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Abstract. Currently the quantitative description of confinement inside nuclear matter is exclusively 

limited to computer experiments, mainly on lattices, and concentrating upon calculating the static 

potential. There is no independent reference for comparison and support of the results, especially 

when it comes to the quark potential in the continuum limit. Yet, we are entitled to be optimistic, for 

the basic results of these calculations seem to be correct from an entirely different point of view, 

suggested by Manton’s geometrization of Skyrme theory. The present work shows the reasons of this 

point of view, and offers a static potential that might serve as independent reference for comparison 

and endorsement of any lattice calculations, and in fact of any structural hypotheses of nuclear 

matter. A historical review of the pertinent key moments in the history of modeling of nuclear 

matter, as well as an outlook anticipating the necessary future work, close the argument. 
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 Introduction 

 Nuclear matter is a concept on whose explanation one heavily relies upon analogies with classical 

achievements in the phenomenology of matter at large: solids, liquids, gases, plasmas, and their 

interrelationship (Satz, 2011). There are, nevertheless, exquisite achievements, driven by characteristic 

experiments, uniquely belonging to the field of nuclear matter. These could add in understanding the 

concept of matter in general, in that they could help improve the very classical phenomenological models 

serving as starting points of analogies. Yet, the theoretical physics rarely, if ever, backtracks its own 

concepts, in order to improve them based on the gain of knowledge occasioned by the analogies to which 

these concepts serve as starting points. In some cases however, such a retracing becomes a critical need. 

This work is addressed to such a case. 

 A place where the theoretical physics turned to a special classical description of matter is the geometry 

related to the theory of Skyrme. One can hardly deny, indeed, the classical source of inspiration of the 

exquisite work of Nicholas Manton on the geometrization of skyrmions (Manton, 1987). As indicated by 

the author himself, it is simply the theory of large deformations. The deformation of matter is definitely its 

most general property, expected therefore to be effectual everywhere, even in nuclear matter. Getting into 

specific details, however, one can say that Manton has chosen for analogy only a particular model of the 

deformation of rubbers – of polymers, in general – the so-called Mooney-Rivlin model for the density of 

energy of deformation (for an even more detailed discussion of this point see Mazilu, Agop, 2012). What 

we intend to do here, is to extend first the very classical source of inspiration of Manton’s geometrization, 

by emphasizing the fact that the theory of large deformations itself can be considered as a kind of gauge 

theory. This quality is likewise passed unto nuclear matter’s description, whereby the skyrmions are the 

explicit expression of its space expanse. Then we indicate the gauge freedom and its relationship with the 

classical theory of deformation. Based on this, and on the idea that every stage of deformation requires a 
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kind of equilibrium of the structured matter, one can then offer a physical reason, and in fact a reasonable 

explanation, for the so-called rational maps. This, in turn, leads to an expression of the confining potential 

of nuclear matter, independent of its structure, which can be taken for reference in guiding the researches 

on the functional form of the static quark potential, or any other kind of static nuclear potential for that 

matter (see Bali, 2001, for the details regarding this topic, and also Alkofer, Greensite, 2007 for a relevant 

review of the problem). 

 One cannot deny either the great advantage of rational maps in understanding the structure of the 

nuclear matter, but the point of the present work is that one can say a lot more about them by the way of 

principle. In this respect, the Manton’s geometrization of skyrmions is instrumental. Indeed, the Skyrme 

variational energetic principle leads to skyrmions as solutions of a nonlinear differential equation. In the 

early sixties of the last century it was noticed that while such equations can well represent the space 

extension of physical particles, and thus may help withdraw these concepts from the highly artificial 

classical condition of material points (Enz, 1963, 1964, 2006), some of them might have unstable solutions. 

This occurrence is in disagreement with the precepts of physics of particles (Hobart, 1963). The main 

variational property of the static solutions of nonlinear equations, taken into consideration as reference in 

defining the extension of particles, was their stability against so-called uniform scaling of the coordinates 

(Derrick, 1964). This is indeed the main property that differentiates an extended particle model from its 

classical counterpart, which is simply a point characterized, besides its coordinates of position, by qualities 

like mass, charge, color, etc. With Manton’s geometrization one can go beyond the uniform scaling, and 

indeed into the deformation of nuclear matter, thus taking in consideration even the anisotropy of particles 

(Manton, 2009). It is here the place where the rational maps can prove their true virtues, at least from 

numerical calculations’ point of view (Charalampidis, Ioannidou, Manton, 2010; Manton, 2012). While 

currently these maps are just working hypotheses, it seems however that they should have a rational basis, 

at least when considered as part of the acquisition of knowledge. As shown in the present work, they turn 

out to be relations between the averages over the ensembles of equilibrium, and the parameters of their 

distributions functions, as long as these distributions are of the classical exponential type. Related to this 

conclusion, we would like to advance a certain point of view, mostly related to post-Newtonian natural 

philosophy, in the particular problem of the structure of nuclear matter. The general philosophical reasons 

of this point of view rest upon the idea of confinement of matter which, physically, is in fact closer to the 

continuum approach of the deformation of matter than to the idea of particulate forces usually taken into 

consideration. In this respect, the Manton’s geometrization appears to be the peak realization of theoretical 

physics when it comes to theoretical approach of nuclear matter, for we are hardly aware of its internal 

structure. What we can certainly grasp in specific experiments is that this matter is in a permanent 

deformation. It is this process that needs to be properly described, and we suggest here a physical basis for 

such a description. 

 Resumé of Experimental Approach to the Theory of Large Deformations 

 The main idea is that the materials’ behavior under stretching is a consequence of the interior forces 

acting between their constitutive particles – classically, the molecules. So, by performing loading 

experiments of material specimens, we actually get insight into the structure of the materials. The primary 

experimental recordings are stretches, i.e. the relative changes of the dimensions of specimens of material 

under load, and the loading forces, which can then be recorded as a function of these stretches. A typical 
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uniaxial loading curve for a cured rubber, i.e. a curve obtained with the loading force acting along a given 

direction, is shown in Fig. 1. The data is represented as the nominal stress σ, vs. nominal strain, ε. The 

nominal stress is defined as the force divided by the initial cross-sectional area of the specimen, and the 

nominal strain is the variation of length of the specimen along the direction of loading, divided by its initial 

length on that direction. 

 Such a curve is used in applications of constitutive modeling, as follows: the work of loading force, 

invested in the deformation of the specimen, is calculated in the usual way, as the area under the loading 

curve. In terms of stretch, this comes to the integral 
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Here λ denotes the stretch, the suffix zero meaning an initial already stretched state, if the case may occur. 

Therefore, if one finds the function U(λ,λ0), one is able to calculate the nominal stress. In fairly natural 

assumptions this allows then to perform calculations regarding the behavior of the material under stress in 

general conditions, viz. to model the behavior of the material. 

 The fundamental assumption implicitly used in any such constitutive modeling is that the shape of the 

loading curve is uniquely defined by the material, and that it reflects the specific forces between the 

structural constituents of the material. Therefore, for a three-dimensional specimen, the work spent in the 

loading reflects the energy of those internal forces, and is a priori considered as a potential for the stress 

along the directions of stretches: 
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This assumption comes down to the idea that f
k
 are the principal components of the stresses generated by 

the internal forces inside the material. At least in the case where the stress is a symmetric matrix this works 

very well, with outstanding results. If, on the other hand, it is assumed further that the stress is a tensor with 

respect to the rotation group of euclidean space, the equation above can be understood as giving a tensorial 

invariant – the trace of the product between the tensor of stress and that of strain. 

 Now, another assumption comes usually into play, namely that the stretches actually define a 

coordinate transformation in the space occupied by matter. In this case the strain tensor can be taken as 

quadratic in stretches, so that the nominal strain is just a singular case of definition of the measure of strain. 

Expressed as a function of strain only, the potential U must be invariant, therefore a function of the 

invariants of strain tensor. These are 
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A linear combination of the first two of these invariants is used by Nicholas Manton in his analogy, and 

amounts to the so-called Mooney-Rivlin model of large deformation (Mooney, 1940; Rivlin, 1948) 

 However, the most general potential should be obtained by curve-fitting the loading curve, and then 

integrating this result, as indicated in equation (1). Such a potential is expected to represent the properties 

of the confining forces that keep the material together. In view of the Manton’s idea of geometrization, the 

things should go the very same way for the nuclear matter. Therefore, at least qualitatively speaking, what 
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we obtain for rubbers should go equally for nuclear matter: the functional form of the static potential should 

be the same. At least for the case of ‘uniform scaling’ this seems to be indeed the case. Once we have thus 

obtained a reliable functional form of potential, the hard part of the problem, i.e. the physical explanation of 

such a potential, can be handled on a sound basis. The current usual theoretical approach though, is by 

constructing a partition function based upon a priori assumptions regarding the structure of the material. 

This approach is closely followed even in nuclear calculations. In broad lines we also will follow it here. 

The only difference is that we will be concerned not with the partition function, but directly with the 

statistical distribution function itself. This method is intended to help avoiding the concept of temperature 

as a primary parameter of the equilibrium distributions, replacing it with a gauge phase, as it seems only 

natural when experiments are considered in detail. The temperature is in general a classical remnant of a 

sufficient statistic, which works properly only in the highly idealized case of a classical gas. The nuclear 

matter is, nevertheless, far away from this condition. 

 A Statistical Theory of Experimental Loading Curves 

 The experimental data for the uniaxial loading of rubbers (and not only rubbers!), can be aptly 

represented by a formula like 

  tanba  (4) 

Here φ is a phase angle depending on the evolution of deformation. At reasonable values of deformation 

this angle can be taken as a linear function of a measure of deformation. Such a choice is represented in 

Fig. 2. One can see that the choce might not be appropriate all along the curve, but we take it as it is, just to 

built our argument, which is based on the idea that the phase angle depends somehow on the stage of 

deformation. 

 Fact is that one can find many other, perhaps more convenient, functions to fit the experimental curve 

from Fig. 1, as is in fact the case in the practice of constitutive modeling. The Fig. 3 shows also a curve fit 

of the data but this time with a rational function – a ratio of two polynomials, one of third degree, the other 

of second degree in the nominal strain. It is not unusual, when it comes to representing the experimental 

data, to approximate the tangent function by a rational one, but the occasion seems to call for a deeper 

reason for the matching of the two curve fits. As we mentioned, one can see that the tangent fit is not quite 

as good as the rational one in the first place, and so one can be induced into thinking that it refers to an 

ideal situation which, obviously, cannot be reached in the real experiments. A comparison of Figs. 2 and 3 

seems to demonstrate that in reality the data is better represented by the rational function, which thus 

should carry an important physical meaning. The point is, however, that the two are not independent: the 

rational fit from Fig. 3 is actually inferred by starting from equation (4). Let’s describe the procedure. 

 Based on the third principle of classical mechanics, one can intuitively say that the right hand side of 

equation (4) must be a kind of mean over the ensemble of equilibrium forces between the molecules of 

rubber. The formula (4) then reflects only partially the structure of this mean, while showing something 

more: in view of the good representation from Fig. 2, one can infer that the parameters of this equilibrium 

depend on the stage of deformation process, reflected by the measure of this deformation, entering the 

argument of the tangent function from equation (4). The problem would then be only to find a suitable 

statistics, in order to be able to characterize this mechanical equilibrium as a statistical one. This appears to 

be a proper approach, for one cannot know a priori if the internal forces between molecules are acting 
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independently of each other, in order to apply, for instance, the principle of linear independence, and thus 

to consider the load as balanced by a resultant of molecular forces. So much the more, we cannot say 

anything a priori about the forces internal to nucleus, for that matter. 

 Now, the formula (4) has the typical form of an eigenvalue of the stress matrix in what we would like to 

call the Barbilian representation (Mazilu, 2006; Mazilu, Agop, 2012) whereby the argument of the 

function (4) is the arbitrary phase of the local shear vector in an octahedral plane, and is represented by a 

gauge angle . If, as usually in the experimental practice, we accept such an identification for the phase φ 

from equation (4), then we also have to accept the apparently natural idea that the stage of deformation is 

controlled by the octahedral shearing of the material, i.e. by a measure of motions of the material out of the 

line of action of external force. This conclusion is, again, coping both with our intuitive image of 

deformation process, and with the definition of stresses as equilibrium quantities. If the stress in the form 

given in equation (4) is then interpreted as an average over the fluctuations of the internal forces between 

the molecules, as reflected in the Barbilian phase values, then the statistical nature of the ensemble 

undergoing this equilibrium, manifested in the distribution function characterizing it, is easy to obtain. In 

order to show this, we simply differentiate equation (4) with respect to  and then eliminate this parameter 

in the resulting expression. The result is, in general, a differential equation of Riccati type: 
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where A, B, C are some constants. 

 In order to get a further insight into the nature of the statistics we are after, let’s notice that the most 

general noncommittal probability distribution that one can obtain from experimental data, having at 

disposal only the values of the mean is, according to the principle of maximum information entropy for 

instance, an exponential distribution. If X is the physical quantity to be statistically characterized, and θ is 

either a measured value, or a certain function of the measured value, then the exponential distribution of the 

values ξ of X, over a certain ensemble of allowed values, is given by 
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Now, in real cases it may happen that X is not allowed to run over the whole real positive axis. This may be 

due to the fact that the real axis representing the values of this quantity is already endowed with an a priori 

measure, or to the fact that X has indeed a limited range – i.e. there is a partition of real axis representing X 

– which, from mathematical point of view, comes down to the same model. The model then produces the 

following family of elementary probabilities depending on one experimental parameter θ: 
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Here μ(dξ) is an a priori measure of the real line, and the normalization factor Nμ is defined by equation 
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These exponential probability distributions, used currently in all kinds of physical and engineering 

applications, have the remarkable property, independent of the a priori measure μ(dξ) of the real numbers, 

that their variance (VAR) can be related to their mean (m) by 
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A particular subclass of exponentials, with large applications in experiments as well as in theory, is the 

family of distributions with quadratic variance function. For these, the variance, considered as a function 

of mean, is a quadratic polynomial. Their mean satisfies therefore the Riccati differential equation 
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where r1, r2, r3 are three real constants characterizing the distribution, and accessible to measurement. 

 Comparing our differential equation (5) for experimental stresses with equation (10) for the mean of a 

quadratic variance distribution function, one can say that the experimental stress is the mean over an 

ensemble of forces characterized by a quadratic variance distribution. Provided, of course, we interpret the 

phase angle  as the parameter of a family of such distributions characterizing our large deformations. In 

other words, the parameter of this ensemble – the analogous of temperature from the case of classical ideal 

gas – characterizes the capability of extended matter to deflect the action of the external force from the 

direction of its action. Under the condition 0rrr 2
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This formula is obviously of the form given in equation (4). If now the parameter θ is taken as a linear 

function of the Barbilian phase, the equation (11) can be interpreted as the mean stress on a certain plane. 

This very plane is not so important by itself for the moment, and for our present purposes can be identified 

with a cross-sectional plane of the experimental specimen. Then the numbers r1, r2, r3 or their counterparts 

in experimental records: 
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are certainly related to the internal ‘molecular’ properties of the specimen. In the specific case of rubbers 

these properties are those of the macromolecular chains and filler dispersions. In the case of nuclear matter, 

the ‘molecules’ may be replaces by quarks, partons, mesons, baryons, etc. 

 Statistics of Intermolecular Forces 

 The above considerations leave one important subject uncovered: the actual relationship between the 

parameter θ of the family of quadratic variance distribution functions and the experimental recording. All 

we can say is what already has been said before, namely that, in the specific problem of deformation, the 
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engineering experience to date indicates that the phase  of representation of the stresses is in direct 

connection with the progress of deformation. This fact is reinforced through the close representation of 

experimental data for uniaxial tension (or compression) by equation (4) with the phase depending linearly 

on the recorded deformation (see Figs 1 and 2). If, in a general situation, the deformation is experimentally 

quantified by the experimental stretch λ, then a relationship between θ and λ is to be expected, for θ is, in 

general, a function of the experimental recording. We are now in no position of finding directly this 

relationship, but there is an indirect way to it, namely the agreement with experimental data. 

 According to our philosophy, the experimental stress must be a mean. Then how do we account for a 

mean that is rational function of stretch? In order to answer this question, notice that everything in the 

general exponential statistics depends on the a priori measure μ(dξ) we use for the characterization of the 

ideal continuum approximating the real body. Thus we must find the a priori measures that best suit our 

experimental needs. These measures may not be always positive, but the fact remains that regardless of this 

feature they must always give results in finite terms. In order to exemplify this point we choose some 

polynomial measures as given in Table I. The table offers the normalization factors as functions of the 

parameter θ for different a priori polynomial measures of the real line. By the particularly simple 

transformation 
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we can bring these normalization factors to experimental terms, and see if we can get a real situation out of 

this. To make a long story short, we take the situation represented by the last row of the Table I in terms of 

the physical parameter : 
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For this family of distributions the mean is 
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Now, the relation between experimental recording and the parameter of the distribution may not be as 

simple as that from equation (18), but the fact is that the mean over such ensemble can preserve its simple 

functional form (18) in very large conditions, perhaps with more parameters though. Such a mean can then 

be further cast into the form of a sum of linear fractional functions of stretch: 
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which is more suitable for both practical, and especially theoretical purposes. 

 The experimental force must be proportional with the quantity (18) (or (19), does not really matter), 

which thus replaces the equation (4) from the ideal uniaxial and even biaxial or planar cases. Notice that 

what is really changing here is not the nature of the statistic to be considered – it is always given by a 

quadratic variance distribution function – but the experimental measure of the stage of deformation 

characterizing the ensembles of equilibrium intermolecular forces inside rubber. Also, notice that the 

stretch in the present case replaces the temperature from the classical case of ideal gas, as a parameter of 
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the equilibrium distribution. In that case the statistic would refer to kinetic energy, here the statistic refers 

to forces and the parameter charactrizes the stage of deformation. Fig. 3 shows the quality of representing 

experimental data by function (19). 

 An Energy Function 

 In view of equation (19), the nominal stress σ will then be arranged in a particularly convenient form as 
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with α, β, γ, a, b – some constants coming from experiment. Here we chose for reference the undeformed 

state of the specimen. The advantage of using equation (20) for the nominal stress becomes more obvious if 

we integrate it in order to obtain the energy function for the model. The result is 
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Now, equation (21) can be advantageously used if we accept further assumptions, helping to go over from 

the uniaxial case to the general three-dimensional case, namely that the stretch is indeed a tensor, and that 

what we measure in experiment is just one or more of its eigenvalues. Assuming then isotropy, to the effect 

that equation (20) is the same no matter of the eigenvalue of the stretch tensor, and the Valanis-Landel 

hypothesis, stating that the total energy function is the sum of the three components of the energy along the 

principal directions of stretch tensor (Valanis, Landel, 1967), we finally get 
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Here we have used the notations 
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where λ1,2,3 are the three eigen-stretches. Notice that this energy is not a pure first and second invariant 

theory, of the kind used by Nicholas Manton in his geometrization, and this fact algebraically complicates 

the matter. However, the complication is no more than algebraic and it can be easily overcome. Notice also 

that we have here both a generalization of the so-called neo-Hookean model, actually of a so-called Varga 

type constitutive model (Varga, 1966). This result is particularly encouraging in the general endeavor of 

constitutive modeling. However, it is especially encouraging in the characterization of the nuclear matter, 

by extending what we would like to call a ‘Manton program’, for which the work of Manton on the 

geometrization of skyrmions (Manton, 1987) is the inception point. 



 9 

 Application to Nuclear Matter 

 Nuclear matter is first of all, obviously, matter. Here the internal forces between its structural 

constituents are critical ingredients in understanding and explaining its structure, and that even in a much 

larger extent than in any classical instance of matter. These forces are especially used in explaining the idea 

of confinement, and the concept of deconfinement coming naturally with it (Satz, 1986, 1994, 2000). The 

constitution of nuclear matter is here, like everywhere in physics, assumed a priori and, because of that, the 

forces are usually described by a potential whose structure is adjusted by phenomenological arguments. 

Typical among others, remains the idea that the confinement refers to quarks, bound to their hadrons for 

instance, and that it is described by a potential which, in a first approximation is linear in the quark 

separation ‘r’ (Satz, 2000). This would explain the confinement of quarks within the structure of hadrons, 

inasmuch as its deconfinement requires an infinite energy in order to be carried on. In broad lines, however, 

the potential is an unknown, and one usually resorts upon computer experiments based, for instance, on 

lattice calculations in order to get some insight on its functional form (Alkofer, Greensite, 2007). 

 The quarks, as well as partons, are remnants of the classical view of a ultimate structure of matter in the 

specific field of nuclear matter. Fact is that, ever since the discovery of mesons, the idea occurred that the 

baryons are not stable particles in the structure of nucleus, but are in a continuous change within that 

structure. This continuous change was first explained by exchange of mesons. It is nowhere recognized in 

theoretical physics that the concept of particle potential in the structure of nuclear matter might be not only 

too poor for the representation, but also totally inappropriate. For, the nuclear matter, either static or 

dynamic is first of all matter. All one can say about it, in view of the manifest ‘dynamism’ of nuclear 

matter, is that the force centers, necessary in the mathematical description by potential, are accidental and 

can vary randomly in space and time. Therefore these force centers should be described by a stochastic 

process in some kind of collective coordinates. 

 More to the point, the potential, as classically understood, is hardly a reasonable description of the 

confined matter, as the very idea of confinement involves a dynamical grouping of the accidental centers of 

force in the matter. This dynamics is dictated by external reasons, which can be generically gathered under 

the label ‘deformation’. In reality therefore, the nuclear matter should be described by arguments closer to 

the theory of deformation rather than by the theory of point particles connected by central forces. This fact 

makes the Manton’s idea a central point, the inception of a program actually – the ‘Manton program’, as we 

called it before. In this respect, the classical experimental loading curves are the best candidate in 

describing the confinement, for they reflect the internal forces of the matter. We just have to assume that 

the confinement is independent of the behavior of external loading force: this one may be even a sudden 

impact force. The first thing the loading curves show is that one does not have to go to infinity in order to 

get an infinite force of ‘deconfinement’. The infinite force is achieved at a finite distance, in the places 

where a rational map like that from equation (21) has a vertical asymptote. The deconfinement is really 

achieved by some other means than ripping the matter, as indeed the phenomenology indicates. The core 

device of this approach is indeed the rational map which turns out to be a correspondence between the 

mean of the ensemble representing the equilibrium of matter, and the experimental parameter(s) of the 

family of distributions representing this ensemble. 

 A few references in the analogy of nuclear matter with some classical concepts are worth bringing into 

discussion from this point of view. The first concept historically entering the analogy was that of the ideal 

gas. The parameter of the ensemble classically describing it at thermodynamic equilibrium is the (absolute) 
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temperature. Any forces between its structural constituents – the molecules – are eliminated by reasons of 

sufficiency (Jeans, 1954): the temperature is considered a sufficient statistic for the kinetic energy of the 

molecules. The first alarm signal regarding this model occurred when the temperature was taken as 

defining also the thermal equilibrium for the blackbody radiation. There, the first change in physical 

reasoning has appeared, for the ensemble describing the equilibrium of this physical system is of the 

quadratic variance distribution function type, described by equation (12) above, whereby θ is the reciprocal 

of temperature and ‘x’ is the spectral energy density of radiation (Planck, 1900). The harmonic oscillator 

was thus established as the fundamental unit of any model in the structure of matter. But then it was 

discovered (Compton, 1915) that, from this point of view, the energy of a solid has to have a constant term 

added to it, which cannot be accounted for by extending the classical theory of ideal gas. Indeed, such a 

term can only be explained by long distance forces between the molecules of the ideal gas, and these forces 

were among those eliminated by the classical equation of state of an ideal gas in the first place. They 

correspond to a logarithmic potential, which according to some classical arguments can be accepted only 

for a solid, or corresponds cosmologically to inertia forces (Sciama, 1969). Well, it seems that the forces 

eliminated a century ago from the realm of gases will continue to haunt us, for the logarithmic potential 

comes again to light in the case of nuclear matter, in a pure Chern-Simons gauge argument regarding the 

construction of the confining potential (Gaete, 2003, 2005). There is still much to learn from the classical 

gas after all! 

 No wonder then, a classical ideal gas model for nuclear matter (Fermi, 1950) could not give full 

satisfaction: the ideal gas structure of the matter is not itself satisfactorily described from theoretical point 

of view. On the other hand, for a solid, like for the blackbody radiation, the temperature does not reflect a 

sufficient statistic anymore. But, while in the case of the blackbody radiation we would have the frequency 

to support the complementary experimental information, for a solid this is no more the case, and so much 

the more for the nuclear matter. We are facing here the problem of choice of a parameter for the theoretical 

distributions characterizing an equilibrium state of the matter. The Manton’s geometrization then points to 

the fact that, as long as that equilibrium state refers to the deformation of (nuclear) matter, the stretches are 

the parameters of choice. As shown above, in a general definition, they are related to the means of the 

ensembles of equilibrium by rational maps. They lead to a general form of the confining potential, to be 

unveiled, in a particular scaling case, in the next section. 

 A Typical Confining Potential 

 With the previous considerations the door opens for still other side of the analogy that gets into the 

theoretical description of the nuclear matter. This time the analogy refers to the Newtonian forces proper. 

Namely, if the forces of confinement in matter are described by a potential, then the best candidate for such 

a potential should be, in general, the function from equation (22). Manton’s work just opens therefore the 

way of an exquisite phenomenological theory involving the very logarithmic potential, which appears 

presently in the last two terms of the potential from equation (22). One could say from the outset that, 

inasmuch as that equation is surely approximate by the way we got it, the logarithmic potential might be 

also the expression of an approximation. In order to see what kind of approximation it is, one only needs 

some natural assumptions on the structure of nuclear matter, among which the existence of partons as 

centers of forces and of quarks as centers of the ‘resultants’ of these forces, come naturally handy. 
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However, one can get some information just by considering the potential as it is, with no structural 

assumptions yet. 

 We describe a model of nuclear matter as close as possible to the blackbody radiation, not the ideal gas. 

This involves a particular form of equation (22) for which the three stretches are equal. This particular 

situation is termed by Derrick ‘uniform scaling’ (Derrick, 1964; Manton, 2009). Indeed, in this case one 

can prove that the essential physical condition for the theoretical description of blackbody radiation is 

satisfied (Mazilu, 2010a,b; Mazilu, Agop, 2012). That condition comes down to Wien’s displacement law, 

in its general expression which serves as fundamental criterion in establishing the functional form of the 

spectral density of radiation as a function of frequency and temperature. In the like case, equation (22) 

produces a potential of the form given in equation (21) up to an unimportant factor 3: 
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where r is the space separation between the constituent points of the matter (the instantaneous centers of 

force), and r0 is its reference value. This gives a central force with the magnitude depending only on the 

distance between nuclear particles, considered as centers of force, in the form 
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In the limit of high separation, the linear term prevails, so the confining force depends there linearly on the 

separation between the constituents of the nuclear matter: it is not a constant. Depending on a interplay of 

the parameters, the potential from equation (24) may reduce, for instance to the known “Cornell potential”, 

containing the electric forces and the constant forces. But here we would like to point out something else 

regarding this potential. 

 Conclusions and Outlook 

 The calculations of the static potential are usually done by constructing the partition function over a 

structural ensemble. The structure here refers to matter, and the partition function requires the parameter of 

the distribution to be used in calculation of the partition function. Currently, this parameter is the remnant 

of the temperature from the classical theory of the ideal gas. Useless to say, this parameter is not sufficient 

from many points of view. First of all, it does not reflect a sufficient statistic, but only in the original use, 

viz. only for the classical ideal gas. Secondly, in the case of nucleus the space extension of particles 

becomes important, and the statistics should reflect this in a natural way. 

 Starting from the thermal radiation, and continuing on through the theory of solids, one feels indeed 

necessary to introduce some other parameters. Now, if in the description of nuclear matter one has to use 

pertinent analogies, then the standards of these analogies should themselves be properly described from a 

physical point of view. This is far from being currently the case. One of the standards of analogy for the 

nuclear matter is the solid state of the matter. It is not itself a properly described concept, but offers 

however a way out of difficulty through the practice of deformation, and its associated theories, as 

described above. This practice is able to give us a proper reference static potential, by providing a statistic 

whose parameter is different from temperature. This parameter reflects the essence of extended particles 
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suspected to enter the structure of nuclear matter. It is the Barbilian phase, measuring the capability of 

extended matter to “deter”, so to speak, the action of external forces from the direction sought for of this 

action. Therefore a statistical ensemble referring to nuclear matter should have a distribution function 

characterized by two parameters: the temperature and the Barbilian phase of ‘transverse motion’. 

 This philosophy produced here a potential having some basic properties required in different structural 

theories of the nuclear matter. Chief among the traits of this potential is that it contains naturally a 

logarithmic term, which we presume to be a remnant from the classical theory of ideal gas. Going into 

specifics, in Fig. 4 the static potential (24) is represented, for the parameters found by curve fit of the data 

from Fig. 1. The origin of potential was conveniently chosen to be zero, in order to avoid complications 

which, for the moment, would only side-track our conclusions. The behavior shows another basic property 

of the potential: the infinite gradual increase with the separation, as indeed one feels it should be the case. 

However, there are reasons to believe that this potential saturates somewhere, in the sense that the force 

becomes zero, and that this event is physically meaningful, for instance in the phase transitions of the 

matter. This would mean that the expression we gave for the potential has to be only approximate, as it was 

intended, indeed. But the challenge now is to find just what approximation is that. The following 

considerations may help in the quest. 

 From a structural point of view, a pure gauge theory could probably be able to account in full, so to 

speak, for this general behavior, by reestablishing the long distance logarithmic potential from the case of 

ideal gas in its natural rights. In any case, it is able to account approximately for such a potential (see 

Gaete, 2003, 2005). Related to this idea, an observation is perhaps relevant here, that can guide our future 

systematic approaches of the problem. The approach of Patricio Gaete, in the works cited above, produces a 

potential of the form K0(r/r0), where K0 is the modified Bessel function of second kind. Then the general 

relations (Gradshteyn, Ryzhik, 2007, Ex. 8.447.1 & 3): 
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where I0 is the modified Bessel function of the first kind, and ψ is Euler’s psi-function, show that in the 

approximation of small separation the logarithmic term dominates, hence the logarithmic potential is 

effective there (Gaete, 2003). In other words the logarithmic potential itself is just an aproximate numerical 

case, depending on the separation distance between the centers of force inside the nuclear matter. 

 One can see, from the shape of potential function Fig. 4, that the behavior of the potential is dictated 

almost exclusively by the polynomial terms from its expression. Therefore, in this approximation, we need 

to concentrate on this part, and not on the logarithm, in order to find a closed-form expression that would 

represent the approximate potential. Fig. 5 shows that the approximate potential given by equation (24) 

accepts indeed a closed functional form, involving ab initio the modified Bessel function of the first kind: 
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If this is the case, then the true potential should have this form in a wide enough range of separations, not 

the logarithmic form, which should prevail at larger separations. For the form (27) there are theoretical 

reasons related to the statistics on Wilson loops in two dimensions, and these very reasons can be applied 

for the general form of the confining potential. This issue will be treated in a future work, but we can 
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indicate even by now the source of the term from equation (27), and thus the basis of that future work, for it 

contains some interesting structural considerations. 

 It is quite obvious that, in conducting the considerations of the present work, the a priori measure μ(λ) 

of the real axis is instrumental. It is here the equivalent of the a priori lattices from the usual approach, and 

needs to be ascertained before we start any speculations. No doubt, the expression from equation (24) is 

approximate by the very fact that we used just guesses for this a priori measure. For instance the curve from 

Fig. 1 is well represented by a sum of two or three linear fractional functions, covering one or another of its 

portions. This circumstance led to the idea of rational function for the curve fit in the first place. Now, the 

measure μ depends exclusively on the ensemble serving to perform the statistical calculations, and it is here 

where we need to concentrate our effort. 

 The Barbilian phase itself, reflects another sufficient statistic on such an ensemble, just like the 

temperature for the classical ideal gas, and this statistic is related to frequency. Indeed, in the limit where 

we consider the thermal radiation, or indeed a solid, as an ensemble of oscillators, each one of the elements 

of this ensemble, having a given frequency, is coordinated by three parameters, representing a complex 

amplitude and a real phase. This real phase is, again, the Barbilian phase. The frequency per se is therefore 

a sufficient statistic, which can be produced as instantaneous frequency (the mean of time derivative of 

phase), or a function of frequency, on such an ensemble. Going further, the Barbilian phase should be 

therefore naturally related to color, once it is related to frequency. It is here the point where group theory 

arguments produce an a priori measure for color, and therefore a propagator of color on such an ensemble. 

This is a function that, in the particular case of uniform scaling, reduces to that from equation (27). 

 Therefore the color of structural members of the ensemble representing a nucleus is the one responsible 

for such a behavior as that reflected in the potential (27). Indeed one can prove, based on classical 

arguments, that the color is a parameter characterizing in a special way the nuclear extended particles, just 

as the static charge does it for their classical point counterparts. One can say that within nuclear matter the 

forces are indeed not independent of one another. This seems just a vague statement, repeating the one that 

actually started our argument in the first place. In fact, however, it seems that the original concept of 

current quantum chromodynamics involving the lines of force can be improved by specifying the way in 

which the forces depend on each other. Specifically, the forces due to color actually act upon the flux of 

electric or magnetic lines of force. This, or one like this, is the only sound physical conclusion of a classical 

theory so formulated. As we said, we reserve a future occasion for the details of such a theory. 
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Table I 

A List of Polynomial Measures and Corresponding Normalization Factors 
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Fig. 1. The data points of a typical loading curve of cured rubber, extended a little over 100% elongation. 

Imperial units are used for the stress, and therefore for the density of energy. 
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Fig. 2. The ‘tangent fit’ (full line) of the data (circles) from Fig. 1. The argument of the tangent function is 

here a linear function of the stretch, even though the data is represented as a function of nominal strain. One 

can see clearly a little misfit in the region of origin of strains. This may be due to the fact that we chose a 

linear function for the argument of the tangent function (see text). 
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Fig. 3. The ‘rational fit’ (full line) of the data (circles) from Fig. 1. The argument of the rational function is 

here the nominal strain. One can see that the curve-fit is better than that from Fig. 2 (see text). 
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Fig. 4. The potential energy density based on the ‘rational fit’ from Fig. 3 of the data from Fig. 1. The 

‘quadratic function’ behavior, specific for the case of solids or plasmas is clearly dominating. 
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Fig. 5. The potential energy density based on the ‘modified Bessel function of first kind fit’ (full line; see 

text) of the potential from Fig. 4 (dashed line). Even though the two curves do not coincide, they are 

nevertheless very close. Here we assume that the full line is the true approximate physical result. 
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