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Abstract

Einstein dealt a lethal blow to Weyl’s unified theory by arguing that Weyl’s theory

was at the very least, it was beautiful and at best, un-physical, because its concept

of variation of the length of a vector from one point of space to the other meant that

certain absolute quantities, such as the “fixed” spacing of atomic spectral lines and

the Compton wavelength of an Electron for example, would change arbitrarily as

they would have to depend on their prehistories. This venomous criticism of Ein-

stein to Weyl’s theory remains much alive today as it was on the first day Einstein

pronounced it. We demonstrate herein that one can overcome Einstein’s criticism by

recasting Weyl’s theory into a new Weyl-kind of theory were the length of vectors are

preserved as is the case in Riemann geometry. In this new Weyl theory, the Weyl

gauge transformation of the Riemann metric gµν and the electromagnetic field Aµ

are preserved.

“Symmetry, as wide or narrow as you may define its meaning,

is one idea by which man through the ages has tried to

comprehend and create order, beauty, and perfection.”

Hermann Klaus Hugo Weyl (1885− 1955)

1 Introduction

It was shortly after Albert Einstein (1897 − 1955) announced his GTR (on November 25,

1915), that Herman Weyl (1885 − 1955) began an intensive study of the theory’s mathe-

matics and began publishing related scientific papers dealing with its physical applica-

tions. In 1918, Weyl published his book Raum-Zeit-Materie (Space-Time-Matter), which
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provided the first fully comprehensive analysis of the geometric aspects of Einstein GTR

and its relationship with spacetime and physics.

One of the topics covered in the book was Weyl’s idea that gravity and electromag-

netism might both be derivable from a generalization of Riemann geometry, the mathe-

matical basis from which Einstein had developed his relativity theory. Weyl’s idea was

based on a new mathematical symmetry that he called gauge invariance. This theory

gave birth to the modern concept of the gauge principle; a principle without which any

of the modern effort to finding a unified theory could not be. It underlies all of the

Yang-Mills theories and is a cornerstone in string theory and its more recent variant,

M-theory.

Weyl’s theory was given a still birth by its most able midwife – Einstein. Einstein

greatly admired the theory but with equal passion, he would not make it take its “first

gulp of air” nor have just “one photon fall on the retina” of the newly born theory. Ein-

stein’s razor sharp and agile intellect saw the “tiny devil in the detail of the beauty of

Weyl’s theory” and immediately thereafter, he delivered his all-enduring and lethal blow

to it, a blow that made sure it would never raise. Lo and behold! What resurrected

from Weyl’s theory is the “ghost” of gauge invariance, this is about all that remained of

its beauty. Today, this ghost (of gauge invariance) pervades all of physics that makes

the endeavour on which Weyl was failed by Einstein i.e., it pervades and permeates all

unification efforts. For example in virtually all modern quantum gauge theories, Weyl’s

gauge concept is used to justify the “mathematical chicanery and shenanigan” called

renormalization! Renormalization is when one subtracts an artificial infinity from a

calculated infinity to get a usable or useful, finite answer.

In this reading, we stand right outside the tomb of Weyl’s theory and call forth Weyl’s

theory back to life. We demonstrate that Einstein’s criticism is easily overcome without

much difficultly. We recast Weyl’s theory by resetting its foundation stone in which

process we completely overcome Einstein’s lethal and venomous criticism. Having over-

come Einstein’s criticism – a fresh new life is thereby breathed into the nostrils of Weyl’s

theory; we see nothing hindering its further developed from thereon.

2 Length Invariance in Riemann Geometry

One will recall from elementary geometry that the square of the magnitude or length (l)
of a vector v is defined by the dot product l2 = v · v = |v|2. In tensor notation and in

particular in Riemann geometry, for an arbitrary vector V µ, we write this as:

l2 = gµνV
µV ν , (1)

where as usual gµν = gνµ is the symmetric metric tensor of spacetime. Now, taking the

total derivative of this expression, we will have:

2ldl = gµν,αV
µV νdxα + gµνdV

µV ν + gµνV
µdV ν , (2)

and using the identity or fact that dV µ = Γµ
ανV

νdxα where Γµ
αν is the usual three

Christophel symbol of Riemann geometry, the above reduces to:

2ldl = gµν,αV
µV νdxα + gµλΓ

λ
ναV

µV νdxα + gλνΓ
λ
µαV

µV νdxα = gµν;αV
µV νdxα, (3)
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that is:

gµν;αV
µV νdxα = 2ldl, (4)

where:

gµν;α = gµν,α + gµλΓ̂
λ
να + gλνΓ̂

λ
µα, (5)

is the usual covariant derivative of the metric tensor in Riemann geometry. In Riemann

geometry gµν;α ≡ 0, the meaning of which is that dl ≡ 0, simple stated, the length of a

vector is invariant under translation of the frame of reference or the coordinate system.

Clearly, the covariant derivative (gµν;α) determines whether or not the length of a vector

is invariant or not. The condition gµν;α = 0 is the foundation stone of Riemann geometry

as this condition defines the structure and nature of Riemann geometry.

At this point, Weyl wondered if Riemann geometry could be altered in such a way

that dl does not vanish as it does in ordinary Riemann geometry. While thinking about

this, a mental visitation in the form of a thought must have occurred to Weyl, a thought

to the effect that, if the metric is re-gauged or transformed from gµν to eφgµν , i.e.:

gµν 7−→ eφgµν , (6)

where φ is a scaler; he would achieve his desire of a none vanishing dl because if gµν;α 6=
0, it follows from (4) that dl 6= 0. If he wanted to do away with Riemann geometry, he

must have not compromised and tried to remain within its confines and domains. As

to what might have motivated Weyl into think of varying the length of the vectors may

very well be the fact the in Riemann geometry while lengths of vectors are preserved,

their directions in space are not, so Weyl might have wondered: if the directions are

not preserved, why should the lengths be preserved?! With this noble thought, Weyl

must then have embarked onto his goal of a non-Riemann geometry with non-preserved

lengths of vectors.

3 Length Variation in Weyl Geometry

As a starting point, in laying down the foundation stone of his theory, Weyl having

glimpsed into the structure and nature of Riemann geometry as lay-down above, he

had two things in mind, first of which was the idea of a none vanishing covariant deriva-

tive i.e. gµν;α 6= 0 and second, the idea of a none vanishing length of vectors i.e. dl 6= 0.

To achieve the former, Weyl inspected the identity or fact that dV µ = Γµ
ανV

νdxα. This

identity gives the change of length of a vector V µ under any given transformation or

translation. Providentially, Weyl assumed that a change in the vector magnitude dl,

must obey a similar expression. By the adroitness of the mind, Wely proceeded to make

his analogue, which is:

dl = lAαdx
α, (7)

where Aα = Aα(x) is a hitherto mysterious four vector quantity of unknown origins, its

duty, sole purpose and ultimate mission is simple to keep dl from vanishing – for as long

as Aα 6= 0, we will have dl 6= 0. The relationship (7), Weyl was to embellish by holding
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it sacrosanct as the foundation stone of this new theory; regrettably, it is a relationship

which he would defend right up to his untimely and unexpected passing-over in 1955.

Further, having set the battle-lines through (7), Weyl proceed by the sleight of hand

to insert this relationship into (4) thus obtaining:

2l2Aαdx
α = gµν;αV

µV νdxα, (8)

which reduces to:

gµν;α = 2Aαgµν . (9)

The relationship (9) justified (7). Now, we have to calculate the resulting affine connec-

tions from the new covariant derivative (9). For this, we will have to write down the

three expressions that result from a cyclic permutation of the indices µ, ν and α in gµν,α
and Aαgµν , that is:

gµν,α + gµλΓ̂
λ
να + gλνΓ̂

λ
µα = 2Aαgµν , (a)

gαµ,ν + gαλΓ̂
λ
µν + gλνΓ̂

λ
αµ = 2Aνgαµ, (b)

gνα,µ + gνλΓ̂
λ
αµ + gλµΓ̂

λ
να = 2Aµgνµ, (c)

(10)

where the hat on Γ̂λ
µν has been put so that it is made clear that this affine is no longer

the same Christoffel symbol as the one used in Riemann geometry.

Now, subtracting from equation (10) (a) the sum of (10) (b) and (c), one obtains:

Γ̂α
µν = Γα

µν +Wα
µν , (11)

where:

Wα
µν = −

(

δαµAν + δανAµ − gµνg
αλAλ

)

, (12)

is the new object Weyl tensor and Γα
µν is the usual Christoffel three symbol of Riemann

geometry. The geometry that we have just described with the affine connection Γ̂α
µν is

what is called Weyl’s geometry. This geometry tends to Riemann geometry as Aµ −→ 0.

What deeply intrigued Weyl and many others that came to admire the new theory is the

fact that the Weyl connection Γ̂α
µν , is invariant under the following transformations:

gµν 7−→ e2χgµν , (a)
Aµ 7−→ Aµ + ∂µχ, (b)

(13)

where χ = χ(x) is an arbitrary scaler function. If Γ̂α
µν is invariant under the transforma-

tion (13) i.e. δΓ̂α
µν ≡ 0, the curvature tensor R̂α

µλν is also invariant i.e. δR̂α
µλν ≡ 0. Given

that Weyl knew very well that Maxwellian electrodynamics is described by a four vector

such that the entire Maxwellian electrodynamics is invariant under the transformation

(13 b), without wasting much time, Weyl seized the golden moment and identified Aµ

with the Maxwellian four vector potential of electrodynamics. At this point, one can

not help but endlessly and deeply admire Weyl’s brilliantly convinced theory, and on the

other hand, one can only be irretrievably and deeply sad to know that this theory, despite

its esoteric grandeur and exquisite beauty, it does not correspond with experience.
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4 Einstein’s Criticism

Weyl’s proposed theory lead to a rescaling of the fundamental metric tensor gµν 7−→
eχgµν . Weyl held that, this rescaling should have no effect on physics. As aforestated,

Einstein initially loved the idea – alas, the devil was in the detail; he noted that the line

element ds2 = gµνdx
µdxν would also be rescaled according to ds′2 7−→ eχds2. Since ds

can be made to serve as a measuring rod or clock, the agile Einstein was quick note that

this would mean that certain absolute quantities, such as the spacing of atomic spectral

lines and the Compton wavelength of an Electron for example, would change arbitrarily

and thus have to depend on their prehistory. With this, Einstein delivered the lethal and

venomous blow to Weyl’s theory and concluded that it must therefore be non-physical –

despite its grandeur and beauty, it had no correspondence nor bearing with reality.

Thus, from a ‘safe distance’, the great Einstein was the first to publicly exhibit his

passionate albeit backhanded admiration of Weyl’s theory, he said of it:

“. . . apart from the agreement with reality,

it is at any rate a grandiose achievement of the mind . . .

a first class [stroke of] genius.”

(Abraham Pais 2005, Subtle is the Lord, p. 341)

With equal passion, he made the one all-enduring ‘aerial bombardment’ to it, a bom-

bardment from which Weyl’s theory would never recover to this day.

Stated in a different manner, the agile Einstein was quick and to point out that

in Weyl’s geometry, the frequency of the spectral lines of atomic clocks from different

portions of the distant heavenly spaces would depend on the location and pre-histories

of the atoms. This is in fragment disagreement with experience. The spectral lines are

well-defined and sharp; they appear to be independent of an atom’s pre-history. Atomic

clocks define units of time, and experience shows they are integrally transported from

one portion of the heavens to the other. So, with this criticism alone, Einstein gave

Weyl’s theory a stillbirth with his backhanded compliant.

Weyl’s brilliant and beautiful theory was hopelessly thwarted and, to no avail, he

made last ditch effort to save his theory in latters year (Weyl 1927a,7). Einstein’s criti-

cism lay deep in the nimbus of the foundation stone of Weyl’s theory, which is that the

length of a vector varied from one point of spacetime to another. In wrapping-up his

criticism, he [Einstein] said:

“... I do not believe that his theory will hold its ground in relation to reality.”

(Einstein 1952, Sidelights of Relativity, p. 23)

Much for the great Hermann Weyl and his all-brilliant, beautiful but ‘failed’ theory.

Can it [the theory] be saved? Weyl himself made attempts (Weyl 1927a,7) together with

such notable figures as Sir Arthur S. Eddington and even the great Paul A. M. Dirac.

All attempts so far at trying to save they have not gain much attention or universal

recognition simple because these attempt are stuck in Weyl’s quagmire and conundrum

by holding sacrosanct the relation (7). Shortly, we will demonstrate that indeed Weyl’s

theory can be saved first by drop the condition (7) and reverting back to the humble

Riemann condition dl ≡ 0. In our recasting of Weyl’s theory, we are to hold sacrosanct

the Weyl gauge transformation (13) and not the Weyl hypothesis (7).
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5 Recasting of Weyl’s Theory

In recasting Weyl’s theory so that it overcomes once and for altime Einstein’s criticism,

we will not take the traditional route that was taken by Weyl because in so doing, we

will fall into the same trap which the great Weyl fell victim to. At our point of departure,

we wave goodbye to Riemann geometry and efferently prepare to embrace a totally new

geometry, a hybrid Riemann geometry which has the same feature as Weyl, less off

cause the change of length of vectors under transformations or translations. The route

that we are about to take is equivalent and the reason for changing the sails is that the

present route allows us to demonstrate latter how Weyl would have overcome Einstein’s

criticism that gave the theory a still birth. Actually, this route allows us to pin-down

exactly where Weyl’s theory makes an un-physical assumption.

We begin with the usual covariant derivative gµν;α = 0 of Riemann geometry. As

fore-alluded, the condition gµν;α = 0, is the sacrosanct foundation stone of Riemann

geometry. We will uphold this covariant derivative condition under the Weyl conformal

transformation gµν 7−→ ĝµν = eφgµν of the metric, i.e. ĝµν;α = 0. Likewise, the condition

ĝµν;α = 0, is to be taken as the sacrosanct foundation stone of the new Weyl’s geometry.

Written in full, the equation ĝµν;α = 0 is given by:

ĝµν;α = eφ
(

gµν,α + gµνφ,α + gµλΓ̂
λ
να + gλνΓ̂

λ
µα

)

= 0, (14)

and taking φ = Aαx
α, this equation can be rewritten as:

gµν,α + gµλΓ̄
λ
να + gλνΓ̄

λ
µα = −Aαgµν . (15)

As is the case with Weyl’s original geometry, the covariant derivative gµν;α does not

vanish since gµν;α = −Aαgµν . With this, Weyl had achieved the non-Riemann geometry

he desired.

Now, we have to calculate the resulting affine connections and for this, we have to

write down the three expressions that result from a cyclic permutation of the indices µ, ν

and α in gµν,α and Aαgµν , that is:

gµν,α + gµλΓ̄
λ
να + gλν Γ̄

λ
µα = −Aαgµν , (a)

gαµ,ν + gαλΓ̄
λ
µν + gλν Γ̄

λ
αµ = −Aνgαµ, (b)

gνα,µ + gνλΓ̄
λ
αµ + gλµΓ̄

λ
να = −Aµgνµ, (c)

(16)

where the “bar” on Γ̄λ
µν has been put so that it is made clear that this affine is neither

Christoffel symbol nor the usual Weyl connection but the is the new Weyl connection of

the new Weyl geometry.

Now, as before, subtracting from equation (16) (a) the sum of (16) (b) and (c), one

obtains:

Γ̄α
µν = Γα

µν +Wα
µν , (17)

where:

Wα
µν = −

1

2

(

δαµAν + δανAµ − gµνg
αλAλ

)

, (18)
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is the new Weyl tensor and Γα
µν is the usual Christoffel three symbol of Riemann ge-

ometry. The geometry that we have just described is what we shall call the New Weyl

Geometry. As is the case with Weyl’s original geometry, this geometry tends to Riemann

geometry as Aµ −→ 0. Further, like in the case of the original Weyl geometry, this

geometry is invariant under the following transformations:

gµν 7−→ eχgµν , (a)
Aµ 7−→ Aµ + ∂µχ, (b)

(19)

where χ = χ(x) is an arbitrary scaler function. If Γ̄α
µν is invariant under the transforma-

tion (19) i.e. δΓ̄α
µν ≡ 0, the curvature tensor R̂α

µλν is also invariant i.e. δR̄α
µλν ≡ 0. At this

point we have successfully recast Weyl’s theory into a new theory where we have up to

now not worried about the change of length of vectors.

6 A Lasting Defence to Weyl’s Geometry

Now, under the new Weyl geometry, the change of length of a vector has the same form

and structure as happens in Riemann geometry i.e. (4) albeit with the conform Weyl

transformation (6) effected to the metric gµν in (4), i.e.:

2ldl = ĝµν;αV
µV νdxα. (20)

Now, given that we have set the foundation stone of the new Weyl geometry to be

ĝµν;α = 0, it follows that dl = 0. Einstein’s valid criticism is reduced to naught, it

falls apart into nothing but shreds – it comes out flying through the window. At a stroke,

in this way, the great Weyl could have thwarted the great Einstein. The problem is that

Weyl set the condition (7) as the foundation stone of his theory, it is this that he tried to

defend. With hindsight, we now see that what Weyl should have defended is not (7) but

the invariance of the connection Γ̂λ
µν under the transformation (13) because it is these

transformations that guarantee the inclusion of the electromagnetic into the framework

of gravitation and not the Weyl condition (7).

7 Discussion and Conclusion

7.1 General Discussion

Without any doubt, Weyl produced the first natural unified field theory for which the

Maxwellian electromagnetic field Aµ and the gravitational field gµν , appear side-by-side

as geometrical properties of the fabric space-time and regrettably, for simple reasons

of incredulity cast by Einstein’s agile intellect, the theory largely lies forgotten. To say

Weyl’s theory lies forgotten is not true. Perhaps the correct statement to say is that

Einstein’s criticism continues – today as it did on the first day of its pronouncement; to

hover above Weyl’s theory so much that no physically meaningful thing can be derived

from it as one must first overcome Einstein’s spell over it.

Despite Einstein’s criticism, 95 years on, research into Weyl’s theory – while not

very active, it is much alive (see e.g. Cattani et al. 2013, Scholz 2011). By active, we

mean it is not embraced universally by the majority but is only take-up for academic
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reasons largely to do with curiosity than to do with seeking solid answers to the nature

of physical and natural reality. Interesting to note is that Weyl’s theory was not, and

never has been, disproved, but only sideline because of Einstein’s venomous criticism.

Since what we have done herein is to show that Einstein’s criticism can be thrown

out of the window, we are left wondering what becomes of Weyl’s theory? In it accept-

able because its greatest setback has been overcome? To ourself, we feel this opens the

door for exploration of this theory. However, one fact that is likely to continue to haunt

the theory is that it is not a true unification of gravitation and electricity as these fields

non-mutually and non-intimately sit side-by-side in disjoint manner with no visible con-

nection to one another. As in the case electricity and magnetism, there is no reciprocal

action between the field Aµ and gµν . This is a great setback for those seeking true unifi-

cation.

7.2 Conclusion

As demonstrated herein, a Weyl geometry completely free from Einstein’s criticism is possible.

This geometry preserves the lengths of vectors and maintains a four vector field as in Weyl’s orig-

inal theory. This four vector field together with the gravitational field submit to Weyl’s original

simultaneous transformation of these two fields thus allowing us to identify the four vector field

with the electromagnetic field as Weyl did in his original presentation.
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