
fQuantum : A Quantum Computing Fault Simulator
Suresh kumar Devanathan Michael L Bushnell

Abstract—We like to introduce fQuantum, a Quantum Computing
Fault Simulator and new quantum computing fault model based on
Hadamard, PauliX, PauliY and PauliZ gates, and the traditional stuck-
at-1 SA1 and stuck-at-0 SA0 faults. We had close to 100% fault
coverage on most circuits. The problem with lower coverage comes
from function gates, which we will deal with, in future versions of
this paper.

Keywords—fQuantum,Fault Simulator, Quantum Computing

I. INTRODUCTION

QUANTUM computing has been seen as the next stage
of computer development. However quantum computer

fabrication is prone to errors, just as must as traditional
computers. Defect level testing is important to produce high
quality quantum computers. We present a new quantum fault
model, along side traditional stuck-at fault testing models and
we did attain coverage close to 100%.

March 1, 2013

II. QUANTUM FAULT MODEL

The quantum computing fault model is based on concepts
similar to classical computing stuck-at models. However there
are differences also. First we insert gates instead of setting a
line to a particular value. Example gates include Hadamard,
PauliX, PauliY and PauliZ gates.

A. Good Machine/Bad Machine Model

Suppose we would like to test a line in the circuit. We first
do a good machine simulation. In good machine simulation,
the circuit is simulated just the way it is. In bad machine
simulation, we take the circuit and insert a quantum unitary
transform gate, such as Hadamard, PauliX, PauliY or PauliZ
and do a simulation. We then compare good and bad machine
outputs, if they dont match, a fault is considered detected
otherwise it is declared undetected.

B. Example Circuit

Take the following circuits, a simple Toffoli gate. Refer to
figure 1 where there is a fault free circuit and one with fault
inserted, i.e. a Hadamard gate. We look at the output spectra
of each circuit for an input vector. If they are different a fault
is considered to be detected and fQuantum does reveal fault
is detectable.

III. FQUANTUM: FAULT SIMULATOR

fQuantum works by first generating a fault list, doing
random test generation RTG, and for each vector in RTG,
doing fault simulation and finally reporting coverage.

(a) Fault
free

(b) Faulty

Fig. 1: Fault Insertion Example

A. Fault List Generation

To generate a fault list, the tool goes to each line in the
circuit and adds a fault of type Hadamard, PauliX, PauliZ and
PauliY to the list. The input to the circuit still has a SA1 and
SA0 model.

B. Vector Generation

Random vectors are generated similar to classical RTG.

C. Fault Simulation

Here’s a simple fault simulation algorithm.

Algorithm 1 Bad Machine Sim algorithm

if f.gid = 0 then
InsertInputFault(f)

else
InitializeRegisters()
for each gate g in circuit in order do

if f.gid=g and f is input fault then
InsertFault(f, g)

end if
EvaluateGate(g)
if f.gid=g and f is output fault then

InsertFault(f, g)
end if

end for
end if
SetF inalStep()

Algorithm 2 Good Machine Sim algorithm

InitializeRegisters()
for each gate g in circuit in order do

EvaluateGate(g)
end for
SetF inalStep()



Algorithm 3 FSim algorithm

GoodMachineSim()
xgReg = xRegister.clone()
ygReg = yRegister.clone()
FaultSimulateBadMachine(f)
xbReg = xRegister.clone()
ybReg = yRegister.clone()
if diff(xgReg, xbReg) or diff(ygReg,ybReg) then

f.detected = Detected
else

f.detected = Undetected
end if

TABLE I: Fault Coverage

Circuit FC
And.qc 100%

Deutsch-Josza-1.qc 100%
H-Fourier.qc 100%
Shor-437.qc 100%

IV. RESULTS

We report sample coverage on a few test circuits using 10
RTG vectors. Results are shown in table I. We see that we
generally did good.

V. CONCLUSION

We built a fQuantum, quantum computing fault simulator
and showed it use. In the future, we will, for example, add
support for function gates.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] E. Banks: ”Information Processing and Transmission in Cellular Au-
tomata”, MIT Ph.D. Thesis (1971)

[3] E. F. Codd: Cellular Automata, Academic Press, New York (1968).
[4] E. Fredkin, T. Toffoli: ”Conservative logic”, The Proceedings of the

Physics of Computatio Conference in International Journal of Theoretical
Physics, issue 21:3/4, 21:6/7, 21:12, pp 219-253 (1982)

[5] E. Fredkin: ”An Introduction to Digital Philosophy”, International Journal
of Theoretical Physics, Volume 42, Number 2, pp 189-247 (2003)

[6] M. Gardner, ”Wheels, Life, and Other Mathematical Amusements”, W.
H. Freeman and Company, New York (1983)

[7] A. Ilachinski, ”Cellular Automata: A Discrete Universe”, World Scientific
Publishing, Singapore (2001)

[8] C. G. Langton: Self-reproduction in cellular automata, Physica, 10D,
pp135144 (1984)

[9] N. Margolus: ”Physics and computation”, MIT Ph.D. Thesis (1987).
Reprinted as Tech. Rep. MIT/LCS/TR415, MIT Lab. for Computer
Science, Cambridge MA

[10] N. Margolus, ”Universal cellular automata based on the collision of soft
spheres”, New constructions in Cellular Automata, Oxford Press (2003)

[11] K. Imai, T. Hori, K. Morita: ” Self-reproduction in three-dimensional
reversible cellular space”, Artifical Life (MIT Press), Vol 8, Issue 2, pp
155 - 174 (2002)

[12] Two-state, Reversible, Universal CA in 3D – Miller, Fredkin
[13] J. von Neumann: The Theory of Self-Reproducing Automata. A.W.

Burks (ed.), University of Illinois Press, Urbana, IL (1966).


