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Abstract 
 
 
The problem of finding shortest Hamiltonian path and shortest Hamiltonian 
circuit in a weighted complete graph belongs to the class of NP-Complete 
problems [1]. This well known problem asks for a method or algorithm to 
locate such path or circuit that passes through every vertex only once in the 
given weighted complete graph. In this paper we begin with proposing two 
approximation algorithms for shortest Hamiltonian graphs which essentially 
consists of applying certain chosen permutations (transpositions or product 
of transpositions) on the adjacency matrix of given weighted complete graph 
causing reshuffling of the labels of its vertices. We change the labels of 
vertices through proper choice of permutations in such a way that in this 
relabeled graph the Hamiltonian path 1 2 3 ….k (k+1) … p 
becomes approximation to shortest path in the given weighted complete 
graph under consideration. We then define so called ordered weighted 
adjacency list for given weighted complete graph and proceed to the main 
result of the paper, namely, the exact algorithm based on utilization of 
ordered weighted adjacency list and the simple properties that any path or 
circuit must satisfy. This algorithm performs checking of sub-lists, 
containing (n-1) entries (edge pairs) for paths and n entries (edge pairs) for 
circuits, chosen from ordered adjacency list in a well defined sequence to 
determine exactly the shortest Hamiltonian path and shortest Hamiltonian 
circuit. The procedure has intrinsic advantage of landing on the desired 
solution in quickest possible time and even in worst case in polynomial time. 
 
 
Introduction: Let G be a weighted complete graph with the vertex set )(GV  
and edge set )(GE  respectively: 
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                              )(GV  = { pvvv ,,, 21 L } and  
                              )(GE  = { qeee ,,, 21 L } 

Let ppijG wA ×= ][  denotes the weighted adjacency matrix of G. 
 
Note: Applying transposition (m, n) on GA is essentially equivalent to 
interchanging rows as well as columns, m and n. That is replace m-th row in 

GA by n-th row and vice versa and then in thus transformed matrix replace 
m-th column by n-th column and vice versa (order of these operations, i.e. 
whether you interchange rows first and then interchange columns or you 
interchange columns first and then interchange rows, is immaterial as it 
produce same end result). Note that this transformation essentially produces 
a new weighted adjacency matrix that will result due to interchanging labels 

of vertices nm vv ,  in the original weighted complete graph. We now 
discuss following algorithm which essentially is an approximation algorithm 
that produce the result comparable to one obtains from known 
approximation algorithms.  
 
Algorithm 1 (An Approximation Algorithm):  
 
(1) If entry at position (1, 2) in the matrix, i.e. weight 12w  is already 
smallest in the first row then proceed to step 2. Else, among the weights 

pjw j ,...,3,2,1 = , find minimum weight, say 11 jw . Apply transposition 

),2( 1j  on GA , producing new weighted adjacency matrix, say 1G
A .   

(2) If entry at position (2, 3) in the matrix, i.e. weight 23w  is already 
smallest in the second row then proceed to step 3. Else, among the weights 

pjw j ,...,4,3,2 = , find minimum weight, say 22 jw . Now apply 

transposition ),3( 2j  on 1G
A , producing new weighted adjacency matrix, 

say 2G
A .   

(3) If entry at position (3, 4) in the matrix, i.e. weight 34w  is already 
smallest in the third row then proceed to step 4. Else, among the weights 

pjw j ,...,5,4,3 = , find minimum weight, say 33 jw . Now apply 
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transposition ),4( 3j  on 2G
A , producing new weighted adjacency matrix, 

say 3G
A . 

(4) Continue this procedure applying appropriate transpositions till we 
finally reach (p-2)-th row and among the weights ppjw jp ),1(,)2( −=− , 

find minimum weight, say )2()2( −− pjpw . Now apply transposition 

)),1(( )2( −− pjp  on )3( −pGA , producing new weighted adjacency matrix, 

say )2( −pGA .   
(5) Find the sum of weights of edges in the Hamiltonian path 
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 
 

 
Remark: After carrying out “algorithm 1” on given weighted complete 
graph the Hamiltonian path 
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

produces a good approximation for shortest Hamiltonian path in the given 
(and conveniently relabeled due to applied transpositions) weighted 
complete graph. This Hamiltonian path thus obtained will not necessarily be 
a shortest one. 
 
What we have necessarily achieved is as follows: By application of 
permutation (transposition) we bring smallest weight entry in the first row at 
position (1, 2) in the weighted adjacency matrix. This is achieved by 
transposition of type ),2( 1j , where 21 >j . The algorithm then applies 
transposition which brings smallest weight entry in the second row at 
position (2, 3), in the transformed weighted adjacency matrix that results 
after applying transposition mentioned above. This is achieved by 
transposition of type ),3( 2j , where 32 >j . Note that because of its special 
form this second transposition doesn’t affect the smallest entry achieved at 
position (1, 2) while bringing smallest entry (weight) in the second row at 
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position (2, 3) by this second transposition! This story continues, i.e. the 
later applied transpositions doesn’t affect the results of earlier transpositions 
because of the special choice of the transpositions and at end achieves 
smallest possible weights in the rows at positions on the diagonal 
neighboring the principle diagonal, i.e. at positions (1, 2), (2, 3), …., (p-1, 
p), of the evolved weighted adjacency matrix, evolved through the 
successive transpositions of specially chosen type. Thus, we have achieved 
the neighboring diagonal which represents the weights on the Hamiltonian 
path  
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

to contain smallest entries from the rows of initially given weighted 
adjacency matrix. 
 
Question 1: When the Hamiltonian path 
 

 ppjj →−→→+→→→→→ )1()1(321 LL  
 

thus produced by this algorithm will be the desired shortest Hamiltonian 
path? 
 
Answer: The Hamiltonian path 
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

will be shortest if and only if we will (somehow) manage the maximization 
of sum of weights of entries in the triangular shaped submatrix of the 
transformed adjacency matrix, i.e. when the following sum 
 

∑ ∑
−

= +=

2

1 )2(

p

i

p

ij
ijw  

gets maximized. 
 

Now, the next question that naturally arises is as follows: 
 
Question 2: How to maximize this sum? 
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We will try to come to its possible answer but before that let us consider 
following 

 
Example 1: We consider following weighted adjacency matrix representing 
a weighted complete graph and find the Hamiltonian path in its relabeled 
copy in the form  

ppjj →−→→+→→→→→ )1()1(321 LL  
 

by applying “algorithm 1”. We will see that this Hamiltonian path is not 
shortest one. We consider the following weighted adjacency matrix and 
apply “algorithm 1” to it: 
 























08764
80958
79086
65801
48610

 

 
(1) Since entry at position (1, 2) is already smallest in the first row we 
proceed to next step. 
 
(2) Since entry in position (2, 4) = 5 is smallest in second row we apply 
transposition (3, 4) on the above matrix that results into matrix 
 























07864
70986
89058
68501
46810

 

 
(3) Since entry in position (3, 5) = 8 is smallest in third row we apply 
transposition (4, 5) on the above matrix that results into matrix 
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





















07986
70864
98058
86501
64810

 

 
Clearly, in this transformed weighted adjacency matrix the Hamiltonian path  
 

54321 →→→→  

has total weight ∑
=

+ =
4

1
)1(, 21

i
iiw  

Now, it is easy to check that ∑ ∑
−

= +=

2

1 )2(

p

i

p

ij
ijw in this case is equal to 41. 

 
This sum is actually not maximized as we will see below. We actually need 
to apply some more permutations on the given weighted adjacency matrix 
that are suitable to maximize this sum. Now without displaying all necessary 
suitable permutations we have to carry out for maximization of this sum we 
give the final result below depicting the transformed form of the same 
weighted adjacency matrix with which we started applying algorithm 1. It is 
 























07689
70468
64018
86105
98850

 

 
Clearly, in this transformed weighted adjacency matrix the Hamiltonian path  
 

54321 →→→→  
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has total weight ∑
=

+ =
4

1
)1(, 17

i
iiw  

Now, it is easy to check that ∑ ∑
−

= +=

2

1 )2(

p

i

p

ij
ijw in this case is equal to 45. 

 
It can be checked by brute force that is this desired sum has maximized 
now and so the Hamiltonian path that we have thus obtained in the 
transformed weighted adjacency matrix is actually the shortest one! 
 
Thus, the problem of finding shortest Hamiltonian path in the form  
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

has become a constrained optimization problem of following type: 
 
Problem: Given weighted adjacency matrix corresponding to a given 
weighted complete graph then devise permutations which will transform this 
matrix such that path  
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

has shortest length. In other words, devise sequence of permutations to be 
applied on given weighted adjacency matrix to be applied on the given 

weighted complete graph such that ∑ ∑
−

= +=

2

1 )2(

p

i

p

ij
ijw  gets maximized and thus the 

transformed matrix represents the same weighted complete graph in 
disguise.  
 
Now, this sum can be seen as made up of sum of entries in columns p, (p-1), 

(p-2), …, such that p-th column contains entries pw1 , pw2 , …. , 

ppw )2( − , (p-1)-th column contains entries )1(1 −pw , )1(2 −pw , …. , 

)1)(3( −− ppw , etc.  
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We now proceed to discuss a possible algorithm to tackle this problem. 
 
Algorithm 2 (An Approximation Algorithm): 

(1) We begin with maximizing pw1 . Pick largest weight edge say ijw in the 

given weighted adjacency matrix, GA . Transform this weight to position 

pw1 by applying product of transpositions ),)(,1( pji on GA . Thus, we 

have now maximized pw1 .  
 
(2) Now, among the edges emerging from vertex with label 1 and p in the 

transformed weighted adjacency matrix, GA , due to step (1), find some 

edges jijpi ≠),,(),,1( such that ),1( i is smallest among the edges 

emerging from 1 and ),( jp  is smallest among the edges emerging from p. 

Apply product of transpositions ),1)(,2( jpi − on new transformed GA  

we get after step (1) so that weights 12w and ppw )1( − are now smallest 
possible for the situation.  
 
(3) Now, among the edges emerging from vertex with label 2 and (p-1) in 
the transformed weighted adjacency matrix, GA , due to step (2), find some 

edges jijpi ≠− ),,1(),,2( such that ),2( i is smallest among the edges 

emerging from 2 and ),1( jp −  is smallest among the edges emerging 
from (p-1). Apply product of transpositions ),2)(,3( jpi − on new 

transformed GA  we get after step (2) so that weights 23w and 

)1)(2( −− ppw are now smallest possible for the situation. 
 
 
(4) Continue steps like (2) and (3) of applying suitable transpositions till we 

reach at the state having smallest possible weights for 12w , 23w , 34w , 
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…., )1)(2( −− ppw , ppw )1( − in the given situation and all other edges have 
larger weights. 
 
(5) Now, all vertices have been relabeled and we have assigned smallest 
possible weights to edges comprising the Hamiltonian path  
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

Now, apply suitable transpositions of type L,2,1),2,( =+ iii  by checking 

that they cause improvement in the sum ∑
−

=
+

1

1
)1(

p

i
iiw . 

 
 
Example 2: We consider following weighted adjacency matrix to apply 
“algorithm 2”. 
 























08433
801265
412012
361011
352110

 

(1) Since 34w is largest so we apply product of transpositions (1, 3)(4,5) on 
this matrix leading to  























085612
80334
530112
631101

124210

 

 (2) 12w ia already minimum so to minimize 45w we apply transposition 
(3, 4) on above matrix leading to new matrix as follows: 
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





















058612
503112
83034
611301

122410

 

 
(3) As per step (5) of the algorithm to achieving further minimization,  we 
apply transposition (1, 3) on above matrix leading to new matrix as follows: 
 























051268
502113

122014
611103
83430

 

 
Clearly, in this transformed weighted adjacency matrix the Hamiltonian path  
 

54321 →→→→  

has total weight ∑
=

+ =
4

1
)1,( 11

i
iiw  

 
The Ordered Weighted Adjacency List and Sub-lists: We now proceed 
with the discussion of the main results of this paper. We propose a smart 
algorithm to find shortest Hamiltonian path and shortest Hamiltonian circuit 
in the given weighted complete graph.  
 
Definition 1: The weighted adjacency list, )(GWAL , associated with the 
given weighted complete graph,G , on p vertices, is the following bitableau 
in which the left tableau represents weights of the edges represented by 
vertex pairs written in the same row in the right tableau.  
 
Definition 2: The weighted adjacency list is called ordered weighted 
adjacency list and denoted as )(GOWAL when the rows of weighted 
adjacency list are so permuted that the weights in the left tableau get 
ordered, i.e. these weights form a nondecreasing sequence in the downward 
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direction. In other words, the weighted adjacency list becomes ordered 
weighted adjacency list when the left tableau becomes a nondecreasing 
column of entries representing weights of the edges written in the 
corresponding row in the right tableau. The )(GWAL is following bitableau: 
 





























••

••
••

=

),(

),(

),(
),(

)(

22

11

22

11

mmji

llji

ji

ji

jiw

jiw

jiw
jiw

GWAL

mm

ll  

 

where, 2
)1( −

=
ppm .  

The )(GOWAL  is the following bitableau: 
 





























••

••
••

=

),(

),(

),(
),(

)(

22

11

22

11

mmji

llji

ji

ji

jiw

jiw

jiw
jiw

GOWAL

mm

ll  
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where 2
)1( −

=
ppm  and in addition, mm jijiji www ≤≤≤ L

2211  

 
Definition 3: The weighted adjacency sub-list, )(GSubWAL , is essentially 
any sub-bitableau made by picking some portion of the )(GWAL , i.e. made 
by picking any rows among the rows in )(GWAL . 
 
Definition 4: The ordered weighted adjacency sub-list, )(GSubOWAL , is 
essentially any sub-bitableau made by picking some portion of the 

)(GOWAL  and keeping them in the same nondecreasing order, i.e. made by 
picking any rows among the rows in )(GOWAL  and keeping them in the 
same ordered form.  
 
Definition 5: The size of weighted adjacency sub-list, or ordered weighted 
adjacency sub-list, is the cardinality of entries in the sub-list, i.e. number of 
rows in the sub-bitableau representing that sub-list. 
 
Definition 6: The weight of the weighted adjacency sub-list, or ordered 
weighted adjacency sub-list, is the sum of weights in the left sub-tableau 
representing that sub-list. 
 
It is easy to check that  
 
(A) A set of (p-1) vertex pairs in the right tableau of )(GOWAL  together 
represents a Hamiltonian path if (i) these pairs together contain all the 
vertices, (ii) the degrees of all but two vertices is two, (iii) the degree of the 
left out two vertices is one, and (iv) these vertex pairs together form a 
connected graph. 
 
(B) A set of p vertex pairs in the right tableau of )(GOWAL  together 
represents a Hamiltonian circuit if (i) these pairs together contain all the 
vertices, (ii) the degrees of all vertices is two, and (iii) these vertex pairs 
together form a connected graph. 
 
These two easy checks will form an important backbone of our exact 
algorithm for finding shortest Hamiltonian path or shortest Hamiltonian 
circuit in the given weighted complete graph. 
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We now proceed with  
 
Algorithm 3 Shortest Hamiltonian Path (Exact): 
 
(1) Form ordered weighted adjacency list, )(GOWAL , corresponding to given 
weighted complete graph. 
 
(2) Form all possible ordered weighted adjacency sub-lists, )(GSubOWAL , 
each of size (p-1).  
 
(3) Arrange these sub-lists in lexicographic order in accordance with their 
respective weights. 
 
(4) Use easy check (A) mentioned above in succession (starting with 
smallest weight sub-list) on each sub-list and stop at the first success. 
 
(5) Record the Hamiltonian path thus obtained and its weight. This will be a 
desired shortest Hamiltonian path! 
 
 
 
Algorithm 3 Shortest Hamiltonian Circuit (Exact): 
 
(1) Form ordered weighted adjacency list, )(GOWAL , corresponding to given 
weighted complete graph. 
 
(2) Form all possible ordered weighted adjacency sub-lists, )(GSubOWAL , 
each of size p.  
 
(3) Arrange these sub-lists in lexicographic order in accordance with their 
respective weights. 
 
(4) Use easy check (B) mentioned above in succession (starting with 
smallest weight sub-list) on each sub-list and stop at the first success. 
 
(5) Record the Hamiltonian circuit thus obtained and its weight. This will be 
a desired shortest Hamiltonian circuit! 
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Example 3: Consider following weighted adjacency matrix: 
 























08764
80958
79086
65801
48610

 

 
The ordered weighted adjacency list for this is as below, conveniently in the 
form of a 2-columned table: 
 

1 (1,2) 
4 (1,5) 
5 (2,4) 
6 (1,3) 
6 (2,5) 
7 (3,5) 
8 (2,3) 
8 (1,4) 
8 (4,5) 
9 (3,4) 

 
 
It is easy to check that pairs {(1,2), (1,5), (2,4), (3,5)} together form the 
desired shortest Hamiltonian path as per the “algorithm 3” and pairs {(1,2), 
(1,5), (2,4), (3,5), (3,4)} together form the desired shortest Hamiltonian 
circuit as per the “algorithm 4”. 
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