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Abstract 
 
 
The problem of finding shortest Hamiltonian path in a weighted complete 
graph belongs to the class of NP-Complete problems [1]. In this paper we 
will show that we can obtain shortest Hamiltonian path in a given weighted 
complete graph in polynomial time! We will be discussing a very simple but 
useful idea of applying certain chosen sequence of permutations (actually 
transpositions) on given weighted adjacency matrix corresponding to the 
complete graph, on p points say, under consideration. This simple and novel 
algorithm essentially consists of applying certain transpositions that will 
transform the weighted adjacency matrix in such a way that its vertices are 
now relabeled and in this relabeled weighted complete graph the algorithm 
terminates decisively in producing the shortest Hamiltonian path, and this 
shortest Hamiltonian path will be 
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Introduction: Let G be a weighted complete graph with the vertex set )(GV  
and edge set )(GE  respectively: 
                              )(GV  = { pvvv ,,, 21 L } and  
                              )(GE  = { qeee ,,, 21 L } 

Let ppijG wA ×= ][  denotes the weighted adjacency matrix of G. 
 
Note: Applying transposition (m, n) on GA is essentially equivalent to 
interchanging rows as well as columns, m and n. That is replace m-th row in 

GA by n-th row and vice versa and then in thus transformed matrix replace 
m-th column by n-th column and vice versa (order of these operations, i.e. 
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whether you interchange rows first and then interchange columns or you 
interchange columns first and then interchange rows, is immaterial as it 
produce same end result). Note that this transformation essentially produces 
a new weighted adjacency matrix that will result due to interchanging labels 

of vertices nm vv ,  in the original weighted complete graph. 
 
Algorithm:  
 
(1) If entry at position (1, 2) in the matrix, i.e. weight 12w  is already 
smallest in the first row then proceed to step 2. Else, among the weights 

pjw j ,...,3,2,1 = , find minimum weight, say 11 jw . Apply transposition 

),2( 1j  on GA , producing new weighted adjacency matrix, say 1G
A .   

(2) If entry at position (2, 3) in the matrix, i.e. weight 23w  is already 
smallest in the second row then proceed to step 3. Else, among the weights 

pjw j ,...,4,3,2 = , find minimum weight, say 22 jw . Now apply 

transposition ),3( 2j  on 1G
A , producing new weighted adjacency matrix, 

say 2G
A .   

(3) If entry at position (3, 4) in the matrix, i.e. weight 34w  is already 
smallest in the third row then proceed to step 4. Else, among the weights 

pjw j ,...,5,4,3 = , find minimum weight, say 33 jw . Now apply 

transposition ),4( 3j  on 2G
A , producing new weighted adjacency matrix, 

say 3G
A . 

(4) Continue this procedure applying appropriate transpositions till we 
finally reach (p-2)-th row and among the weights ppjw jp ),1(,)2( −=− , 

find minimum weight, say )2()2( −− pjpw . Now apply transposition 

)),1(( )2( −− pjp  on )3( −pGA , producing new weighted adjacency matrix, 

say )2( −pGA .   
(5) Find the sum of weights of edges in the Hamiltonian path 
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Theorem: After carrying out algorithm 2.5.1 on given weighted complete 
graph the Hamiltonian path 
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represents the shortest Hamiltonian path in the given (and conveniently 
relabeled) weighted complete graph.  
 
Proof: The algorithm begins with application of permutation (transposition) 
which brings smallest weight entry in the first row at position (1, 2) in the 
weighted adjacency matrix. This is achieved by transposition of type 

),2( 1j , where 21 >j . The algorithm then applies transposition which brings 
smallest weight entry in the second row at position (2, 3), in the transformed 
weighted adjacency matrix that results after applying transposition 
mentioned above. This is achieved by transposition of type ),3( 2j , where 

32 >j . Note that because of its special form this second transposition doesn’t 
affect the smallest entry achieved at position (1, 2) while bringing smallest 
entry (weight) in the second row at position (2, 3) by this second 
transposition! This story continues, i.e. the later applied transpositions 
doesn’t affect the results of earlier transpositions because of the special 
choice of the transpositions and at end achieves smallest possible weights in 
the rows at positions on the diagonal neighboring the principle diagonal, 
i.e. at positions (1, 2), (2, 3), …., (p-1, p), of the evolved weighted adjacency 
matrix, evolved through the successive transpositions of specially chosen 
type. Note that this neighboring diagonal represents the weights on the 
Hamiltonian path  
 

ppjj →−→→+→→→→→ )1()1(321 LL  
 

 
 
Example: We consider following weighted adjacency matrix representing a 
weighted complete graph and find the shortest Hamiltonian path in its 
relabeled copy will be in the form  
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Consider following weighted adjacency matrix in which entries are actually 
the weights of the corresponding edges: 
 























08764
80958
79086
65801
48610

 

 
(1) Since entry at position (1, 2) is already smallest in the first row we 
proceed to next step. 
 
(2) Since entry in position (2, 4) = 5 is smallest in second row we apply 
transposition (3, 4) on the above matrix that results into matrix 
 























07864
70986
89058
68501
46810

 

 
(3) Since entry in position (3, 5) = 8 is smallest in third row we apply 
transposition (4, 5) on the above matrix that results into matrix 
 























07986
70864
98058
86501
64810
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Clearly, in this transformed weighted adjacency matrix the Hamiltonian path  
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will be the shortest and has total weight ∑
=

+ =
4

1
)1(, 21

i
iiw  

 
Conclusion: It is clear to see that this algorithm requires checking at most 
(p-2) rows of gradually decreasing lengths p, (p-1), (p-2), ….,etc for finding 
the minimum entry in these rows. The algorithm further needs at most (p-2) 
transposition operations to be carried out on the weighted adjacency matrix 
under consideration. The algorithm is clearly in P, i.e. of polynomial time 
complexity! 
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