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Abstract

Thisisfirst part of eight parts of lecture notes on Real Analysis. This notesiswell designed and
useful to all Undergraduate, Graduate and postgraduate in their regular study. Apart from this,
the problems discussed in exercise will increase the readability of readers and they love Number
Theory as well as analysis without any doubts. Also, some problems presented in the exercises of

this part as well as coming parts will create motivation towards research and development.

1. Introduction

This chapter concerns what can be thought of as the rules of the game: the axioms of the real
numbers. These axioms of the real numbers and, in sense, any set satisfying them is uniquely
determined to be the real numbers. This is simple enough to do. However, some basic
consequences of the axioms should aso be presented so that you know how some rules you have
been taught, which are not axioms, follow from the axioms. For instance, ‘a minus times a minus
is a plus’, “zero times any number is zero itself’, “zero is the illegal divisor’, ‘1 > 0’ are not rules
and formulas to be committed to memory for future use; they all follow from the axioms.

We assume that the reader is familiar with the real numbers. We shall select those
properties as axioms concerning the real number system from which all the other properties of
the real numbers can be verified. These axioms are divided into three categories:

(1) Field axioms (2) Order axioms and  (3) Completeness axiom



2. Field axioms

The real number system (reals) isfirst of al aset {a, b, c,...} on which the operations of addition
and multiplication are defined so that each pair of real nhumbers producesa unique sum and
product with the following agebraic properties.

Axiom 2.1 (Closure): Forany a, b eR,
a+beR,
abeR.

Axiom 2.2 (Commutative): For any a, b R,
a+b=b+acR,
ab=baeR.

Axiom 2.3 (Associative): For any a, b, ¢ eR,
(@a+b)+c=a+(b+c) eR,
(ab)c =a(bc)eRr.

Axiom 2.4 (Distributive): For any a, b, ¢ R,
(@a+b)c=ac+ bc eR.

Axiom 2.5 (Identity): For any a eR, there exists 0, 1 €R such that
at0=0+a=a Additive Identity

al=1la=a Multiplicative Identity
Axiom 2.6 (Inverse): For any a eR, thereexists b, ¢ eR such that

atb=b+a=0 Additive Inverse

ac=ca=1 Multiplicative Inverse

Axiom 2.7 (Nontrivial Field): 01
and for any a eR, such that a# 0, there exists areal number b such that ab =1 = ba.

Although these axioms seem to contain most properties of the real numbers we normally use,
they don’ characterize the real numbers; they just give the rules for arithmetic. There are other

fields besides the real numbers and can be found in abstract algebra courses.



Example 2.8:As we know that set of rational numbers Q ={p/q: pe Z Aqe N} form afield,

impliesthat Q does not contain al the real numbers as J2¢0Q.
Example 2.9:Let thefield F ={0,1,2} with addition and multiplication can be done by modulo 3.
It is easy to verify that the field axioms are satisfied, and it is denoted by Z..
Theorem 2.10 (Uniqueness of |dentity): The additive and multiplicative identities of afield F
are unique.
Proof: Let Ois another additive identity. Then,0=0+ 0
=0 by identity axiom on 0
Similarly, 0= 00
=0 by multiplicative identity onO.
Theorem 2.11 (Uniqueness of Inverse): Let F be afield, if 3, b eF with b # 0, then —aand b™
are unique.
Or
The additive and multiplicative inverses are unique.

Proof:Let aand b are additive inverses of c. Then,

a=0+a by identity axiom
=(b+c)+a by inverse axiom
=b+(c+a) by associative axiom
=b+0 by inverse axiom
=b by identity axiom

This shows the additive inverse s unique. The proof is essentially the same for the multiplicative
inverse. Because of the uniqueness of inverse, we will denote —a as the additive inverse of a, and
a’ asthe multiplicative inverse of a. This notation allows us to define subtraction and division as
followed.

Definition 2.12 (Subtraction): The difference between two real numbers a and b is defined
bya+ (-b), and it is denoted by a— b.

Definition 2.13 (Division): The quotient of areal number a by b (20) is defined by ab™, and is

denoted by % or a(b™).



Remarks: (a) in general a-b#b-aand %7&9
a

(b) Division by 0 is not allowed.

(c) Though % has meaning, b may not be defined.
a

Theorem 2.14: For all acR, a0 =0a=0.

Proof: a+0a=1a+0Oa by multiplicative identity
=(1+0)a by distributive axiom
=1la by additive identity
=a by multiplicative identity

= a+0a=a

=a+0a+ (—a) =a+ (-a)...(by subtracting a on both sides)

=0a=0
= a0 = 0...(by commutativ axiom)
i.e,a0=0a=0.

Theorem 2.15: For dl acR, —a =-1(a).

Proof: a+ (-D)a= (Da+(-Da by identity axiom
=(1-1a by distributive axiom
=0a by additive inverse
=0 by the previous theorem?2.14

= a+(-Da=0
=a+(-Da+ (-a) = 0+ (-a)...(by subtracting a on both sides)
i.e,(-Da=-a
Theorem 2.16: If ab=0, thena=0o0r b =0.
Proof:Let us prove = by considering the casesa# 0, b# 0, or a, b= 0.
(@) Caseaz0
(ab=0)" (az0) = (ab=0)*{(Fa")(a’a= 1)}

—a‘ab=a'0 (vab=0)



—@'ab=a'o
=1b=a"'0
=b=0.
(b) Caseb#0
(b.a=0)" (b#0) = (b.a=0)*{(@bY)(b'b=1)}

—ab’b=b'0 (+ab=0)

=(b'b)a=b?0

=la=b"0

=a=0.

(c) Caseaq, b=0

= (a=0) v (b =0), independent of the fact that ab = 0.
Proof by contradiction:LetaZ0andb#0. Then,ab=0
—d'ab=a'0
—(a'ab=0
=1b=0
=b=0
Oops! We assume that b # 0. Thus, our assumption iswrong. Therefore, we can realize that, both
aand b cannot be non-zero or at least one of them is zero.
Corollary 2.17: For any ay, &, ... , aneR, adas...an=0< (a1 =0) v (& =0) v...v(a, = 0).
Proof:ayaas...an = 0 @ay(apas...an) =0

< (a=0) v (a...an) =0
< (@=0)v(@=0)v(asa...an=0)

S@=0v(e=0v...v(@=0

3. The Order Relation



The axiom of this part gives the order and metric properties of the real numbers. There is a
subset P of R, called the set of positive numbers, satisfying the following.

(i) Ifa beP,thea+bandabe P

(ii) Fordl aeR, eitherac Pora=00or-ac P(TRICHOTOMY)
Any field R satisfying the axioms so far listed is generally called an ordered field. The axioms (i)
and (ii) indicates that 1 is a positive number. Indeed, since 1 # 0, the axiom (i) indicates that
either 1 or -1ispositive. As1=1. 1= (-1) (-1), the axiom (i) implies that 1 is positive. Also, by
(i), we see that R is divided into three pairwise digoint sets. Namely, P, {0} and {-a a € P}.
The notation a< b meansthat b —a € P. More precisaly, look the following odder properties of
real numbers.

(a) For any real number a, b, exactly one of the following holds: a=b, a<bora>b.

(b) For al real numbersa, b, c,ifa<bandb<c= a<c.

(c) For al real numbersa, b, c,ifa<b=a+c<b+c.

(d) For al real numbersa, b, cwithc>0,a<b = ac <bc.
Theorem 3.1:Ifa<bandb < a thena=b.
Proof: Ifa<b—=b-ae Pora=b. Also,forb<a=a-be Porb=a
But, we know that a — b = -1 (b —a) and by the Trichotomy axiom (see 3(ii)) only b — a
or—1(b-a) canbeinP. Thus,b—ae P= a-b € P. Theonly other situation a= b hold.
Theorem 3.2:1f R isan ordered field and a, b, ¢ eR, then the following hold:

(1) a<bsa+c<b+c

(2) (a<b)r(b<c)=a<c

3 (a<b)™(c>0)= ac<bc

(4) (a<b)”™(c<0)= ac>bc.
Proof: (1) ifa<b<b-aePs (b+c)-(a+tc)e P at+tc<b+c

(2) Let us consider b — aand c — b are in P. As P is closed under addition, we see that

(b-a)+(c-b)=c-aeP=c>a
®3As b - a € P and ¢ € P with P is closed under multiplication,
c(b—a)=cb-cae P = ac<hbc.

(4) By considering b — aand —c arein P, then from (3), we can see ac >bc.

Theorem 3.3:1f F be an ordered field and a F. If a> 0, then a*> 0.



Proof: We know that a= 0 <> & =0 for &> 0.
Therefore, a'a'> 0= aa’a’> 0
=(@a")a> 0= 1la>0=a'>0.

Corollary 3.4:1f 0 <a<nb, then %< 1.

a
Proof: By the previous theorem, a*> 0 and b™*> 0. For a< b: =a(a’h™?) < b(a’b™)

—(aa))b< a'(bb?) = 1b'< a1 :% Y
a

3.1 Metric Properties

The order axiom on afield F allows us to introduce the idea of a distance between pointsin F.
To study this, we begin with the following definition.
Definition 3.1.1: Let F be an ordered field. The absolute value function on F is a function

xif x>0

|.|:F—>Fdefinedas|x|:{ |
—-Xif x<0

The definition of |X shows that: |- X = |x > Ofor all x F.
It is also useful to observe that |X is the larger of x and —x. When we think of |a—bas

measuring the difference between a and b, the needy property of the || is contained in the

following theorem.

Theorem 3.1.1(The Transitive Property):If a and b are any two rea numbers then
la+b[<|d +|b]|

Proof: To complete the proof, the following four properties are required.

(@ Ifax0andb>0,thenatb>0=|a+b=a+b=|d+|b.
(b) If a<O0andb<0, thena+b<0=|a+b/=-a+(-b) =|a+|b|

(c) Ifa>0andb<0,thena+b=|q - b
(d) Ifa<0andb> 0, thena+ b= -|a+ |b|.
Precisaly, |at+ b| < |a + [b| hold as:

as|= |al-|b|when|a|>|b]|
|bl-lal when|b|>|a|



We are used to thinking of |a— b| as the distance between the numbers a and b. This notation of a
distance between two points of a set can be generalized.
Definition 3.1.2: Let X beaset. A function d : X x X — [0,)iscalled ametric if
(@ d(x,y)>0 and d(x,y) =0if andonly if x =y,
(b) d(x,y) =d(y,x),
(c) d(x,2) <d(x,y)+d(y,2) (thetriangular inequality)
Wecall (X,d)ametric space.
A metric is afunction, which defines the distance between any two points of a set.
Example 3.1.3:(a) Take X = R and define d(x,y) =| x-y|
(b) Take X = R? and define d((x,, ¥,), (%, ¥,)) =l Y, = X |+ ¥, = %, |.

(c) Take X = R? and define d((x,, ). (%, ¥,)) =l vs =% [ +1y, =%, [*-
(d) Any subset of R with the same metric.

4. The Completeness Axiom

All the axioms given so far are so common from pre-algebra, and, on the surface, it’s not obvious
they haven’t captured all the properties of the real numbers. As Q satisfies all of them, the
following theorem shows that we’re not yet discussed.

Theorem 4.1: Thereisno QeQ such that Q= 2.

Proof: let us assume that, the contrary, thereis Q in Q= = 2. Obviously, there exist p, gin N

2
such that, Q=" with (P, g =1 :{EJ = 2= p? =2g?%, which shows p? is even. As the
q

square of an odd number is odd, p should be even or p = 2k for somek € N.

i.e., 4k? = 20°= 2k? = ¢? (since p? = 2¢° and p = 2Kk)

The some argument as above establishes that g is aso even. This contradicts our assumption that
p and q arerelatively primesor (p, q) = 1.

Therefore, there is no such Q exists.



Since we suspect \2 is a perfectly fine number, there’s still something missing from our earlier
discussion of axioms. The completeness axiom is somewhat more difficult than the previous

axioms, and several definitions are required to completeit.

4.2 Bounded Sets

Definition 4.2.1: The subset Sc Ris said to be bounded above if there is a real number
M e Rsuch that x<M for al xe Sand M is called an upper bound of S. Note that, if M is an
upper bound for S then any bigger number is also an upper bound. Not all sets have an upper
bounded.
Exampled4.2.2: The set N is bounded below that it is not bounded above. Hence N is not
bounded.

Theset S= {l|n e N isbounded because every element of Sislessthan 1 and greater than 0.
n

=Sc[0]].
Definition 4.2.3: The supremum (least upper bound) of aset Sc R which is bounded above is
an upper bound. For b e Rof S such that b <ufor any upper bound u of S. We usually denoted
by b = sup S for supremums. A number b is said to be the supremum (least upper bound) of the
set Sif:

(a) bisan upper bound: Vx € Ssatisfiesx < b, and

(b) bisthe smallest upper bound.in other words, any smallest number is not an upper bound.
If u<bthenthereexistx e Swithu<x.
ie, b=supS= SUP — X upper bounds of S may, or may not belong to S.
For example, (-2, 3) is bounded above by 100, 85, 5, 4, 3.55, 3. In fact 3 isits|east upper bound.
In the case of (-2, 3] aso has 3 as its least upper bound. Note that, the supremum of S is a
number that belongsto Sthen it is also called the maximum of S.
For example, the interval (-2, 3) has supremum equa to 3 and no maximum; (-2, 3] has
supremum, and maximum, equal to 3.
4.2.4 Bounded setsdo have a least upper bound.
This is a fundamental property of real numbers, as it alows us to discuss about limits. Before
that, let us have alook at some following needy theorems on supremums.
Theorem 4.2.5: The set S has unique least upper bound (I.u.b).



Proof:let S< R isbounded above and that 3, b eR are supremums of S. Note that, both aand b
are upper bounds of S. As ais aleast upper bound of S and b is an upper bound of S, a < b.
Similarly, b is aleast upper bound and ais a upper bound of S, b < a. Thusa= b, sowing that the
supremum of aset Sisunique.

Intuitively, we can state the definition of supremum is in another way that, no number smaller
than the supremum can be upper-bound of the given set. For better understanding, look at the
following:

Theorem 4.2.6: An upper bound b of a set Sc Risthe supremum of S if and only if for any
£>0 thereexistss eSsuch that P—¢<S

Proof: Let us take the small piece of the theorem that, “there exists s € S such that b-e<s says
that P—€isnot an upper bound of S. Or there is some other upper bound uinR of S. Fors e S,
s< u. clearly, b—& varies over al rea numbers smaller than b as ¢ varies. Therefore, an upper
bound b of S, b =sup Sif and only if no number smaller than b is an upper bound of S.

Theorem 4.2.7: Any nonempty set of real numbers which is bounded above has a supremum.
Proof: The proof of existence of supremums that | saw relied on the completeness of the real
numbers, and not much else. Basically, we constructed a Cauchy (and thus convergent) sequence
of real numbers that was always an upper bound of the set, and got infinitely close to the set.
Here's an outline:

LetU c Rbe a bounded set of real numbers. Then there existsse Rsuch that for
allueU,s>u,andfor any ¢ > 0,s— ¢ isnot an upper bound of U.

Let M >0be the upper bound forU (for example, if U=(01),we could
saM =1000000000,and it would be fine). Take T,:=M,and B, to be some number that

is not an upper bound for U. Now, wegiven T, and B,, wewill define T, and B,,, asfollows:
We take the midpoint of T, and B,,to be called m, and see if m is an upper bound for U. If it
is, then we'll take T,,, =m andB,,, =B, Let us definea,to be m.If mis not an upper bound

for U, thenwedefine a, :=a, -Land T,,, =T,,and B,; :=B,.



The distance between T, and B, halves for each iteration, so since a,, is contained in the
interval, it is squeezed into convergence. Its limit a must be an upper bound, and the claim (I will
leave for you to play with) isthat a isthe least upper bound of the set U.

Definition 4.2.8: The subset S — R is said to be bounded below if thereis areal number m € R
such that m < x for all x € S, and m is called a lower bound of S. Note that, if the set S is
bounded above as well as below, then S is said to be bounded. i.e. S is bounded if and only if
Sc{x|m<x<M =[mM].

Definition 4.2.9: The infimum (the greatest lower bound) of the set if (a) b isalower bound: any
X € Ssatisfiesx > b, and (b) b isthe greatest lower bound. In other words, any greater number is
not alower bound.

If b <uthenthereisx e Swithx <u.
—b=inf S=inf X, Greatest Iower bounds of S may not belong to S.

For example, (-2, 3) is bounded below by -100, -15,-4, -2. In fact, -2 is its infimum. In the
interval [-2,3) also has -2 asitsinfimum. i.e., if the infimum of S belongsto Sthenitissaid to be
minimum of S,

Theorem 4.2.10: Every non-empty bounded subset of the real numbers has an infimum.

Proof: Let E is a non-empty set bounded below. Construct E; = -E = {-x | X € E}. We expect
that B =inf E =- sup E; = - Q. Now we should establish the existence of Q2.

To do so we show E; is bounded above. As E is bounded from below, there exists ak such that x
>k for dl x € E. Or —x < -k, and every element of E; are bounded by —k. Clearly, E; is non-
empty set and bounded above. By the Completeness axiom it has a supremum, Q (say). Now we
expect B =-Q isaninfimum for E. Let us verify that  islower bound and it is the greatest lower

bound. To do so, we see
(8 AsQ isan upper bound of E;= -x <Q for adl x inE.i.e, x>-Q =f foral xinE, and 8
is alower bound for E.
(b) In case B<y = -Q<y or -y <Q. By infimum statement, there existsat € E; with-y <t
ory >-t. As-tin E= y cannot be alower bound. Thus 3 isthe greatest lower bound.

2+n
Example 4.2.11: Show that Sisbounded and find sup Sand inf S, where S= {T neN.



2+n 2 2
We know that for any n eN, T:ﬁ+l>l and H+1S 2+1=3.

l.e, Max S=3as3=(2/1) +1 € A foraleast valueof n=1,asn  N.

Now we show that inf S = 1. We have from above, 1 is a lower bound for S. Let ¢> 0 and
consider 1 + e.

= Forae Sia<l+e.

2

2+n 2 2
But a should be in T=1+ﬁ for some n € N. So we have 1+E<1+8®ﬁ<8©a<n'

Now such existence, define N = [ﬂ +1 where [X] isthe greatest integer of x.
Thus, we proved that 1 + € cannot be alower bound for any €> 0, inf S= 1.

4.2.12 Some Consequences of Completeness:

The property of completenessis what divides analytic from geometry and algebra. It required the
use if approximation, infinity and more dynamic visualizations.

Theorem 4.2.13 (The Archimedean Property): Let a be any real number and b any positive
real. Then there exist a positive integer n such that nb > a.

Proof: Let us consider the theorem is false and a is an upper bound of the set
S={x|x=nb,nisanintger} = Sphas a supremump (say), by Completeness property. Therefore,
nb<p for any integer n (*). Asn + lisaninteger, whennis(*)

=(n+1)b<p

= nb < - b for some integer n.

Thus, B - bisan upper bound of S. Since, - b <, our assumption iswrong.

Therefore, the above theorem is true.

Theorem 4.2.14: For any real number &, there exists an integer n such that a<n.

Proof: Let us consider the theorem is false and a> n for al integers n. i.e,, the set of integers N
is bounded above, and by the Completeness axiom it has a least upper bound M (say). As M is
the least upper bound, M — 1 cannot be upper bound. Obviously, there exists an integer n such
that M —1<n.i.e, M <n+ 1wheren+ lisaninteger and greater than the upper bound, which

Is not possible. Thus, the theorem istrue.

1
Theorem 4.2.15: For any real number b > 0, there exists an integer n such that 0<—~ <b.



1
Proof: By theorem 4.2.14, there is an integer n such that 0 < b <N. Also by corollary 3.4, we

Density of the Rational and Irrationals.
Definition 4.2.16: A set D is dense in the real’s if every open interval (a, b) contains a member
of D.

Theorem 4.2.17: The set of rational numbers are dense in the intervals OR if a and b are real’s

. . . b P @b
numberswith a< b, thereis arational number q such that q e (a,b).

Proof:Let a and b are any two distinct real numbers and let a < b = b - a > 0. By the
Archimedean Property of real’s, there exist a positive integer g such that
glb-a)>lorgb>qga+1....(*)

Also there exist a unigue integer p such that

p-1<ga<p

=ga+1>p>aqa....(**)

By combining (*) and (**), we get;

gbh>ga+1l>p>qa

=ga<p<qgb

_I<b
:>a<q

p
q isarational. Let us consider a: K— a<k<b,

Thus, there exist arational number k, in between a and b. Also, by repeating the above process

Clearly, p, g areintegerswithq# 0 =

for aand k, and k and b, we get new rationales k; and k; such that;

a<ki<kandk <kx<b

= a<ki<k<kx<b

Again by continuing the same process, we find infinitely many rationales between any two
distinct reals.

Remark: The rational number system is not complete (see theorem 4.1).

Theorem 4.2.18: The set of irrational numbersis densein the reals.



Proof: By theorem 4.2.17, there are rational numbers k; and k; such that a < k;< ko< b.
1
Letp=ky + E(kz —k)

=pisirrational and ki< g <k
= a<p<basa<ki<ky;<b.
Theorem 4.2.19: Between any two distinct real numbers, there exist an infinite number of reals.
Proof: The above theorems 4.2.17 and 4.2.18 will complete the proof.
4.4.20 The extended real number system
It is often convenient to extend the system of the real numbers by the addition of two elements o
and - oo. The arithmetic relationships amongeo, -0, and the real numbers are defined as follows:
R'= R U{ -00,00}
Where co and -0 are largest and smallest element of the real line R. We extend the order relation
to R by -00< x <oo for @l x eR.
Also we define addition on R"as
X +00 =00 =00+ X for al x eR with x > -0
y + (-00) = -00 = (-0) + y for al y eR with y <co.
Also for x > 0, Xoo = 00X = 00,
X(-00) = (-o0)x = oo
for x <0, Xoo = coX = -0,
X(-o0) = (-o0)X = o0,
We also define o + 00 = 0000 = (-00)(-00) = o0
-0 -0 = 00(-00) = (-00)o0 = -0
ool = o] = o0

00 0
Note that, oo + (-o0), 0.00,00.0, _ and o a@enot defined.

Remark: In general, one may get doubt on co (number/ quantity or not). (#)

Infinity can be a number if you want it to be, as Mathematicians can define any sort of number
system. What isimportant isif it's useful and interesting. We see that infinity is not considered a
number in the set of real numbers(R). However, in Caculus and other subjects, it helps to
informally (sometimes formally) consider infinity a number with a special propertiesin order to
evauate limits. This number system is called the extendedreal number system. To say yesor no
of our (#),and it is not. The answer depends entirely on what we are working with. In some



number systems, infinity is defined. In other number systems, infinity is not defined. Regarding,
modulus symbol, usually, when we are working with the extended real number system, we take
continues that are defined on the reals (or some subset) and extended them continuity to have
+o0 Or -oo Whenever possible. In the case of absolute values, we define [+oo]=+c0 and |-co|=+co for
this reason:i.e. because

Lt |x|=+4wcand Lt |X|=+o

X—>+0

Whether you want to call +oo and -co numbers or not is not really relevant to this situation. |
believe that it is very useful to consider them numbers... but maybe that should only be done
once you are comfortable doing arithmetic with them.

10.
11.
12.

13.

Show that the set S = {x: x’< 1 - x} is bounded above. Also find the least upper bound of
S.

1
Show that sup{l—ﬁ| ne N} =1
Justify; @>b=(3&>0:a>b+s).

n

123
Find the least upper bound of S:{E’E’Z""’m""} and justify your answer.

Find lower and upper bounds of y = f(x), where f(x) = -x*+ 2x* + x and x e [-1, 1.5].
Provethat Z is unbound both above and below.

Estimate the size of f(x) = x*~1inx e (0, 2).

Prove that Vp isirrational, where p is prime.

For S< R beabounded set with =S ={-X:X¢€ S}, provethat inf S= - sup (-S).

For SCRTcRS#4,T#¢ with S< T then provethat inf T <infS< sup S<sup T.
Prove that Q is not complete.

Given x €R, provethat thereisaunique (3') n €Z suchthat x € [n -1, n)

2n+1
Find the max, min, sup and inf, and justify your answer by proof forS= n+l |” eN¢,



14.

15.

16.

17.
18.
19.

20.

21.

22.
23.

24,

25.
26.

27.

x* —3x+1
Find the bound of T(X) = T2 .q for X€ [-2,2].

1+(-D"
Findthemax,min,supandinfofS:{lJr N |n€N}-

Establish formulas for sup K and inf K in terms of Sup S and inf Sfor K = el +bll € N},

where aand b are fixed real numbers with Sis bounded non-empty set.

Prove that, the infimum of aset, if it exits, is unique.

If M and N are non-empty subsets of R, then prove that Sup (M — N) =Sup (M) — Inf (N).
Let Sbe an ordered field and x, y € S. Then prove the following:

a X|>0and|x|]=0<x=0.

b) Ix|= x|

C) -X[£x <X

d K|<ye-y<x<y

Provethat for any x eR, x <x + 1 and for x # 0, x.x> 0.

a+ bjz

Prove that for any real numbers aand b, 8 < (

Leta eQ witha# 0, and bissomeirrational. Prove that ab also an irrational.

Let S=4{1, .12, .123, .1234, ..., .12345678910, ...}, then find g..b.(S) and how would
you writel.u.b.(S)?

a c¢
—=—=ad =hc.
Prove that b d

Provethat a' is positive, when ais positive.

If &, &, ... ,a, arereal numbers, then prove that

() g + @+ ...+ ay| < |a| + |ag| +...+ [an].

(i) lede ... an|=adl [ag] ... |anl.

Let f, g be real-valued functions defined on non-empty set D, and such that Ry= f(D) and

Ry = g(D) are bounded subsets of R. Then, Prove that
sup{ f (x) + g(x): xe D} <sup{ f(x): xe D} +sup{g(x): xe D},



=sup(f +g)(D)<sup f (D) +supg(D) . Note that, Rr means Range of f.

28. Prove that the set of negative real numbersis not bounded below.

la+b| _ lal [b]
"1t |a+b|” 1+|a| 1r|b|'Stue

29. Show that, for aand b are fixed rea number

30. Justify the statement “a>b = (3e>0: a>b + g)”

31. If SR has maximum with a supremum. Prove that, Sup S= Max S.

n-1_ 2nx
32. Find the least and greatest upper bound of S = PUT R neN .

X+ y+|x-y|
33.If x and y are real numbers, then show that max(x, y) = N and min(x, y)

Xty [x-y]
2 .

5. Mathematical Induction

Aresemblance of the principal of mathematical induction is the game of dominoes. Let the
dominoes are lined up properly, so that when one fals, the next one will also fal and so on.
Therefore, the basic principal of mathematical induction is as follows. To prove that a statement
holds for all positive integers n, we first verify that it holds for n = 1, and then we prove that if it
holds for k (a certain natural number), and then it holds for k + 1.
Theorem5.1: Let S;, S,,...,Sy, ... be propositions, one of for each positive integer, such that;

(i) Spistrue

(i1) Sy— S+, for each positive integer n, then Siis true for all positive integers of n.
Proof: Let K ={n|neN and S, istrue}
From (i), 1 € K and from (ii), n+ 1 € K whenevern e K=K =N [
In general, we use to hear the weak and strong induction. What is the real meaning of the weak
and strong? Where can we apply?...
The answer is simply that we use one that works. we don’t choose ahead of time which form

to use; we use the one that gives you the strength of hypothesis needed to make our proof

work.



In general, the hypothesis P(n) simply isn’t strong enough to let us derive P(n+1), but we can
derive P(n+1) if we assume P(n) and P(n—1). Sometimes we have to assume P(K) for all ksuch
that no<k<n in order to be able to infer P(n+1). (Here ng is the initial value for the induction.) In
practice you might as well simply assume that P(k) holds for k=ny,...,nwhen trying to
prove P(n+1); if it turns out that you don’t actually need that strong a hypothesis, no harm has
been done. In other words, when attacking a new proof, always remember that you can use the

full strength of strong induction, though in many cases you won’t need to do so.

It’s unfortunate that so-called strong and weak induction are so often taught as different things,
when in fact they are just very dlightly different special cases of a considerably more general
concept that covers transfinite induction and structural induction as well. Roughly speaking, it’s
a method that applies whenever the setting is such that it’s meaningful to talk about a minimal
counterexample to the theorem that you’re trying to prove. In the case of induction over the
integers, a minimal counterexample is simply the smallest n for which P(n) is false. You can
think of a proof by induction as a proof that no such minimal counterexample can exist. You
suppose that nis a minimal counter example and you getting a contradiction. Sometimes the
contradiction can be obtained just from the hypothesis that P(n—1) is true; sometimes you find
that you need a bit more - the truth of both P(h-1) and P(n-2), for instance, or even of
all P(k) for no<k<n. Since you’re assuming thatnis a minima counterexample, however,
you ar e assuming that P(Kk)is true for ng<k<n, so you can use as much of that assumption as you

need in order to get your contradiction.

Example5.2: Provethat1+2+3+...+n= w...(*) for any integer n> 1.
Forn=1(*)istrue sincel= @
Let usassumethat, * istrueforn=k>1,thatis1+2+3+...+ k= @...(**)

Provethat * istruefor n=k +1, that is

142+3+. . +k+(k+1) s@ukﬂ)

Aswe have, 1+2+3+...+k+ (k+1) =

k(k2+ Yt k+1)



_(k+D)(k+2)
=

:>(k+1)(5+1j
2
Example5.2: Prove that 1 + 3+ 5 +...+ (2n - 1) = n®...(*) for any integer n> 1.
Forn=1(*)istrue sincel= 1°

Let usassumethat, * istrueforn=k > 1, thatis1 + 3 +5 +...+ (2k - 1) = k...(**)
Provethat * istruefor n =k +1, that is

1+3+5+...+(2k-1) +(2k +1) ;(k+1)2.

Aswe have,1+3+5+...+ (2k—1) + (2k +1) =k* + (2k +1) = (k +1)°.
The following examples deal with problems for which induction is a natural and efficient method

of solution.

1forn=1& 2

Example5.3: Let a, =
a, ,+a,,forn>2 where

a, istheformulafor n™term of the Fibonacci sequence. Prove that by mathematical induction,

o _@+35)" - 1-V5)"

" J5.2"
Forn=1,a=1= (1++/5) - (1-+5) istrue.
J5.2
2 2
Forn=2 a=1= (1++/5)* - (1-+/5) isalso true.

J5.22

Let us assume the truth of the statement for somen -1 and n, that is

_ @5 @5

a, , T *)
_@+4B)"-@1-B)" .,
and, a, = oo - (*%)

By adding (*) and (**), we get;



=a,,=a,,t4a,

_@+5)™ - (1-45)"  (1445)" - (1-45)"

J5.2"1 J5.2"
_ 401++5)"" - 4(1-+5)"" + 2(1+/5)" - 2(1-/5)"
- \/§2n+1
_ (@+B)™[4+ 2((1+5)] - (1-5)'[4+ 2((1-5)]
\/Elzml

_ (1++5)™'[6+ 2y/5] - (1-+/5)"*[6— 2V/5]
- \/§.2n+l
_ (1+5)"[1+ V5] - @-5)™ {1 V5]’

\/§.2n+l
_ (1+ \/g)ml _(1_ \/g)ml

,whichistruefor n+1.

\/§.2n+1

I.e., the statement istrue for n =1 and n = 2 and itstruth for n— 1 and n impliesits truth for
n+1.

Example 5.4: Provethat n! <n"... (*) for any integern > 1

Forn=1(*)istrueas1! = 1*

Let (*) istruefor somen=k >1, thatisk! <k ...(**)
Provethat (*) istruefor n=k + 1, that is (k + 1)! <(k +1)**.

Wehave (k + 1)! = k! (k + 1) ;kk(k +1) < (k+D)*(k+1) = (k+21)**.
Example 5.5: Provethat 7|n’—n ... (*) for any integer n > 1.
Forn=1(*)istrue since7[1" -1

Let (*) istruefor somen =k > 1, whichis 7k’ — k... (**)

Provethat (*) istruefor n=k + 1, that is 7|(k +1)" — (k + 1).
Wehave (k + 1)" = (k + 1) =k’ + 7k° + 21k® + 35k* + 35k® + 21k? + 7k + 1 -k -1
= (k" = k) + (7k® + 21k® + 35k* + 35k® + 21k* + 7K)

= (k" = k) + 7(k® + 3k® + Bk* + 5k> + 3k + k)

=divisibly by 7. (- by — (**))

Example 5.6:Provethat n*—n ... (*) is divisible by 3 ¥neN.
Forn=1(*)istrue, since3[1®- 1

Let (*) istrue for somen, that is 3|n° - n...(**)



= n+1)’-(n+1)=n*+3n’+3n+1-n-1=(n*-n) +3(n*+n) (&

By (**), (#) isdivisible by 3.

Prove the following by induction:

n(n+1)(2n+1)
1. Thesum of square of first n natural numbersis 6 :
n(4n® -1)
2. P+3F+. . +@2n-1)°=" 5 -

3. Show that if aisarea number with a> -1, then 1+@)" 21+ navne N.
n*(n+1)%(2n* + 2n-1)
12 '

1 1 1 n(n+3)
5 oot oo— ..t = .
123 234 nn+H(n+2) 4n+H(n+2)

4. 1P+2°+3P+ ... +n°=

6. (N+D(n+2)..(2n-1)(2n) =2"1.35...(2n-1).

7. \/2+\/2+...+ 2+\/§=200527[

n+l °
n-radicals
g @, =2a,+1(ne N){a,}isasequence, show that a,,, = 2"*(a, +1).

1 1 1 1 11 1 1
9 ——+ +.+t—=1-—+———+...+ -
N+l n+2 2n 2 3 4 2n-1 2n

10. Given asequence a, &, ...,an,... such that a; = 1 and a, = a1 + 3, (n = 2). Show that a, =
3n-2VneN.

11. 6|n(n* + 5)
12. 215" -2" for al positive even integers of n.
13. 30|5" - 3" - 2" for al positive odd integers of n.

14. If o, B are the roots of x%— 14x + 36 = 0. Show that o" + B" | 2", V neN.
15.1f n e Zandn>Othen 2! = (N+DHL

16. 2"> n?vn > 5 and neN.



17. For al n e N, there exists distinct integers x, y, z for which x* + y? + 22 = 14",
18. (1)= ()
19. For al integersn and k with 1 <k < n; (o )+ 2()+ ()= (22).

20. Prove that every positive integer greater than 1 can be written as a product of primes.

sin 2nx
21. ZCOS(Zk Dx= 2sinx forx € Rwithsinx # 0.

22.nl>3"forn>7.
23. A set of n elements has 2" subsets.
24. ‘Everything is the same color’. Explain the fallacy by induction.

25. n™" derivative of x"isn!.

26. Ramanujan I'eSJH:\/l-I- 2\/1+ 3\/1+ 4\1+5J1+....=3 show that

\/1+ n\/1+ (n+1)\/1+ (n+ 2)\/1+ (n+3)v1l+.. =n+1LVneN.

27. 9|52n +3n-1.

28. \/_ \/_ \/_>2\/F 2.

29, [Xni1 = Xa| < T|X, = X, 4|, VN > 1, where r isfixed positive integer.

30 sinx+sin3x+...+sin(2n—1)x:M,nZL
' 2sinx

+a,+..+4a e
31 ol ™ >nlaa,..a,,wherea;, a,,...,a, are positive integers.

n
32. Ever integer = (3+45)"+(3-+5)"

33 '[sin” xdx = n—_lj'sin”’2 xdx;istruefor n> 2. (HINT :integrate by parts).
' n
0

0
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