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1 Introduction

Neutrosophy was introduced by Florentin Smarandache in 1980. “It is a branch
of philosophy which studies the origin, nature and scope of neutralities, as well
as their interactions with different ideational spectra” [1]. Neutrosophic set
is a powerful general formal framework which generalizes the concept of the
classic set, fuzzy set [2], interval valued fuzzy set [3], intuitionistic fuzzy set [4],
interval valued intuitionistic fuzzy set [5], paraconsistent set [1], dialetheist
set [1], paradoxist set [1], tautological set [1]. A neutrosophic set A defined on
universe U. z = z(T,I,F) € A with T,I and F being the real standard or
non-standard subsets of |0~, 17 [. 7" is the degree of true membership function
in the set A, I is the degree of indeterminate membership function in the
sett A and F' is the degree of false membership function in the set A. From
scientific or engineering point of view, the neutrosophic set and set-theoretic
operators must be specified. Otherwise, it will be difficult to apply in the real
applications. In this paper, we define the set-theoretic operators on an instance
of neutrosophic set called degenerated neutrosophic set (DNS). A degenerated
neutrosophic set A defined on universe X. x = (7,1, F) € A with T, I and
F being the subinterval of [0, 1]. Degenerated neutrosophic set can represent
uncertainty, imprecise, incomplete and inconsistent information which exist in
real world. The degenerated neutrosophic set generalizes the following sets:

(1) the classical set, I = 0, infT = supT =0 or 1, inf F =supF =0 or 1
and sup7 +sup F' = 1.

(2) the fuzzy set, I = (), infT = supT € [0,1], inf FF = sup F' € [0,1] and
supl +sup F' = 1.

(3) the interval valued fuzzy set, I = (0, inf T,supT,inf F,sup F € [0,1],
sup7 +inf F =1 and inf T+ sup F' = 1.

(4) the intuitionistic fuzzy set, I =0, inf T =supT € [0,1], inf F =sup F €
[0,1] and supT + sup F' < 1.

(5) the interval valued intuitionistic fuzzy set, I = 0, inf T, sup T, inf F,inf T €
[0,1] and supT + sup F' < 1.

(6) the paraconsistent set, [ =0, inf T =supT € [0,1],inf F =sup F € [0, 1]
and sup7 +sup F' > 1.

(7) the interval valued paraconsistent set, I = (), inf T, sup T, inf F,sup F' €
[0,1] and inf T + inf F > 1.

The relationship among degenerated neutrosophic set and other sets is illus-
trated in the Fig 1.

We define the set-theoretic operators on degenerated neutrosophic set (DNS).
various properties of DNS are proved, which are connected to the operations
and relations over DNS.
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Fig. 1. Relationship among degenerated neutrosophic set and other sets

The rest of paper is organized as follows. Section 2 gives a brief overview of
neutrosophic set. Section 3 gives the definition of degenerated neutrosophic set
and set-theoretic operations. Section 4 proves some properties of set-theoretic
operations. Section 5 gives the definition of convexity of degenerated neutro-
sophic sets and prove some properties of convexity. Section 6 concludes the

paper.

2 Neutrosophic Set

This section gives the brief overview of concepts of neutrosophic set defined
in [1]. Let S; and S, be two real standard or non-standard subsets. Then
S1® S = {z]x = s1+ 59,81 € S1and s € So}, {17} & Sy = {z]z =
1T+ 89,80 € So}. $168s = {z|x = 51 — 89,51 € Sy and s € So}, {17} 65, =
{$|l‘ =1t — So, 82 € Sz} S ® 8y = {.7)|$ = 81+82,81 € S; and sy € SQ}

Definition 1 (Neutrosophic Set) Let X be a space of points (objects), with
a generic element in X denoted by x.

A neutrosophic set A in X is characterized by a truth-membership function
T4, a indeterminancy-membership function /4 and a false-membership func-

tion Fa. Ta(x), L1a(x) and Fa(z) are real standard or non-standard subsets of
107, 17[. That is



Ta:X—]0, 17, (1)
Ly X =107, 17, (2)
Fi: X —]07, 1% (3)

There is no restriction on the sum of Ta(x), Ia(xz) and Fu(z), so 0~ <
sup Ta(x) + sup La(z) + sup Fu(z) < 3*.

Definition 2 The complement of a neutrosophic set A is denoted by A and
s defined by

Ti(z)={1"} © Ta(x), (4)
Ii(z) ={1"} & La(x), (5)
Fi(z)={17"} © Fa(x), (6)

for all x in X.

Definition 3 (Containment) A neutrosophic set A is contained in the other
neutrosophic set B, A C B, if and only if

inf Ta(x) < infTg(z),sup Ta(z) < supTp(z), (7)
inf Fiy(z) > inf Fg(z) ,sup Fa(x) > sup Fg(x), (8)

for all x in X.

Definition 4 (Union) The union of two neutrosophic sets A and B is a neu-
trosophic set C, written as C = AUB, whose truth-membership, indeterminancy-
membership and false-membership functions are related to those of A and B

by

Te(z) =Ta(z) ® Tr(x) © Ta(x) © Tx(x), 9)
Io(z)=14(z) @ Ip(z) © La(z) © Ip(2), (10)
Fo(z)=Fa(z) ® Fp(z) © Fa(z) © Fp(z), (11)

for all x in X.

Definition 5 (Intersection) The intersection of two neutrosophic sets A
and B is a neutrosophic set C, written as C = ANB, whose truth-membership,
indeterminancy-membership and false-membership functions are related to those

of A and B by

Te(x) =Ty(z) © Tg(x), (12)
Io(z) =14(z) © Ip(z), (13)
Fo(z) =Fa(z) © Fp(z), (14)



for all x in X.

Definition 6 (Difference) The difference of two neutrosophic sets A and
B is a neutrosophic set C, writeen as C = A\ B, whose truth-membership,
indeterminancy-membership and false-membership functions are related to those

of A and B by

To(x) =Ta(x) © Ta(z) © Tp(x), (15)
Ie(x) =14(z) © La(2) © Ip(2), (16)
Fo(z) = Fa(z) © Fa(z) © Fp(), (17)

for all x in X.

3 Degenerated Neutrosophic Set

In this section, we present the notion of degenerated neutrosophic set (DNS).
Degenerated neutrosophic set (DNS) is an instance of neutrosophic set which
can be used in real scientific and engineering applications.

Definition 7 (Degenerated Neutrosophic Set) Let X be a space of points
(objects), with a generic element in X denoted by x.

A degenerated neutrosophic set (DNS) A in X is characterized by truth-membership
function Ty, indeterminancy-membership function I, and false-membership
function Fy. For each point x in X, Ty(x), Ia(x), Fa(z) C [0,1].

A degenerated neutrosophic set (DNS) in R! is illustrated in Fig. 2.

When X is continuous, a DNS A can be written as

A= [ (T(@) 1), F))/z, v € X (18)
X
When X is discrete, a DNS A can be written as

n

A= Z;(T(a;,), I(x;), F(x;))/ 2y 2 € X (19)
Example 1 Assume that X = [1,2,---,10]. SMALL is a degenerated neu-
trosophic set of X defined by
SMALL = {[1,1],[0,0],[0,0])/1 + ([0.9, 1], [0, 0], [0, 0]) /2 +
([0.6,0.8], [0, 0], [0.2,0.3]) /3 + ([0.3,0.4], ][0, 0], [0.5,0.7]) /4 +
([0.1,0.3],]0.1,0.2], [0.8, 1]} /5 + ([0.1,0.2], [0, 1,0.2], [0.9, 1]) /6 +



Fig. 2. Illustration of degenerated neutrosophic set in R'

([0,0.1],[0.1,0.2], (0.9, 1]} /7 + ([0, 0], [0, 0.1], [0.9, 1] /8 +
(0,0}, [0, 0], [1,1])/9+ ([0, 0], [0, 0], [1, 1]) /10.

Definition 8 A degenerated neutrosophic set A is empty if and only if its
infTa(x) = supTa(zr) = 0, infls(z) = supls(z) = 1 and inf Fy(z) =
supT4(z) =0, for all x in X.

We now present the set-theoretic operators on degenerated neutrosophic set.

Definition 9 (Complement) The complement of a degenerated set A is de-
noted by A and is defined by

Ti(z)=Fa(x), (20)
inf I5(x) =1 — sup I4(z), (21)
sup I5(z) =1 — inf I4(x), (22)
Fi(z)=Tu(z), (23)

for all x in X.

Example 2 Let the SMALL be the degenerated neutrosophic set E defined
in Ezample 1. Then, E = ([0,0],[1,1],[1,1])/1 + ([0,0],[1,1],[0.9,1])/2 +
([0.2,0.3],[1,1],[0.6,0.8])/3 + ([0.5,0.7], [1,1],[0.3,0.4]) /4 +
([0.8,1],[0.8,0.9],]0.1,0.3]) /5 + ([0.9, 1], [0.8,0.9], [0.1,0.2]) /6 +
([0.9,1],[0.8,0.9],[0,0.1]) /7 + ([0.9, 1], [0.9, 1], [0, 0]) /8 +

([1,1],[1,1], [0, 0) /9 + {[1,1], [1,1], [0, 0])/10.

Definition 10 (Containment) A degenerated neutrosophic set A is con-
tained in the other degenerated neutrosophic set B, A C B, if and only if



inf Ty (z) <infTg(x),sup Ta(z) < sup Ts(z), (24)
inf I4(x) > inf Ig(x),sup I4(x) > sup Ip(x), (25)
inf Fa(x) > inf Fg(x) ,sup Fa(z) > sup F(z), (26)

for all x in X.

Definition 11 Two degenerated sets A and B are equal, written as A = B,
if and only if AC B and BC A

Definition 12 (Union) The union of two degenerated neutrosophic sets A
and B is a degenerated neutrosophic set C, written as C' = AUB, whose truth-

membership, indeterminancy-membership and false-membership functions are
related to those of A and B by

inf T (2) = max(inf Ty (), inf T(z)), (27)
sup Tc(z) = max(sup T4(x), sup Ts(x)), (28)
inf I (z) = min(inf 14 (z), inf I5(z)), (29)
sup I¢(z) = min(sup I4(x), sup Ip(z)), (30)
inf Fio(z) = min(inf F4(z), inf Fp(z)), (31)
sup Fe(z) = min(sup Fa(z), sup Fg(z)), (32)

for all x in X.

Theorem 1 A U B is the smallest degenerated neutrosophic set containing
both A and B.

Proof Let C = AU B. inf Tg = max(inf T4, inf T), inf T > inf Ty, inf T >
inf Tg. supTe = max(sup Ta,supTp, supTc > supTy, supTe > supTg.
inf Ic = min(inf 14, inf I), inf I < inf I, inf I < inf Ip,

sup I¢c = min(sup I4,sup Ig), supIc < supla, suplc < suplp, inf Fp =
min(inf Fy, inf F), inf Fo <inf Fy, inf Fe < inf Fp.

sup F¢ = min(sup Fy4,sup Fg), sup Fc < sup Fy, sup Fg < sup Fg. That
means C' contains both A and B.

Furthermore, if D is any extended vague set containing both A and B, then
infTp > inf Ty, infTp > infTg, so infTp > max(inf Ty,inf T) = infT¢.
supTp > supTa, supTp > supTp, so supTp > max(supTa,supTp) =
sup Tc. inf I'p < infly, inf Ip <infIg,soinf Ip < min(inf I4,inf Iz) = inf I¢.
sup Ip < supla, sup Ip < sup I, so sup Ip < min(sup [4,sup Ip) = sup I¢.
inf Fip < inf Fy, inf Fp < inf Fg, so inf Fp < min(inf Fy, inf Fg) = inf Fp.
sup Fp < sup Fy, sup Fp < sup Fp, so sup Fp < min(sup Fu,sup Fg) =
sup F¢. That implies C' C D.

Definition 13 (Intersection) The intersection of two degenerated neutro-
sophic sets A and B is a degenerated neutrosophic set C, written as C =



AN B, whose truth-membership, indeterminancy-membership functions and
false-membership functions are related to those of A and B by

inf T (x) =min(inf T4 (z), inf T(z)), (33)
sup T¢(z) =min(sup T4 (x), sup T(z)), (34)
inf I (z) = max(inf 14 (z), inf I5(z)), (35)
sup I¢(z) = max(sup La(z),sup Ig(x)), (36)
inf Fo(z) =max(inf Fy(z), inf Fp(z)), (37)
sup Fo(r) = max(sup Fa(z),sup Fp(z)), (38)

for all x in X.

Theorem 2 AN B s the largest degenerated neutrosophic set contained in
both A and B.

Proof The proof is analogous to the proof of theorem 1.

Definition 14 (Difference) The difference of two degenerated neutrosophic
sets A and B is a degenerated neutrosophic set C, writeen as C = A\ B,
whose truth-membership, indeterminancy-membership and false-membership
functions are related to those of A and B by

inf To(z) =min(inf Ta(x), inf Fp(x)), (39)
sup T¢(z) =min(sup T4 (x), sup Fg(x)), (40)
inf Ic(z) = max(inf I4(z), 1 — sup Ip(z)), (41)
sup I¢(z) =max(sup I4(x),1 — inf I(z)), (42)
inf Fo(z) = max(inf Fs(z), inf Ts(z)), (43)
sup F¢(z) = max(sup Fa(x),sup Ts(z)), (44)

for all x in X.

Theorem 3 ACB«+ BCA

Proof A C B & infTy < infTg,supTy < supTpg,infly > infIg,suply >
sup Ig,inf Fy > inf Fg,sup F)y > sup Fg & inf Fg < inf F)y,sup Fg < sup Fjy,

1 —supIB_z 1_— supla,1 —inflg > 1 —infl,,infTg > infTy,supTs >
supTy < B C A.

4 Properties of Complement, Union and Intersection

In this section, we will prove some properties of union, intersection, comple-
ment defined on degenerated neutrosophic sets as in Section 3.



Property 1 (Commutativity) AUB=BUA, ANB=BNA

Proof Here, we prove the first identity.

inf Tyup = max(inf Ty, inf Tg) = max(inf T,inf T4) = inf Ty, sup Taus =
max (sup 74, sup Tg) = max(sup Tg,sup T4) = sup Tpua,

inf T4y = min(inf I4,inf Ig) = min(inf Iz,inf I4) = inf Tgya, sup Laup =
min(sup 14, sup Ig) = min(sup Iz, sup I4) = sup Ty,

inf Fap = min(inf Fy, inf Fg) = min(inf Fg, inf F4) = inf Fpa,

sup Faup = min(sup Fy4,sup Fg) = min(sup Fi,sup F4) = sup Fpua, That is
AUB=BUA.

Property 2 (Associativity) AU(BUC)=(AUB)UC,
ANn(BNC)=(AnB)NnC.

Proof Follows quickly from associativity of min and max.

Property 3 (Distributivity) AU(BNC) = (AUB)N(AUC), AN(BUC) =
(ANB)U(ANC).

Proof Follows quickly from distributivity of min and max.
Property 4 (Idempotency) AUA=A, ANA=A.

Proof Here, we proof the first identity.

inf Tyya = max(inf Ty, inf Ty) = inf Ty,
sup Taua = max(sup T4, supT4) = sup T'a,
inf 4,4 = min(inf I4,inf I4) = inf I4,

sup Iaua = min(sup I4,sup I4) = sup I4,
inf Fays = min(inf Fa,inf Fa) = inf Fy,
sup Faua = min(sup Fa,sup F4) = sup Fy,
That is AU A = A.

Property 5 AN® =&, AUX = X, where infTy = supTy = 0, inf Iy =
suple = inf Fo = supFe = 1 and infTx = supTx = 1, infIx =suplyxy =
inf Fx =sup Fx = 0.

Proof

(1) inf Tane = min(inf T4, 0) = 0,
sup Tane = min(sup T4, 0) = 0,
inf I yne = max(inf I4, 1) =1,
sup Iane = max(sup I4, 1) =1,
inf Fane = max(inf Fis,1) = 1,
sup Fane = max(sup Fy4,1) =1,
that is AN ® = .

(2) inf Tyux = max(infTy,1) =1,



sup Taux = max(sup Ty, 1) =1,
inf I4,x = min(inf 74,0) = 0,
sup Iaux = min(sup I4,0) = 0,
inf Fayx = min(inf F4,0) = 0,
sup Faux = min(sup F4,0) =0,
that is AUX = X.

Property 6 AUV = A, ANX = A, where infTg = supTe = 0, inf Il =
suple = inf Fo = supFe = 1 and infTx = supTx =1, infIx =suplxy =
inf Fx =sup Fx = 0.

Proof

(1) inf Tauy = max(inf Ty, 0) = inf Ta,
sup Tauy = max(sup T'4,0) = sup Ty,
inf Iayy = min(inf 74,1) = inf I,
sup Iauy = min(sup 14,1) = sup I4,
inf Fauyy = min(inf F4, 1) = inf Fy,
sup Fauy = min(sup Fa, 1) = sup Fjy,
that is AUV = A.

(2) inf Tynx = min(inf T4, 1) = inf Ty,
sup Tanx = min(sup T4, 1) = sup Ty,
inf I 4nx = max(inf I4,0) = inf I 4,
sup Ianx = max(sup I4,0) = sup 14,
inf Fanx = max(inf F4,0) = inf Fy,
sup Fanx = max(sup Fa,0) = sup Fa,
that is AN X = A.

Property 7 (Absorption) AU(ANB)=A, AN(AUB)=A
Proof

(1) inf Tayanpy = max(inf Ty, min(inf Ty, inf Tg)) = inf Ty, sup Taucans) =
max (sup T4, min(sup T4, sup Tg)) = sup T4,
inf I4uanp) = min(inf I4, max(inf I4,inf Ip)) = inf 4, sup Lauans) =
min(sup I4, max(sup 4, sup Ig)) = sup I,
inf Fyuanp) = min(inf Fy, max(inf Fy,inf Fg)) = inf Fj4,
sup Fay(anp) = min(sup F4, max(sup Fy,sup Fg)) = sup Fy, that is AU
(AN B) = A.

(2) inf Tyn(aupy = min(inf Ty, max(inf Ty, inf Ts)) = inf T4, sup Tancaup) =
min(sup 74, max(sup T4, sup Tg)) = sup T4,
inf Iynaup) = max(inf I, min(inf I, inf Ip)) = inf Iy, sup Iunaup) =
max (sup I4, min(sup 4, sup Ig)) = sup I,
inf Fanaup) = max(inf Fu, min(inf Fu, inf Fg)) = inf Fju,
sup Fan(aup) = max(sup F4, min(sup Fy,sup F)) = sup Fy, that is AN
(AUB) = A.
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Property 8 (DeMorgan’s Laws) AUB=ANB, ANB=AUB.

Proof

(1) inf T = min(inf Fy, inf Fp) = min(inf T3, inf Tp),
sup T = min(sup Fa,sup Fg) = min(sup T3, sup T), inf gz = 1 —
min(sup I, sup Ig) = max(1l — sup I, 1 — sup Ig) = max(inf I 5,inf I'3),
sup Izgg = 1 — min(inf 14, inf Ig) = max(1 — inf [4, 1 — inf Ip) =
max (inf I 5, inf I'3), inf Fypm = max(inf T4, inf Ts) = max(inf Fz, inf Fj),
sup Fyop = max(sup T4, sup Tg) = max(sup Fz, sup Fz),
that is AUB = AN B.

(2) inf T4y = max(inf Fyu,inf Fg) = max(inf T pr4,inf T3), sup Tqng =
max (sup Fyu,sup Fg) = max(sup Tz, sup 1),
inf Iz = 1 — max(sup I4,suplp) = min(l — supl4,1 —suplp) =
min(inf I 4, inf I3),
sup Iz55 = 1 — max(inf 14, inf Iy) = min(1 — inf I4, 1 — inf Ip) =
min(sup I 4, sup I),
inf Fi=5 = min(inf Ty, inf T5) = min(inf Fy, inf Fj),
sup Fr5 = min(sup T, sup T4) = min(sup Fj,sup F), that is AN B =
AU B.

Property 9 (Involution) A = A

Proof inf T = inf F4, supTs = sup Fis,infI; = 1—sup I4,sup [ = 1—inf I 4,
inf Fig = inf Ty, sup F)5 = supTy. inij = inf Ty, sup 15 = sup Ty, inf]i =

inf T4, sup Iz =sup I4, inf == inf Fy, sup F= = sup Fy, that is A= A

5 Convexity of Degenerated Neutrosophic Set

We assume that X is a real Euclidean space E™ for correctness.

Definition 15 (Convexity) A degenerated neutrosophic set A is conver if
and only if

inf Tq(Azy + (1 — A)z2) > min(inf T4 (z1), inf T4 (z3)), (45)
sup Ta(Az1 + (1 — N)xg) > min(sup Ta (1), sup Ta(z2)), (46)
inf I4(Az1 + (1 — N)z2) <max(inf [4(x1), inf L4(x9)), (47)
sup Ia(Az1 + (1 — A)zy) <max(sup L4 (z1),sup Ia(zs)), (48)
inf Fiy(Azy + (1 — A)ze) <max(inf Fy(xq),inf Fy(z3)), (49)
sup Fa(Az1 + (1 — A)zy) <max(sup Fa(z1),sup Fa(zz)), (50)

for all x1 and xo in X and all X in [0, 1].

11



Fig. 2 is an illustration of convex degenerated neutrosophic set.

Theorem 4 If A and B are convex, so is their intersection.

Proof Let C = AN B, then

inf To(Az1+ (1= A)z2) > min(inf T4 ( Az, + (1 —

sup Te(Az1+(1—A)z2) > min(sup Ta( Az +(1—
) 1-—
) 1-

( )l‘g),lnfTB()\.Tl‘f‘(].
( )
inf Ic(Az; 4+ (1 — A)zg) < max(inf T4 (Azq + (
(
(

A A)
A)z3),sup Tg(Az1+(1—N)

( )\).Tg),lanB()\.Tl-i-(l )\).TQ) y
sup Ic(Az1+(1=N)z3) < max(sup Iy (Azx1+(1—N)xo),sup Ig(Az1+(1-X)
inf Fo(Az1+(1—A)z2) < max(inf Fy(Az;+(1—A)zo), inf Fg(Az;+(1—A)
sup Fo(Az1+(1—A)z2) < max(inf Fiy(Azx,+(1— )xg) inf Fg(Az1+(1-X)
Since A and B are convex: inf T4 (Az1+(1—X)z2) > min(inf T4 (x1), inf T4 (22
sup Ta(Azy + (1 — N)zg) > min(sup T4(z1),sup TA 2)), inf I4(Azy + (1 —

A)z2) < max(inf I4(x1),inf I4(22)), sup [4(Az; + (1 — N)zg) <
max(sup I4(z1),sup L4(22)), inf Fy(Az; + (1 — N)zg) <
max (inf Fa(x1),inf F4(22)), sup Fa(Az1 + (1 — N)zg) <

max (sup Fa(z1),sup Fa(z2)),

inf Tp(Az14+(1—A)z2) > min(inf T(z1), inf T4 (22)), sup Tp(Az1+(1—N)zg) >
min(sup Ts(z1),sup T4 (22)), inf Ig(Az; + (1 — N)zy) <

max(inf Ig(z1),inf I4(22)), sup Ig(Az1 + (1 — A)zy) <

max (sup Ig(x1),sup [4(22)),

inf Fg(Az1 + (1 — A)z2) < max(inf Fg(x1),inf F4(22)),

sup Fg(Az1 + (1 — A)z2) < max(sup F(zl),sup Fa(z2)),

Hence,

inf To(Az1 + (1 — A)zo) > min(min(inf T4 (z1), inf T4 (z2))

,min(inf Tg(z1),inf Ts(x2))) = min(min(inf T4 (z1), inf Ts(x1)),
min(inf 74 (z2), inf Tp(x2))) = min(inf Te(x1),inf Te(xs)), sup Te(Azr + (1 —
A)z2) > min(min(sup Ta(z1), sup Ta(zz)),

min(sup Tg(z1),sup Tp(x2))) = min(min(sup T4(z1),sup Ts(x1)),
min(sup 74 (z2),sup T's(z2))) = min(sup T¢(z1), sup Te(z2)),

inf Ic(Az; + (1 — A)zg) < max(max(inf I4(x1),

inf I4(x2)), max(inf Iz (z1),inf I5(z2))) = max(max(inf I4(z1),

inf I'p(z1)), max(inf [4(z3),inf I(2z2))) = max(inf I (z1), inf Io(z2)),
sup Ic(Az; + (1 — A)zg) < max(max(sup I4(x1),sup L4(z2))
,max(sup Ig(xy),sup Ip(xs))) = max(max(sup L4(z1),sup Ig(z1)),
max (sup I4(z2),sup Ip(z2))) = max(sup Ic(x1),sup Ic(z2)),

inf Fo(Az1 + (1 — A)xe) < max(max(inf Fa(xy),inf F4(z,)),

max (inf Fg(z,), inf Fg(z2))) = max(max(inf F4(z,), inf Fg(z,)),
max(inf Fiy(xq),inf F(xs))) =

max (inf Fo(xy),inf Fo(xg)), sup Fo(Azy + (1 — A)zg)

< max(max(sup F4(x1),sup Fa(zs)),

max(sup F(z1),sup F(z2))) = max(max(sup Fa(x1),sup Fg(x1)),
max (sup Fa(z2),sup Fg(zs))) = max(sup Fe(x1),sup Fo(za))-

Definition 16 (Strongly Convex) A degenerated neutrosophic set A is

12



strongly convex if for any two distinct points x1 and xo, and any X\ in the
open interval (0,1),

> min(inf T4 (z1), inf Ta(zs)), (51)
> min(sup Ta(z1),sup Ta(x2)), (52)
< max(inf I4(z1),inf I4(z2)), (53)
< max(sup I4(x1),sup La(z2)), (54)
<max(inf Fu(z1),inf F4(z2)), (55)
< max(sup Fa(z1),sup Fa(z2)), (56)

wn
)
ho)
~
h S
N N N N N N
p
K
—
N N N N N N
—
p
N’ N S N N N
8
N
N’ N’ N N S N

for all z1 and x5 in X and all X in [0,1].
Theorem 5 If A and B are strongly convez, so is their instersection.

Proof The proof is analogus to the proof of Theorem 4.

6 Conclusions and Future Works

In this paper, we have presented an instance of neutrosophic set called degen-
erated neutrosophic set (DNS). The degenerated neutrosophic set is a gener-
alization of classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy
sets, interval valued intuitionistic fuzzy set, interval type-2 fuzzy set [6] and
paraconsistent set. The notions of inclusion, union, intersection, complement,
relation, and composition have been defined on degenerated neutrosophic set.
Various properties of set-theoretic operators have been proved. In the future,
we will create the logic inference system based on degenerated neutrosophic
set and find the appropriate applications such as expert system, data mining,
question-answering system, bioinformatics and database, etc.
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