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The measurement problem, the mechanism of quantum state reduction, has remained an open
question for nearly a century. The ‘quantum weirdness’ of the problem was highlighted by the intro-
duction of the Einstein-Podolsky-Rosen paradox in 1935. Motivated by Bell’s Theorem, nonlocality
was first experimentally observed in 1972 by Clauser and Freedman in the entangled states of an
EPR experiment, and is now an accepted fact. Special relativity requires that no energy is trans-
ferred in the nonlocal collapse of these entangled two-body wavefunctions, that no work is done, no
information communicated. In the family of quantum impedances those which are scale invariant,
the Lorentz and centrifugal impedances, satisfy this requirement. This letter explores their role in
the collapse of the wave function.

INTRODUCTION

As every circuit designer knows, impedances govern
the flow of energy. This is not a theoretical musing.

A novel method for calculating mechanical
impedances[1], both classical and quantum, was
presented earlier[2, 3]. In that work a background
independent version of Mach’s principle emerged from a
rigorous analysis of the two body problem, permitting
simple and direct calculation of these impedances.

The two body problem is innately one-dimensional,
populated by string-like topologies. The mechanical
impedances derived from Mach’s principle can be con-
verted to the more familiar electrical impedances by
adding electric charge to these string-like objects[4].

Physics without calculations is not physics, but rather
philosophy. This novel tool, this method of calculating
impedances, is of no use to physics without a model to
which it may be applied. The model adopted earlier [3–8]
remains useful. It comprises

• quantization of electric and magnetic flux, charge,
and dipole moment

• interactions between these three topologies - flux
quantum, monopole, and dipole

• the photon

• confinement to a fundamental length, taken to be
the Compton wavelength of the electron

Coupling impedances of the interactions between these
three topologies have been calculated[3]. With the excep-
tion of the Lorentz and centrifugal impedances, they are
parametric impedances, in the sense that they are scale
dependent, and consequently energy dependent.

The role of the resulting impedance network, the ‘scat-
tering matrix’, in the phenomenology of the unstable par-
ticles was discussed earlier[4], with the concept of coher-
ence length playing a central role. In that note coherence

FIG. 1. Photon and electron impedances as a function of
spatial scale as defined by photon energy. The role of the fine
structure constant α is a prominent feature of the figure.

length was defined as the lifetime of the wave function
multiplied by the speed of light, or the wave function
light cone, the boundary between local and non-local.

This revealed a strong correlation between the unstable
particle coherence lengths and conjunctions of the mode
impedances (where impedances are matched and energy
can flow without reflection) and provides strong impetus
for the present letter, which further explores the manner
in which quantum impedances define coherence lengths,
as well as the transition to incoherence that results from
loss of phase information in state reduction.

QUANTUM IMPEDANCES

Quantum impedances can be divided into two cate-
gories. The first has one member, the only known mass-
less particle - the stable photon. The second contains all
the massive particles, stable and unstable.

In the first category, the photon impedance is further
divided into the scale dependent near-field and the 377Ω
scale invariant far-field impedances[9], as shown in figure
1 for a 0.511MeV photon.
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FIG. 2. A composite of 13.6eV photon impedances[9] and a variety of background independent[2]electron impedances[3, 10],
measured branching ratios of the π0, η, and η’, the four fundamental quantum lengths shown in fig.1, and the coherence lengths
of the unstable particles.[11–13]

The photon impedance is strictly electromagnetic. Un-
like massive particles, it has no mechanical impedance.

In the second category, that of the massive particles,
the impedance commonly encountered in the literature
[14–23] is the scale invariant quantum Hall impedance. It
is an electromechanical impedance. It provides one of the
essential keys to understanding how to calculate back-
ground independent quantum impedances for all forces.
The impedance plot of figure 2 is reproduced from earlier
notes[3, 4, 10], and shows results from such calculations.

In addition to the purely electromagnetic photon
impedances and the electromechanical impedances of the
massive particles, it is possible to define a purely mechan-
ical impedance, an inertial impedance, associated with
the centrifugal force[2–4].

The centrifugal force is in some sense a mechanical
equivalent of the vector Lorentz force present in the quan-
tum Hall effect. Like the Lorentz force, it is perpendicu-

lar to the direction of motion, and hence can do no work.
Like the Lorentz force, it is velocity dependent. Unlike
velocity dependent forces other than the Lorentz and cen-
trifugal forces, it is not dissipative. This impedance is
numerically equal to the scale invariant quantum Hall
impedance, and is plotted in figure 2 (green dots).

THE UNSTABLE PARTICLES

Unlike entangled states, where unitary evolution of the
two (or more) body wave function requires nonlocal phase
coherence, in the case of the unstable particles the essen-
tial phase coherence is self coherence. The nonlocality
constraint introduced by entanglement will be addressed
in the following section.

Here the focus is on the relationships between the
impedance and coherence length plots of figure 2. They
were explored in some detail in an earlier note[4]. In this
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section the discussion will be confined primarily to those
aspects relevant to single body state reduction.

The bottom line here, and throughout this note, is
that the coherence lengths are defined by a combination
of both differential phase shifts and conjunctions of the
mode impedances.

In the impedance network of figure 2, the conjunctions
of the mode impedances (calculated[10] from the model)
are precisely ordered in powers of the fine structure con-
stant on both axes of the plot, in both the impedance
and energy scales. With three exceptions, the unstable
particle coherence lengths are also ordered in powers of
the fine structure constant. These exceptions are:

• the Σc and the short lived resonances in the region
between the electron classical radius and the 10GeV
fine structure line

• the Σ0 and the excited meson states in the vicinity
of the electron Compton wavelength

• the τ and the charm family - displaced to longer
coherence lengths, perhaps a result of electroweak
interference

All three of these exceptions are intriguing, for what
are apparently different reasons. They will hopefully be
addressed in detail at some future time.

In the present view each of the unstable particles might
be taken as comprised of some coupled subset of the
modes shown in the impedance plot, a non-linear su-
perposition with phase-sensitive dynamics. The logical
source of the non-linearity, of the dispersion that ulti-
mately results in decoherence and state reduction, is the
mode coupling mechanism, which might also be taken to
be the confinement mechanism. This will be discussed in
more detail in the following sections.

The master oscillator for phase coherence is the elec-
tron Compton frequency, the frequency corresponding to
the Compton wavelength. It is naturally built into the
dynamics of the impedance network, into the response of
the mode structure to excitation. The electron is stable,
the Compton frequency is infinitely precise, the reference
linewidth infinitely small.

In this view an unstable particle is a collection of cou-
pled oscillators, the oscillators being the appropriate net-
work modes, with the coupling at the nodes, at the mode
impedance conjunctions. One might suppose that the
coherence lengths are a simple function of the oscillator
quality factors, the Q’s of the resonances. The longest
lived unstable particle, the neutron, would then have a
Q of about 1024. The neutron is particularly interest-
ing, as its coherence length is extended to infinity when
entangled with the proton.

However, as was noted earlier[3], the extended lifetimes
of the weakly decaying particles can be quantitatively
understood in terms of their impedance mismatch to the

photon and electron. This not only obviates the need for
high Q in long lifetime, it also provides a mechanism for
parity violation.

In the unstable particles, the interacting modes of the
self-coupled wavefunction can be thought of as oscillating
in and out of coherence, the wave function alternating
from fermion to boson as they do so. Linear and angular
momentum mix, velocities and phases shift. The effect
of this can be seen in the coherence length plot of figure
2, in the alternating fermion and boson lines of the weak
decays.

ENTANGLEMENT

Entanglement provides an additional constraint, the
constraint introduced by nonlocality. It becomes neces-
sary to couple two wave functions without the exchange
of energy, without violating special relativity. The forces
associated with the scale invariant impedances, the vec-
tor Lorentz and centrifugal forces, are obvious candidates
for such a coupling.

In the case of massive particles, either or both of these
forces could bear responsibility for state reduction of the
entangled two body wave function. Either or both of
these scale invariant impedances could carry the phase
information (not an observable in quantum mechanics)
that maintains the phase coherence of the entangled
state.

Those impedances cannot transport energy. To be op-
erative in state reduction, they might function as mode
couplers, shifting the relative phases of the entangled two
body wave function.

From here it is a small step to the single particle wave
function and self coherence, via the Lorentz impedance
and the Aharanov-Bohm effect.

“All well and good,” you might say, “but what about
the photon? How can either of these impedances couple
to an entangled photon?”

Perhaps they can’t. And perhaps they needn’t. The
photon far field impedance is scale invariant.

Consider an entangled photon pair. They remain en-
tangled via the scale invariant 377Ω electromagnetic far
field impedance. The interaction of either of the two with
the external environment brings transition to the scale
dependent near field impedances, nonlocality is lost, the
photon decoheres, the magnetic and electric flux quanta
decouple. And the phase of its now-unentangled partner
is determined, defines the state into which it will eventu-
ally collapse.

It would seem that the photons don’t need either of
the massive particle impedances to accomplish this, that
their own scale invariant impedance is equal to the task.
Or at least, this is what Maxwell’s equations seem to
suggest. But then, there is the Planck particle.
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THE PLANCK PARTICLE

The relative strengths of the gravitational and
Coulomb forces between the electron and the Planck par-
ticle can be determined within an accuracy of a few parts
per billion by simply calculating the impedance mismatch
between these two particles[8].

This mismatch limits the amount of work the Planck
particle can do, the amount of energy it can give, to that
associated with the rest mass of the electron. However
its scale invariant impedances, Lorentz and centrifugal,
are available at their full strength to assist in the mode
coupling concommitant with state reduction.

The massive particle wave function sees the scale in-
variant impedances of both electron and Planck particle
as being of the same strength. One wonders whether
this is an essential requisite for state reduction. And for
confinement.

AT LOW ENERGY

At non-relativistic energies the relevant fundamental
length scale becomes not the Compton wavelength, but
rather deBroglie. The deBroglie frequency is the Doppler
shift of the Compton frequency.

In technological applications, it would seem that there
is some usefulness in the application of these ideas to
circuit design. For instance, one would think that spin-
tronics would benefit from matching both Coulomb and
dipole impedances to the lattice.

The question is whether this usefulness is strictly in
the domain of quantum computing, or whether it might
find application in more widespread present day room
temperature technologies[23–28].

DISCUSSION

The impedance plot of figure 2 is not complete. Miss-
ing are the longitudinal dipole-dipole impedances, the
longitudinal and transverse charge-dipole impedances,
and the Coriolis impedance. There may be others, and
likely are.

It should be noted that the charge-dipole impedances
are scale invariant, as is the Coriolis impedance, and
therefore might also contribute to state reduction. In
general, impedances associated with inverse square po-
tentials are scale invariant.

Given the spin dependence of the weak interaction, one
would expect that adding the longitudinal impedances
to the figure would give additional insight into the weak
decays.

And the role of the Coriolis impedance beckons partic-
ularly strongly.

CONCLUSION

Proton spin structure remains a mystery[29–31].

The idea of generalized quantum impedances continues
to slowly expand the scope over which it seems to be
applicable, and able to provide interesting new insights
into the workings of the standard model.

In the realm of the superheavies, the clustering of
the top, Higgs, Z, and W at the 10GeV (or more precisely,
9.59GeV) coherence line of figure 2 is an interesting ex-
ample, showing the role of magnetic impedances in the
creation and decay of these particles.

To attack the problem of proton spin structure with
the tool of generalized quantum impedances is the most
difficult physics problem imaginable to this writer.
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