech recognition community
[13][2][11] and adopted to image classification applications
[20]. The problem is clear: mapping elements in a space
formed by Gaussian probability density functions (pdf s) to
a vector space. However, none of the existing solutions take
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Figure 1. Illustration of LAG feature extraction procedure. First-
ly, images are modeled by GMMs over local patch-level features.
Each component of GMMs is represented as a point in the Lie
group manifold formed by Gaussian pdf s. Since components from
different GMMs are closely grouped together, we vectorize them
by mapping them to tangent space of Lie group. Finally, we com-
bine vectors of each component into our final LAG feature.

the properties of Gaussian function space into considera-
tion. To do so, a fundamental question should be answered:
what kind of space do Gaussian pdf s form? Recently, Gong
et al. [6] theoretically point out that Gaussian pdf s are i-
somorphic to a special kind of affine matrices which form a
Lie group. A Lie group is a differentiable manifold which is
different from ordinary vector spaces. The structure of the
manifold can be analyzed using Lie group theory. There-
fore, we can vectorize GMMs to more effective image de-
scriptors by taking the Lie group properties of Gaussian pdf
space into consideration.

In this paper, we propose a novel image representation by
investigating the problem of vectorization GMMs via ana-
lyzing Gaussian pdf space. Figure 1 gives an overview of
our proposed method. The procedure of feature extraction
is summarized as the following four major steps.
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• First, images are modeled as GMMs over dense sam-
pled patches. We employ a maximum a posteriori
(MAP) which is used in [13][19][20] to estimate the
GMMs: We train global GMM called universal back-
ground model (UBM) on the whole image corpus then
adapt it to each image. Such a UBM adaptation GMM
training approach is much more efficient and effective
than the ordinary expectation maximization (EM) al-
gorithm.

• Then, we parameterize each component of the GMM-
s to a upper triangular definite affine transformation
(UTDAT) matrix. UTDAT matrices are isomorphic
to Gaussian pdf s. Since UTDAT matrices form a Lie
group (which means Gaussian pdf s form a Lie group
too), the Gaussian components are points in the Lie
group manifold. In figure 1, the Lie group manifold is
represented by a sphere surface and Gaussian compo-
nents are represented by points on the surface. Because
GMMs trained by UBM-MAP have the same num-
ber of components as the UBM and each component
is just a little shift from its corresponding component
of the UBM, components are closely grouped togeth-
er around the corresponding component of the UBM
(represented by red points) in the manifold.

• Next, we utilize characteristic of UBM adapted GMM-
s to vectorize their components (i.e. UTDAT matri-
ces) by local mapping. To be precise, we map Gaus-
sian components to the tangent space of the Lie group
manifold at the point of corresponding component of
the UBM. Since the Gaussian components are locally
grouped together around the UBM, the mapping pre-
serves the local structure of the manifold. The tangent
spaces, which are termed as Lie algebras, are ordinary
vector spaces.

• Finally, we derive our combined vector formula of G-
MM by approximating the inner product of GMMs us-
ing a sum of product kernel of mixture weights and Lie
algebrized components. The final vectorized GMM,
which is termed as Lie algebrized Gaussians (LAGs),
is an effective vector representation of the original im-
age and is suitable for well known machine learning
algorithms.

We apply our proposed LAG feature to scene catego-
ry recognition. Discriminant nuisance attribute projection
(NAP) [17] is employed to reduce the intra-class variabili-
ties. Then a simple nearest centroid (NC) classifier is adopt-
ed to perform the classification task. Our method show bet-
ter performance than state-of-the-art methods on 15Scenes
benchmark dataset. To be precise, we get 88.4% average ac-
curacy. Furthermore, experimental results show that our Lie

algebrization approach is superior to the widely used Kull-
backLeibler (KL) divergence based vectorization method.

The remaining of this paper is arranged as follows. In
section 2, we present a short review of the related work.
Section 3 describe the technical detail of LAG. In section
4, the method for image classification using LAG feature
is given. Experimental results on 15Scenes dataset are re-
ported in section 5. Conclusions are made and some future
research issues are given.

2. Related Work
In recent years bag-of-features (BoF) image representa-

tion has been widely investigated in visual recognition sys-
tems. Inspired by the bag-of-word (BoW) idea in text in-
formation retrieval, BoF treats an image as an collection of
local feature descriptors extracted at densely sampled patch-
es or sparse interest points, encodes them into discrete “vi-
sual words” using K-means vector quantization (VQ), then
builds a histogram representation of these visual words [14].
One major problem of BoF approach is that spatial order of
the local descriptors is discarded. Spatial information is im-
portant for many visual recognition applications (e.g. scene
categorization and object recognition). To overcome this
problem, Lazebnik et al. propose a BoF extension called s-
patial pyramid matching (SPM) [10]. In the SPM approach,
an image is partitioned into 2l × 2l sub-images at different
scale level l = 0, 1, 2 . . .. Then BoF histogram is comput-
ed for each sub-image. Finally, a vector representation is
formed by concatenating all the BoF histograms. Because
of its remarkable improvements on several image classifica-
tion benchmarks like Caltech-101 [4] and Caltech-256 [9],
SPM has become a standard component in most image clas-
sification systems.

On the other hand, GMMs are widely used for speech
signal representation and have become a standard compo-
nent in most speaker recognition systems [11][2][13]. In G-
MM based speech signal representation, low-level features
are extracted at local audio segments, then a GMM is esti-
mated on these features for each speech clip. Reynolds et al.
[13] propose a novel GMM training method called univer-
sal background model (UBM) adaptation. UBM adaptation
employ a maximum a posterior (MAP) approach instead
of normally used maximum likelihood (ML) approach, e.g.
expectation maximization (EM). UBM adaption produces
more discriminative GMM representations and is more ef-
ficient than ML estimation. Compared with BoF histogram
representation, GMMs encode the local features in a contin-
uous probability distribution using soft assignment instead
of hard vector quantization. Zhou et al. [20] adopt GMM to
image representation and report superior performance than
SPM in several image classification applications. The prob-
lem of GMM representation is that GMMs do not form a
vector space and can not be converted to vectors trivially.



To get effective vector representation, one should vectorize
GMMs according to the structure properties of the space
they formed. However, none of the existing approaches
(e.g. [11][2]) take the structure properties of GMM space
into consideration.

Feature space structure analysis is a new computer vi-
sion topic investigated in recent years. Tuzel et al. [15] an-
alyze the space structure formed by covariance matrices in
a cascade based object detection scenario. A boosting al-
gorithm is used to train the node classifiers on covariance
features for the detection cascade. Since covariance matri-
ces form a Riemannian manifold, they are mapped to tan-
gent space at their mean point before feeding to the weak
learner of each boosting iteration. Compared with treating
covariance matrices as vectors trivially, significant improve-
ment is gained by taking the Riemannian manifold property
of covariance feature space into consideration during ma-
chine learning. Gong et al. [6] derive a Lie group distance
measure for Gaussian pdf s by analyzing the structure of a
special kind of affine transformation matrix which is iso-
morphic to Gaussian pdf. It has been found empirically that
Lie group based Gaussian pdf distance is superior to the
widely used Kullback-Leibler (KL) divergence [8][7].

In this paper, we derive a feature descriptor by analyz-
ing UBM adapted GMMs using Lie group theory. Com-
pared with covariance [15] and Gaussian descriptor [6], our
proposed LAG descriptor is a kind of holistic descriptors
rather than local descriptors. Compared with previous GM-
M based audio and image representation method, our pro-
posed method takes the structural properties of UBM adapt-
ed GMMs into consideration. Experiment results on scene
recognition prove the effectiveness of our method.

3. Lie Algebrized Gaussians for Image Repre-
sentation

3.1. Image Modeling Using UBM adapted GMM

We extract local features within densely sampled patch-
es and represent an image using the probability distribu-
tion of its local features. Specifically, kernel descriptors [1]
are computed for each patch. The distribution of local fea-
tures within an image are modeled by a GMM. Let s denote
patch-level feature vector. The pdf of s is modeled as

p(s|Θ) =
K∑

k=1

ωkN (s;µk,Σk) (1)

where K denotes number of Gaussian components. N is
multivariate normal pdf. ωk, µk and Σk are the weight,
mean vector and covariance matrix of the kth component.
For efficiency consideration, we restrict Σk to be a diago-
nal matrix. Θ ≡ {ωk, µk,Σk}k=1,2,...,K denotes the whole
parameter set of GMM.

The descriptive capability of GMM increases with the
number of Gaussian components K. Normally, hundreds
of Gaussians are required to build an effective representa-
tion. Compared with the number of parameters, however,
the number of patches is small and insufficient to train a
GMM using a conventional EM approach. Moreover, EM
is time-consuming for GMMs with hundreds of Gaussians.
To overcome these problems, we employ a UBM adaptation
approach [13] to estimate the parameters. The adaptation
contains two steps: Firstly, a global GMM (i.e. UBM) is
trained using patches from the training set. Then, the pa-
rameters of each image-specific GMM are adapted from the
UBM using a one iteration maximum a posterior approach
as follows

ωk = [αknk/T + (1− αk)ω̄k]γ (2)
µk = αkEk(s) + (1− αk)µ̄k (3)

σ2
k = αkEk(s

2) + (1− αk)(σ̄
2
k + µ̄2

k)− µ2
k (4)

where T is the number of patches in a specified image.
ω̄k, µ̄k and σ̄k are the weight, mean and standard devi-
ation of the kth mixture of UBM. ωk, µk and σk are the
weight, mean and standard deviation of the kth mixture
of image-specific GMM. The scale factor, γ, is computed
over all adapted mixture weights to ensure they sum to uni-
ty. αk is the adaptation coefficient used to control the bal-
ance between UBM and image-specific GMM. nk, Ek(s)
and Ek(s

2) are the sufficient statistics of s used to compute
mixture weights, mean and covariance.

nk =
T∑

t=1

Pr(k|st) (5)

Ek(s) =
1

nk

T∑
t=1

Pr(k|st)st (6)

Ek(s
2) =

1

nk

T∑
t=1

Pr(k|st)s2t (7)

where Pr(k|st) is the posterior probability that the tth
patch belongs to the kth Gaussian components.

Pr(k|st) =
ω̄N (st; µ̄k, σ̄k)∑K

m=1 ω̄mN (st; µ̄m, σ̄m)
(8)

For each mixture, a data-dependent adaptation coeffi-
cient αk is used, which is defined as

αk =
nk

nk + r
(9)

where r is a fixed control value to give penalty to mixtures
with lower posterior probability.

The parameters of image-specific GMM encode the dis-
tributions of local patch-level features from a specified im-
age, thus can be used as an effective visual representation
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Figure 2. Components of UBM adapted GMMs are closely
grouped together. We choose 3 dimension of 3 components from
different GMMs and plot them in 3-d Euclidean space. Each point
represent a Gaussian component. Different color and marker indi-
cate different component index (i.e. first, second or third compo-
nent of a GMM).

of that image. On one hand GMMs are continuous pdf s
which can avoid vector quantization problems in discrete
distribution estimation approach such as histograms. But
on the other hand, GMMs are not vectors essentially thus
are not suited to most well-known classifiers, especially lin-
ear classifiers. Of course we may simply concatenate the
parameters as vector. But the structural information of the
original GMM space are also regrettably discarded. The
most straightforward way to use the structure information
of GMM feature space is to identify what kind of space it is
and then analyze it using existing theory. Although gener-
al GMMs are complex distributions whose space structure
are difficult to be analyzed, we observe that UBM adapted
GMMs have some special characteristics which can help us
to analyze its structure.

In figure 2, we choose three dimensions of three com-
ponents from UBM adapted GMMs trained on 15Scenes
dataset and plot them as points in euclidean space. It can
be observed that the components of these GMMs are close-
ly grouped together around the components of UBM. Such
a characteristic can be explained by the behavior of UBM
adaptation procedure. In UBM adaptation, the MAP esti-
mation contains one EM-like iteration only. Moreover, a
adaptation coefficient prevents the resultant GMM shift too
far from the prior distribution (i.e. UBM) in order to avoid
under-fitting. Since components of image-specific GMM-
s are closely grouped together, they have correspondence
across images. Therefore, we can analyze Gaussian compo-
nents separately then fuse the results together. In the rest of
this section, we show that Gaussian pdf s form a Lie group,
then derive a vectorization method for GMM from analyz-
ing Gaussian pdf space using Lie group theory.

3.2. Gaussian pdf s and Lie group

Let x0 denote a random vector which is standard mul-
tivariate Gaussian distributed (i.e. the mean and covari-
ance are zero vector and identity matrix respectively). Let
x1 = Ax0 + µ be a resultant vector of an invertible affine
transformation from x0. From the properties of multivariate
Gaussian distribution, we can know that x1 is also multi-
variate Gaussian distributed. Furthermore, the mean vector
and covariance matrix of x1 are µ and AAT respectively.
More generally speaking, any invertible affine transforma-
tion can produce a multivariate Gaussian distribution. Fur-
thermore, if we restrict A to be upper triangular and definite,
we can get an unique A given a arbitrary multivariate distri-
bution by Cholesky decomposition, which means there is a
bijection between Gaussian pdf s and upper triangular def-
inite affine transformation (UTDAT). Therefore, Gaussian
pdf s are isomorphic to UTDATs. Let M denote the matrix
form of UTDAT which is defined as follow.

M =

[
A µ
0 1

]
(10)

We can analyze M instead of Gaussian pdf s.
Invertible affine transformations form a Lie group and

matrix multiplication is its group operator. UTDAT which
is a special case of invertible affine transformation is closed
under matrix multiplication operation. Therefore, UTDAT
is a subgroup of Invertible affine transformation. Since any
subgroup of a Lie group is still a Lie group, UTDAT is a Lie
group. In conclusion, Gaussian pdf s form a Lie group.

In mathematics, a Lie group is a group which is also a
differentiable manifold, with the property that the group
operations are compatible with the smooth structure. An
abstract Lie group could have many isomorphic instances.
Each of them is an representation of the abstract Lie group.
In Lie group theory, matrix representation [16] is a useful
tool for structure analysis. In our case, UTDAT is the matrix
representation of the abstract Lie group formed by Gaussian
pdf s. Specially, covariance matrices of our GMMs are di-
agonal thus A is diagonal too. Precisely, UTDAT of the kth
component is defined as follow.

Mk =


σk1 µk1

σk2 µk2

σk3 µk3

. . .
...

0 0 0 1

 (11)

where µk(d) and σk(d) are the mean and standard devia-
tion of the dth dimension of the kth Gaussian component
respectively.

3.3. Lie Algebrization of Gaussian components

As discussed before, components of UBM adapted G-
MM are closely grouped together around its correspond-



ing component of UBM thus we can preserve most of their
structure information by projecting them to the tangent s-
pace of Lie group at the point of the corresponding compo-
nent. In mathematics, the tangent space of a manifold fa-
cilitates the generalization of vectors from affine spaces to
general manifolds, since in the latter case one cannot simply
subtract two points to obtain a vector pointing from one to
the other. Analogous to a tangent plane of a sphere, a tan-
gent space of a Lie group is a vector space. To best preserve
the structure information of a collection of points in a man-
ifold, the target vector space should be the tangent space at
the mean points of the point set [15]. In our case, UBM is
an approximation of all the image-specific GMMs thus we
use components of UBM as mean Gaussian pdf s.

Let Mk and M̄k denote the kth component (UTDAT ma-
trix form) of an image-specific GMM and UBM. Let mk

denote the corresponding point in the tangent space project-
ing from Mk. The projection is accomplished via matrix
logarithm.

mk = log (M̄−1
k Mk) (12)

Note that here log is matrix logarithm rather than element-
wise logarithm of a matrix. Since tangent space of an Lie
group is a vector space, mk is a vector thus we can unfold
elements of mk to a vector form.

Although we can project Gaussian components using e-
quation (12), it is not efficient. The log operation in (12) re-
quires Schur decomposition of M̄−1

k Mk [3], which is time-
consuming. Fortunately, covariance matrices of Gaussian
components are diagonal in our case thus we can develop a
efficient scalar form of log.

Here we derive our scalar form of UTDAT matrix loga-
rithm. For diagonal Gaussian components, each dimension
of transformation is independent. So we analyze the 1-d
case of UTDAT logarithm first. Here we let M be a 1-d
UTDAT matrix with the form

M =

[
σ µ
0 1

]
(13)

and let K = M − I where I is a 2-d identity matrix. Using
the series form of matrix logarithm, we have

m = log(M) (14)
= log(I +K) (15)

=
∞∑

n=1

(−1)n−1K
n

n
(16)

=

 ∞∑
n=1

(−1)n−1 (σ−1)n

n

∞∑
n=1

(−1)n−1 µ(σ−1)n−1

n

0 0


(17)

=

[
log (σ) µ log (σ)

0 0

]
(18)

Note that we can always scale the matrix using the follow-
ing equations in order to make sure the series convergent

logA = log(λ(I +B)) (19)
= log(λI) + log(I +B) (20)
= (log λ)I + log(B) (21)

Using the above equations, we have

log(M−1
1 M2) = log(

[
σ−1
1 −µ1σ

−1
1

0 1

] [
σ2 µ2

0 1

]
) (22)

= log(

[
σ−1
1 σ2 (µ2 − µ1)σ

−1
1

0 1

]
) (23)

=

[
log(σ2

σ1
) (µ2 − µ1)

log(σ2)−log(σ1)
σ2−σ1

0 0

]
(24)

Note that we use (18) to derive (24) from (23). Finally,
we can get our projected Gaussian component mk using the
above equations.

mk =


log σk1

σ̄k1

(µk1−µ̄k1) log
σk1
σ̄k1

σk1−σ̄k1

log σk2

σ̄k2

(µk2−µ̄k2) log
σk2
σ̄k2

σk2−σ̄k2

. . .
...

0 0 0 0


(25)

If we assume that σ always equals σ̄ (i.e. adapt mean only
and keep covariance unchanged during UBM adaptation),
mk is reduced to m̂

m̂k =
[
(µk1−µ̄k1)

σ̄k1
, (µk2−µ̄k2)

σ̄k2
, . . .

]
(26)

using the fact

lim
x→0

log(1 + x)

x
= 1 (27)

Compared with mk, m̂k represents each dimension using a
scalar (while mk uses a 2-d vector) and discards the covari-
ance information of GMM.

3.4. Lie Algebrized Gaussians

After vectorization of Gaussian components, we fuse
them together to get a vectorized GMM. We derive our vec-
torized GMM from a product kernel. Let a and b denote two
GMMs, we use kernel function f(a, b) defined as follow

f(a, b) =
K∑

k=1

fω(ω
a
k , ω

b
k)fm(m

a
k,m

b
k) (28)

where fa and fb are kernel functions for mixture weight-
s and vectorized Gaussian pdf s. Using linear inner prod-
uct fm(x, y) = xT y for vectorized Gaussian pdf and



fw(x, y) =
√
xy for mixture weights, we get

f(a, b) =
K∑

k=1

√
ωa
k

√
ωb
k(m

a
k)

Tmb
k (29)

=
K∑

k=1

(
√
ωa
km

a
k)

T (
√
ωb
km

b
k) (30)

Using equation (30), we designed our final vector Vlag as

Vlag = [
√
ω1m1,

√
ω2m2, . . . ,

√
ωKmK ] (31)

The final vector Vlag , which is named Lie algebrized Gaus-
sians (LAG), is an effective representation of the original
image and is suitable for most known machine learning
techniques. If we replace mk with m̂k in (31), we can get a
reduced LAG (rLAG) vector which has lower dimensional-
ity but less discriminative.

4. Scene Category Recognition Using LAG
Feature

We apply our LAG feature to scene category recognition.
Scene recognition is a typical and important visual recogni-
tion problem in computer vision. Some digital cameras (e.g.
Sony W170 and Nikon D3/300) are also starting to include
“Intelligent Scene Recognition” modules to help selecting
appropriate aperture, shutter speed, and white balance.

To address the scene recognition problem, we represen-
t each image using our proposed LAG vector. Since SPM
[10] have been proved empirically to be a useful compo-
nent for various visual recognition system, we adopt it to
our LAG based representation. Specifically, we divide im-
age into sub-images in the same manner as SPM and extract
LAG features for each sub-image, then combine these LAG
vectors for image representation. Then we reduce within-
class variability of LAGs using discriminant nuisance at-
tribute projection [17]. For efficiency reasons, we employ
a simple nearest centroid (NC) classifier to classify NAP
projected LAG features into different scene categories.

5. Experimental Results
We test our method on the 15Scenes dataset [10]. The

scene dataset contains fifteen scene categories, thirteen of
them is provided by Fei-Fei et al. in [5]. Each scene cate-
gory contains about 400 images. The size of each image is
about 300 × 250 pixels. This dataset is the most compre-
hensive one for scene category recognition.

We extract kernel descriptors [1] on densely sampled
patches for each image. Specifically, three types of ker-
nel descriptors are used: color, gradient and LBP kernel
descriptors. Large images are resized to be no larger than
300 × 300. 16 × 16 and 24 × 24 patches with 4 pixel step

are used. The resultant kernel descriptors are reduced to
50-d using principal component analysis (PCA). Each 50-d
vector is then combined with the normalized x-y spatial co-
ordinates of the center of its patch window. Therefore, the
final patch descriptors are 52-d which contains both appear-
ance and spatial information of the patches. We model each
image using GMMs with 512 components. Specifically, we
divide each image into 1 × 1 and 2 × 2 pyramid-like sub-
images and estimate a GMM for each sub-image (5 GMMs
for an image in total). The corresponding 5 LAG vectors
are concatenated to a single vector. To test scene recog-
nition performance, we randomly select 100 images from
each category for training and the rest for testing. The ex-
periments are repeated 10 times and 88.4% average recog-
nition accuracy is obtained. We assemble the performance
of our algorithm and various state-of-the-art algorithms in
table 1 for comparison. The results show that our method

Algorithm Average Accuracy(%)
Histogram [5] 65.2

SPM [10] 81.4
HG [20] 85.3

KDES+LinSVM [1] 81.9
KDES+LapKSVM [1] 86.7
LAG+NC (this paper) 88.4

Table 1. Performance of different algorithms on 15Scenes dataset.
Our LAG+NC method achieves the state-of-the-art performance.

outperform all the other algorithms. Kernel descriptor with
Laplacian kernel SVM, which is the second best, obtains
86.7% average recognition accuracy. Note that our method
uses a simple NC classifier rather than kernel machines. It is
also observed that Laplacian kernel SVM boost the perfor-
mance of kernel descriptors a lot from linear SVM (81.9%).
So it is interesting to see what kind of kernel SVM can boost
the performance of our LAG representation. However, our
method is more practical because NC classifier is suitable
for large scale dataset.

The third best algorithm [20] in table 1 using a KL di-
vergence based vectorization together with a spatial infor-
mation scheme called Gaussian map as image represen-
tation. KL divergence based vectorization (KLVec) is a
most widely used GMM vectorization approach and has
been empirically proved to be effective in many applica-
tions [2][18][19]. KLVec has the following form

Vkl = [
√
ω1µ1σ̄

−1
1 ,

√
ω2µ2σ̄

−1
2 , . . . ,

√
ωKµKσ̄−1

K ] (32)

For a specified dimension (e.g. dth) of a specified compo-
nent (e.g. kth), KLVec encodes the distribution as

µkd

σ̄kd
(33)

From (33), we can clearly see that our LAG feature is d-
ifferent from KLVec in two aspect: Firstly, KLVec discard
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Figure 3. Confusion matrices of the three vectorization approaches: (a) KLVec, (b) reduced LAG and (c) LAG. The entry in the ith row
and jth column is the percentage of images from the ith class and classified as the jth class.

covariance information of GMM. Secondly, mean vector in
LAG is centralized by subtracting the corresponding mean
of UBM. Furthermore, the difference between RLAG and
KLVec is mean centralization only.

To compare KLVec with LAG and RLAG empirically,
we implement both KLVec and test it in the same scenario
with same parameter settings as LAG and rLAG. The av-
erage accuracies of the three vectors are presented in table
2.

We observe that LAG is significantly superior to KLVec
(88.4% vs 83.8%). The reduced LAG achives 87.3% ac-
curacy, which indicates that the centralization operation of
LAG feature is important. The detailed confusion matrices
of the three vectorization approaches are present in figure
3. Note that our system with KLVec obtain lower accuracy
than the system in [20], the reason might be that some com-
ponents (e.g. spatial Gaussian maps) is not included in our
system.

Algorithm Average Accuracy(%)
KLVec 83.84 ± 1.23

rLAG (this paper) 87.36 ± 0.95
LAG (this paper) 88.40 ± 0.96

Table 2. Comparison of different vectorization approach. The cen-
tralization operation of reduced LAG considerably improves the
performance compared with KLVec. The covariance information
in LAG vector is also useful for recognition, which improves an-
other 1% from reduced LAG feature.

We test the three vectorization approaches (LAG, rLAG,
KLVec) with different number of Gaussian mixture compo-
nents and keep the same setting for the other parameters
as described above. The results are shown in table 3. Ac-
cording to the table, LAG is always superior to rLAG and
KLVec. Moreover, LAG gains fair performance when the
number of Gaussian mixture components is just set to 32.
This phenomenon demonstrates that the covariance matrix

information which is represented by LAG is very useful.

6. Conclusion and Future Work

We analyze the structure of UBM adapted GMMs and
derive a Lie group based GMM vectorization approach for
image representation. Since Gaussian pdf s form a Lie
group and components of UBM adapted GMMs are close-
ly grouped together around UBM, we map each component
of a GMM to tangent space (Lie algebra) of Lie group at
the position of corresponding component of UBM. Such a
kind of vectorization approach (named Lie algebrization)
preserves the structure of Gaussian components in the orig-
inal Lie group manifold. The final Lie algebrized Gaussian-
s (LAG) features are constructed by combining Lie alge-
brized Gaussian components with mixture weights. We ap-
ply LAG to scene category recognition and achieve state-of-
the-art performance on 15Scenes benchmark with a simple
nearest centroid classifier. Experimental results also show
that our vectorization approach is considerably superior to
the widely used KL divergence based vectorization method.

There are several interesting issues about LAG based im-
age representation we shall investigate in the future. Firstly,
we shall apply LAG to other visual recognition problems,
such as object recognition, action recognition. Secondly, it
is interesting to develop a kernel classifier for GMM using
its Lie group structure. Finally, applying LAG feature to
audio representation and comparing it with KL divergence
based vectorization is another interesting topic.
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