RESTRUCTURINGLOGIC

Abstract

The outline of a programme for restructuring matageal logic. We explain what we mean by ‘restruictg’
and carry out exemplary parts of the programme.



Preface

A restructuring programme operates in three stepst the existing materials of a discipline aquified, then
passed through a filter, and finally allowed tdlsednd refreeze.

In the course of restructuring no substantive tssaite lost. (Some results will change their shapéheir
function, but none will be lost.) All “losses” —ahdirt removed during filtering — lack mathematisabstance.
By shedding residues of idle metaphysics and olesstiolasticism we gain clarity and rigour.

At least half the work under the programme therfmnsists of recycling and reframing existing tssu his
will substantially increase transparency in theaargrocessed. It will lead to new results only aéeond stage,
when the programme has opened up fresh vistakl@iown effects into other areas of mathematiestarbe
expected, but the main impact of the programmebwlfelt in the so-called foundations — in areahsas model
theory, proof theory, recursion theory, and sebthe

Any restructuring programme is based on an abst@utept which acts as a solvent to liquefy théustguo.
The quasi-philosophical position implicit in thetts quo is opposed with an alternative positidre thallenge
inherent in the programme is to reconstruct theiplisie on the basis of this alternative position.

In the present manuscript | will not be arguinglgéophically for the positions at the heart of eestructuring
programme. The philosophical arguments can takeepkdsewhere. Here | will simply state and, where
necessary, explain the underlying philosophy. bubtef arguing for it philosophically we will letéHruitfulness

of its mathematical consequences, and the clafityathematical presentation it allows, speak feelit

The hegemonic if not entirely unchallenged positiormathematics is still a philosophy of Platomsalism
about mathematical objects and a correspondencaiatcof mathematical truth. This we reject.

Our alternative theory of truth falls largely odtsithe scope of this manuscript, although a fewfbiemarks
will be made in the section on restructuring matielory. The alternative ontology is one of stricitism — a
conviction that all mathematical terms should udtiely be explicable in terms of finite operations fmite
strings.

The idea of a mathematical reality is meaningfulohthis reality is understood to be a projectiohaccepted
theories. Formalism can be revived as the natundbgpphy of mathematics provided it is embeddedrin
account of truth free from notions of corresponaen&nd provided, of course, the remaining Platohaits
that caused the first downfall of formalism aredshe

Certainty in mathematics is not certainty of copasdence. Certainty in mathematics means the ngrtdiat a
given formal sentence follows from a given setarhifal axioms. These facts may be certain for alcedvable
purposes, but they are not very interesting kirfdads.

In mathematics the flow of justification is at leas much from consequences to axioms as from axitom
consequences. Axioms help organise consequen@ssath usually designed after a batch of conse@seisc
already known.

The image of mathematical logic as a foundatiahésefore wrong. There is nothing particularly dpbr basic,
or certain about the foundations of mathematicsti@ncontrary, results in certain areas of mathieaalbgic
are necessarily aeronautical — thin, abstracereth.
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The introductory section shows how model theorylwatiberated from extraformal accretions.

Following that, because all serious objectiondgrogramme arise from diagonal arguments, severalons

of this type of argument are examined.

First to isolate the postulates and incompletedyest assumptions involved in each version.

Second to argue that greater clarity, simplicityd gzower can be achieved by making changes to these
postulates: In some cases by rejecting traditipoatulates, in other cases by admitting alterngingulates in
competition to the existing ones. (On the tableamitents above, sections where rejection is mangé#adr the
programme to succeed are marked by ‘M’, sectionsre/ft is optional by ‘O’.)



Restructuring Model Theory

What is the purpose of a model ? To assign one@f/alues to every sentence of a theory in a walrdspects
logical structure. The best understood and mosisprarent way of doing this is a decidable theoigcé& we
expect our models to behave like theories, we njigittas well insist that they ought to be theories

There are objections, of course. Model theorysreitrrent form is plagued by various extraneousriiments.
First there are commitments to diagonal argumehét tnake the idea of the model as a theory seem
problematic. Depending on how it is viewed, theaid# an uncountable model that arises out of Cantor
argument can appear hard to reconcile with couatappography. And then there is the irredeemable
insufficiency of theories alleged by Gédel's diagbincompleteness argument. It appears to imply tha
models had to be decidable theories, only wealtergsting theories could have models.

These non-philosophical commitments are dealt witlother sections, here we will only very sketchily
address the more philosophical ones before proggedia new definition of models.

Model theory cannot help entering into philosoph@mammitments — because of its declared objectivgite a
definition of truth appropriate for mathematicssitinevitably the dressing up of a philosophicadty of truth
in mathematical symbols. Whatever logicians mag Itk claim, it is impossible for model theory to be
philosophically neutral.

When theories fracture — as they would appear tordier the current interpretation of Godel's theoreone
logical response is to seek a whole outside ofrtego(The other typical response is a defeatiseéaeto some
form of relativism.) Gédel himself was driven, aafply in part by his own theorem, to a philosophjpasition
that stresses the reality and independence of mattieal objects divorced from theories. He becamawn as
the arch-Platonist. This is a position that chimed#l with model theory in its current form. The 8pof current
model theory is one that breathes a commitmentmri@spondence theory of truth.

Hence a choice of two philosophical commitmentsmiaidel theory and thereby for mathematics as aevhol

The traditional favourite: Truth consists in correctly representing an exdkestate of affairs.
For this position, theories are secondary, in thieeene only faint reflections of quasi-Platonic feet forms.
Due to constraints on space the alternative posttém only be floated in the form of a slogan.

The alternative: Language is a system of presentation, not reptatsem

Since formalised systems are by far the most tiamesp and trustworthy way of presenting mathematius
leads to neo-formalism, or the thesis that nothingside of theories is admissable: Every mathemlatic
argument ought to be explicable in terms of eitterivations within or relations between theories.

To qualify as true a theory must not only be weli@eered — consistent and complete —, but alsactitte
and perhaps even useful. There is a beyond tootineaf but this beyond has little to do with corr@sgence to
an external reality. One element of the beyonceigggtability, a constant exhortation to make éxgstheories
better; the other is asking for the point of itthik activity.

The possibilities of devising formal games are essll The question that truth asks is one that goistde of
model theory: Are theworth playing ? Do they makgood mathematics ? Whether a theory is true in the
colloquial sense amounts to a toned-down valuegodmt that is more moral or aesthetic than factual.

Apart from the objections, there are also clear prabent benefits to be derived from identifyingdeis with
decidable theories. Model theory in its currenihfaiegrades formality: Truth for theories is definedsuch a
way that the models theories are referred to aefrmal than the theory.

Current model theory takes axiomatised theorieshvhepresent everything that is desirable in ma#tes—
clear, clean, and crisp — and turns them over nweky so-called model or interpretation, a semi¥falism at
best, where notation is an unstandardised mishwébhusually a large helping of naive set theorppling
the alternative standard of truth, current modelstnseem considerably less real than theoriesopheation of
interpretation the way it is conducted today cansts a crime against clarity.

Completeness of a theory is a much clearer denfzam the law of excluded middle currently assumead fo
models; consistency of a theory much clearer tharekistence of a model, which whatever the reiatenxce of
models was supposed to mean surely meant to inglgistency. The issue is not whether consistendy an
completeness assumptions are made in model theatrirow transparently it is done.

The semantics of current model theory only giveillingion of reaching “real mathematical objecté/hat is
reached in reality are only unformalised notionsutsuch objects, i.e. a less explicit, inchoapetegf theory.
The issue is not one of reaching through to a ssggboeality rather than staying with symbolic pneéagons,
but of how well articulated the symbolic preserunas are.

Current semantics thus fail to add value. In readif they do is to provide is an excuse for evgdihe
challenge of demonstrating the coherence (consigieand definiteness (completeness) of unformalisgans.
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When current model theory allows models to be @efihy pointing to unformalised notions, it effeeliv tries
to deflect the challenge of making them clear.

Relating a formal system to the world is less ghliHorward than the image of mirroring wants to mais
believe. One should not think of filling an emptyrrhalism with prefabricated objects, but ratheattémpting
to draw out a formalism from an unformalised acdoainthe world. The formal assimilates the lessfal.
Finding a formal system “exemplified” or “instartéa” is a complicated process of trying to distilless
ambiguous symbolic presentation out of a more authig one in such a way that the end product still
“reasonably resembles” the original input. (NotéeTvagueness of phrases like ‘reasonably resemislesst
accidental, but to some extent inevitable and fbezeappropriate.)

Only by way of a demonstration that there are phkdeisformal theories to be extracted from it can an
unformalised notion prove its worth. Where no desti@tion is forthcoming we have a right, even thgydto
remain cynical.

By making it clear that model theory has no conderranything outside of the formal, that its sudbjmatter
are the provability invariant transformations oktdhnies, we allow model theory to join the matheosti
mainstream for perhaps the first time. Nothing ddag more in accord with the mathematical mainstrédzan
studying transformations and their invariances watild hardly be an exaggeration to say that ebeapch of
mathematics could be defined as the study of thibat-invariant transformations —, nothing moremlto it
than the models of current model theory, which loak like ideas about “real” objects that have camnéy part
of the way towards refinement into a theory.

It is time for model theory to shed its residuahmoitments to correspondence thinking and the aittgnd
substandard formalisms. Much better to use dedimitithat prevent a loss of formal clarity in movingm the
theory to the model.

Definition: A modelling transformation is a function m fronetktrings of a theory Th to the strings of
a theory M such that

1. mrespects the roles of strings, mapping
terms of Th to terms of M,
predicates of Th to predicates of M,

sentences of Th to sentences of M.

2. m commutes with logical connectors, quantificatiangd substitution, i.e.

for all sentences S, M |- mB) - —-m(S),

for all sentences S, T M |- m(8T) - m(S)dm(T),

for all predicates P, M |- ik P(X)) - [x m(P(x)), x free,
for all predicates P, terms t M |- m(sub(P #))sub(m(P),m(t)),

3. m preserves provability, if Th |- S then M |- m(S).

For systems based on functions and equations rdthempredicates and sentences an equivalent titafician
be given, essentially only by introducing the ckaus

for all functions f, terms t M |- m(sub(f,t)E)sub(m(f),m(t)),
with = the image of = under m

Proposition: The image of = under a modelling transformatioanisquivalence relation.
Proof: By elementary logic.

The new definition relates to a more familiar oye b

Proposition: For m to be a modelling transformation it is stiffnt that
1. Every atomic relation from Th maps to a relatiotMrof the same arity (not necessarily atomic)
2. Every primitive term from Th maps to a closed t€not necessarily primitive)
3. Equality is mapped to equality
4. Non-atomic predicates are mapped recursively agogito
m(=S) =-m(S),
m(SOT) = m(S)Om(T),
m(Ex P(x)) =[x m(P(x)),
m(sub(P,t)) = sub(m(P),m(t)).



5. Non-primitive terms are mapped recursively accagdn
m(sub(f,t)) ) = sub(m(f),m(t)).

6. m(A) is provable for all axioms A of Th

Proof: By induction on the complexity of formulae.

Given target values for the primitives all strirefshe theory can be parsed and rebuilt from botipnm the
model.

Definition: If Th maps into a consistent, complete theoryintM is said to be a model for Th.

Definition: A sentence S of Th is said to be true in a modé Ml |- m(S), the image of S under the
modelling transformation.

Exactly how these definitions are phrased is in ynd@tails a matter of convenience. Some people tnfgh
example, prefer to refer to what is defined aboveagara-model, and reserve the term ‘model’ fetriater
concept that includes a condition of maximal satisfity. Our concern here is less with establighiany
particular definition than with outlining minimabaditions for a satisfactory definition of a model:

» The modelling relation — the relation between tlgemnd model — should be single-typed. The model
must be the same kind of thing, ontologically, fas theory. Domain and codomain of the modelling
relation should share the same range: stringdariguage over a certain logic.

» Allrelations in model theory must ultimately balueible to finite operations on strings. Even winen
talk of structures as equivalence classes of tesono non-formal realities should be implied: A
concrete theory is taken as a token, and for andtieory to be in its equivalence class is to be
mappable to this theory. Mappability being a firsteng relation.

* No shifting of orders. Predicate expressions areetanapped to (second order) predicate expressions,
not to (first order) object expressions. Even wkien model is in set theory the image of a predicate
expression must be a set-theoretic predicate. (3&igheoretic predicate may in a second step be
extensionalised — hence converted to a first cobgact — but secondary conversion does not chdrege t
fact that the modelling transformation maps toghedicate, not the extension.)

* No precommitting to set theory. Model theory shaostiakt with a definition that refers only to mapgsn
from strings to strings. These mappings could tomih to have equivalents in set theory, but these
parallels should be considered to be purely coexti@. There should be no use or mention of
(infinitistic) set theory in the basic definitiori @ model.

 No hint of shifting to a different ontological planexchanging strings for objects. The modelling
relation should be defined unambiguously as a toamation among equals, a way of circling around,
without any pretence of exchanging formal for nomyal objects. This is an approach naturally
compatible with category theory. The definition glibnot, however, precommit to category theory as a
foundational framework, either.

* No use of a concept of truth or appeal to corredpnpe relations. While it is possible to interpmeich
current model theory syntactically — and many l@gis in their folkways in effect already accept
highly syntactic definitions — there is nothingtire standard textbook definition of a model to pree
interpreting the term ‘model’ as a structure in thed of God. This ambiguity is embarrassing, aad h
to end.

All of these conditions clearly are satisfied byr mew definition, and just as clearly not satisfied the
traditional definition going back to Tarski. To pethat the difference is real we give a first epéarof a word
game that would not have been possible under ddéitrnal definition:

Proposition: A complete and consistent theory is its own m@deder the identical mapping).
Proof: String identity implies equivalence.

Restated in slightly different terms, the propasitsays that every theory has at least one autdmisonpIn fact,
homomorphisms everywhere in mathematics can beedeas modelling transformations. The usual results
about homomorphisms apply. In particular, the aatgnhisms of a theory form a group.



Definition: A sentence is said to be valid if it is provalrldhie axiomless predicate calculus.

Proposition: A valid sentence is true in all models.
Proof: A valid sentence is provable in any theargdd on the predicate calculus, including all madel

Note how validity — and as we shall see next, iogtlon — obtains only relative to a specified ran§enodels.
Results would be different if, for example, seconder models were allowed.

Definition: A sentence S is said to imply a sentence T iflimadels M, M |- m(S) then M |- m(T).

Proposition: If Th |- S— T, then S implies T.
Proof: By modus ponens in M.

The task now is to reduce inessential typographiaaation.

Definition: Two modelling transformations jym, are elementarily equivalent if they declare thmea
sentences true, i.e..Nt my(S) iff M |- my(S).

Proposition: The models of a decidable theory are elementagjlyvalent.
Proof: By definition.

At the other extreme, imagine a set of sentencélsowti axioms. Every elementarily non-equivalentuasbn
though a model corresponds to a different choicaxaims. How many different ways are there of tugna set
of sentences into a decidable theory ?

Definition: The predicates of a decidable theory Th are thiévatpnce classes of its predicate strings
under the relation: FQ iff Th |- Ox P(X) » Q(X).

Proposition: Two modelling transformations are elementarilyieglent if they agree on the
equivalence of predicate strings.

Proof: Suppose the transformations disagree ogaat bne sentence. This sentence is equivalent to a
sentence of the form Qx P(x). Then P must be etpnivéo either a constant true or a constant false
predicate under one transformation and non-equitaleder the other.

A theory is thus determined by the way in whickatts its predicate strings into equivalence cksg@dot for
nothing is the logic called the predicate calcyldghen transforming theories, this allows us toasrate on
how the predicates are mapped.

Definition: A modelling transformation is said to be surjeet{bijective) if it is surjective (bijective) as
a mapping of predicates.

Proposition: The inverse of a modelling transformation m: FhM is a modelling transformation in its
own right when Th is decidable and m surjective.

Corollary: A surjective modelling transformation between dabie theories is bijective.
Definition: A theory isomorphism is a bijective modelling tséormation.
Definition: A structure is an equivalence class of theoriefeuthe relation of theory isomorphism.

The best referent for the phrase ‘the natural nugili® not a set, or any collection of objects, Audtructure in
this sense — number theory up to typographicahtian.

Definition: A theory is categorical if its models are isomacgo each other.

Strictly speaking, a theory is categorical only &logic, e.g. the finite order predicate calcul@stinguishing
between finite orders makes little sense as seryhauts across orders.) By claiming that a thesmategorical
tout courtone would be predicting a limit for human ingeguit always a hazardous undertaking. It is at least
possible that in future more powerful formalismsliidobe invented that will be able to draw finertiistions
than any currently known.



Definition: The objects of a decidable theory Th are its atgmédicates, i.e. the equivalence classes of
predicate strings such that Thlx P(x).

The objects of a theory are implied by how disaagnits predicates are. When a language lacks ttansnio
draw a particular distinction, objects constitubgcthis distinction do not exist for the language.

The definition is a sensible one because as soe@nthsory is able to identify its objects uniquelijatever is
true for all ‘objects’ in the sense given will re¢ universally:

Definition: A theory is said to be atomic if whenever ThY-P(x) there exists a predicate Q such that
Th |-Ox P(x) dQ(X).

Proposition: For an atomic theory it is provable (in sufficigrmowerful models) that
OP (0Q OxQ(X) - (OxQ(X) - PX))) - (OxP(X))

Proposition: Categorical theories are atomic.

The propositions suggest that constants can bénalied in favour of predicates, but not the reversaditional
model theory takes a different view. It wants ®@psbut of transformations and get to objects, whiehbelieved
to pre-exist, not constituted by the non-identitiesories are able to discern.

Hence traditional model theory is more or less cattechto a project of extensionalisation, or thenetation of
predicates in favour of objects. Set theory lensislfi to this project, as only set theory couldilgaacilitate a
conversion of second order predicates into (setdirst order objects. Models so far have essdmgtiagen
models in set theory, be it models in an inartitublgersion of set theory with urelements and tiwards the
naive.

While it is possible to find models in set theonder our paradigmatic definition of a modellingséormation,
the more common extensionalising transformatioaseaabled only by this generalisation:

Definition: A generalised modelling transformation between fdrsystems Th and M is a mapping
from the strings of Th to the strings of M thatgee/es

the roles of strings,

derivability,

and commutes with the construction principles,

where the construction principles are string maggin Th and M such that
substitution: terms x open sentencessentences
disjunction: open sentences open sentences
negation: open sentencesopen sentences
quantification: open sentences sentences

The tight mapping from predicate strings of Th tedicates of the same order in M remains availahtéer this
definition. In addition, however, looser modellirtcansformations are introduced that map predicétes
(expressions for) subsets of the universe, or éegpressions for) indicator functions. The sub#bttufunction
takes on a different meaning as well.

m(P(a)) = m(sul(P,a)) = sub(m(P),m(a)) = sub(p.a) = al p

The traditional idea of a model is perhaps bestetstdod as representing a special case of sucboae]|
modelling transformation. It transports a theoratoimage in set theory.

Definition: The Tarskian image of a theory in set theory igxnatential statement produced as follows:
1. Without loss of generality assume that Th is figigexiomatisable in either first or second order
logic.
2. Eliminate constants and functions in favour of tielas.
3. All axioms can then be condensed into a singleraxmr which we write as F(R...., R), with
relations R
4. The translate is then the statement
“[u,r such that u is a set (the universe), and;theerrelations over u (subsets of the
appropriate Cartesian products) such thatF*(r, r)”, with xOr; replacing Rx) in F*.
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Due to its capacity to receive an image of anytdigi axiomatisable theory set theory should perhlaps
regarded more as a scheme for defining theorigsahandividual theory.

Definition: A theory is said to have an extensional modekifTiarskian image is provable in set theory.

One of the basic assumptions traditional modelrthbas made is that the existence of an extensiondkel (in
whichever tacitly assumed version of set theorygusithbe equivalent to the consistency of the theGnye half
of this is true.

Proposition: A theory is consistent if has an extensional model
Proof: The image was defined to ensure that anynisistency in the theory carries over into setheo

The converse is false. In actual fact, consisteneyeaker than the existence of an extensional mdtiere are
theories that are consistent, yet non-extensiaatalks Set theory is one example.

The idea of extensionalisation in model theoryhisréfore only partially salvageable, and only iempreted
strictly as a syntactic modelling transformatioanfr a theory into set theory, with no atomic indiaés apart
from sets.

So while the model in set theory might occasionbéyuseful, it is only an optional extra. The priynenodel for
an algebraic theory, say, will always be an algehreeory.

In model theory, restructuring does not directlgypde new results. It greatly improves presentataord could
suggest fresh lines of inquiry that might lead ¢eviresults in the future, but does not profoundigirgge current
practice.

The next section is going to be different. Theristing results will undergo significant changes.



Restructuring Godel's Incompleteness Argument

l. Godel’s First Incompleteness Theorem
or
The Alleged Incompleteness of First Order Number Thory

N.B. Adopting the changes advocated in this sectiorc@naitio sine qua noof the programme. The traditional
interpretation of Godel's diagonal argument, if ejgh would trivialise the new definition of a model

Godel’'s argument ingeniously shows that some thbasya model in number theory. This section is til/to
answering the question: Which theory ?

The pre-image for Godel's mapping of strings intamiber theory must be a theory in which the striafjs
number theory figure as closed terms. String pegdi— e.g. the predicate of being a well-formedesee —
must first exist, unencoded, in a string theoryobefthey can be projected, under a code, into nunthisery.

The theory of number-theoretic strings is wherimgtpredicates live, in number theory they are aplgsts.

Definition: A theory M is said to be meta to a theory Th Ifsitings over the alphab&t of Th are
well-formed as closed terms in M.

To assume the existence of a set of strings issturae at the very least the existence of a predicat
decidable theory of strings. It would be irrespblesio trust that talk of sets of strings, espégialfinite sets, is
in any way coherent unless and until such a theopyesented.

So before Gédel's encoding argument can even bigrfpllowing assumption has to be made:

Godel's Assumption: There exists a decidable theory META that is m@tanumber theory and
contains a predicate Prov() that correctly expreggevability for number theory, i.e. for all semtes
S of number theoriy,

META proves/does not prove Prov(S)ifproves/does not prove S.

Note that the strings of appear in META nakedly, untouched by any encoding.

Lemma: Godel's assumption can be analysed into

Godel's First Assumption: Concatenation is formalisable. In other words,rdéhexists a
theory CONCAT containing a binary function c(,) ttlearrectly expresses concatenation over a
given finite alphabe¥, so that in particular, for all primitive termdbaf1>*,

CONCAT |- c(a,b) = ciff c is the concatenatioracdnd b.

Godel's Second AssumptionRecursive definition is sound, i.e. extensions GMNCTAT by
predicates that can be defined recursively in tesfitoncatenation are consistent if only
CONCAT is.

In particular, the extension of CONCAT by the feling seven relations, all of which are
definable in terms of concatenation, is consistent:

VARIABLE, OPEN_TERM, CLOSED_TERM, SUBSTITUTION, PRECATE,
SENTENCE, PROOF.

Godel's Third Assumption: The theory consisting of CONCAT and the seventimia
necessary to define PROOF has a complete extension.

Proof: See Section Appendix
The first assumption is infuriatingly imprecise.oi€ectly expresses’ is just a pretentious way gfrgn‘behaves
as one would naively expect concatenation to béhBué the task we face is impossible: How does dearly

state an incoherent intention ? How do we even kifatvthere is something there to be expressed ?
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In order to get a firmer grip let’s try

Definition: CONCAT, is a theory that correctly expresses concaten#biostrings up to length n over
a given alphabet.

Writing out examples of CONCATis straightforward if tedious. To illustrate, wevg a simplified version of
CONCAT,, a decidable theory consisting of three primitteems0,’,0’, a single predicate letter C, and the
following axioms:

Ox x=00Ox="0Ox=0 There is an explicit, pre-declared finite domairhis in
itself is nothing unusual, similar limitations araplicit in
the workings of any real world computer.

Ox,y x200y#' - = C(X,Y,2) Concatenation in CONCATs only a partial function, not
defined beyond a given upper limit (again analogousal
world computing). Limit setting could be made more
sophisticated by appealing to string length rathizan
explicit listings.

C(0,,0) Within the strictures of the predicate calcullns only way
of giving correct extensional values is to list imlstances
individually.

It seems reasonable to grant the intelligibilitytloé idea of constructing theories CONGAdh this pattern even
for n larger than the physical capacity of any horaacomputer.

With the sequence CONCATh mind we are now able to clarify

Godel's First Assumption (refined): The sequence of languages CONGA®@s a limit, i.e. there
exists a decidable theory CONCAT such that thertbe dCONCAT, have nested models in CONCAT.

where

Definition: A sequence of languageg ik said to have a nested model in L if for all n,
L,+1is a model for |, and

sentences true inlare true in L for strings up to length n.
Corollary: L is a model for all the |

Once these assumptions are in place it becomegbfgoss connect META with number theory by way woifot
lemmas.

Embedding Lemma for Meta Theories:META+, contains a model for any decidable theory Th.

Proof: Let predicates P(x) map to Prov(sub(P )} terms identically. The mapping describes a model
provided Th is decidable. (It needs to be shown MBTA |- Prov(subtP,x)) - —Prov(sub(P,x)).
This is true if Th is decidable, and since Proxf)resses, provable.)

Godel's Lemma: N, if decidable, contains a model for any consisteittset METAPART of META.

Proof: This is a restatement of Godel’'s groundworkhe First Incompleteness Theorem, accepting the
substance with only minor changes: Instead of mapfglements of) sets of strings into number theory
predicate strings from META are mapped to predicgittngs of N. The consistency assumption,
although not stated, is implicit in Godel's argumen

Definition: A proper subtheory of a theory Th that is a mddelTh is called an inner model.

Corollary: If N is decidable, META contains an inner model.

11



Let g map META intdN ', let f mapN into META, and for sentences S put S* = f(g(S)).

We now have all the ingredients for proving tha ginedicates of META underofg have a fixed point. This
follows generically from, for instance, categorgdiny. We will nonetheless give the proofs in loagn.

Round Trip Lemma: META |- S » S*.
Proof: META |- S implieN |- g(S), which in turn implies META |- f(g(S)). €refore META |- S*.

For the converse suppose METAN|S. ThenN |- g-S). So because of modelling, |- = g(S). Then
META |- =S*.

The cyclical image S* of S in META must be if nafual then at least equivalent to S.
Definition: The predicate True is a truth predicate for a rttetary MET A,
if for all sentences S, META |- True(g(S)) S,
where g is a modelling transformation from METATto.
Godel's Theorem (according to Godel)if N is decidable, META contains a truth predicate.
Proof: We show that Prov() is a truth predicate.

META |- Prov(g(S))= META |- S.

As Prov() expresses provability fd, META |- Prov(g(S)) implie¥ |- g(S).
By embeddingN |- g(S) implies META |- f(g(S)) = S*.

Hence META |- S (Round tripping).

META |- Prov(g(S))J META|-S

META |- S impliesN |- g(S).

As Prov() expresses provability fd, META |- Prov(g(S))

The plot thickens with

Tarski’'s Theorem: No decidable theory can contain a truth predicate.
Proof: By applying to itself the predicate Fssb{®)True(g(sub(P,g(P))), (F for false, ssb for “self-
substitution”).
Corollary: Either
Godel’'s assumption (= META exists and is decidable)
or that
Number theory is decidable

is false.
Proof: Taken together the two would prove the exisé of a decidable theory META with a truth
predicate, contradicting Tarski's Theorem.

At first sight there appears to be an honest chdibe question seems to be on which of the instssumptions
should we pin the blame for a contradiction thaiesmas at the end of a long derivation. The strimpty

" The traditional denotation of g, the gddel-numibgris a mapping from strings to numerals inducgdur g.
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META is a prima facie favourite for carrying theable — it is an odd, untested and hugely ambitibasri.

This conclusion becomes inevitable once we noté é¢saentially the same argument can be made without
involving number theory at all, simply by takingsacond copy of META in place of number theory.gdes
without saying that the argument aaot be made with two copies of number theory.)

Godel's Theorem (2% approximation): METAyew CONtains a truth predicate.

Proof: Let METAyea be a variation of META, the meta theory for a catenation-based meta theory.
Take two copies of MET#,, labelled META and META. Each theory is, without any circularity, a
meta theory for the other.

One way still takes the Embedding Lemma, the wagkhia much easier this time: the identical
mapping. Round Trip then holds true, so the Thedmiows.

Corollary: METAq, exists for no theory that is free of limitations sming length.

Proof: METAveta iS in no way special. Any variation of META forfféirent underlying theories consists
of a version of CONCAT and extending predicatese dtifering versions of CONCAT are models of
each other by a simple permutation of the alphathet;meta predicates for one formal theory are
definable by the same means as the predicatesyoother.

Godel's incompleteness argument, though revealimgu@the string theory, tells us nothing about namb
theory. The contradiction used to refute the ddilig of nhumber theory is frankly imported from M.
Given Godel’s original conclusion was the resultpodjecting the failures of a string language intamber
theory, no reason remains for believing in the widhbility of number theory. Although absence of
counterevidence does not constitute evidence, ibriy natural to revert to decidability as the ddtfa
assumption.

Godel's Theorem (¥ approximation): There is no universal string language, i.e. nddédse theory
that contained CONCAT and allowed recursive debnit

META is a myth. Ideas of such a theory people mayehwon't fly. There is nothing solid under the gap
So the real choice is given by

Corollary: One of the following three must be false
“CONCAT exists” (Godel's First Assumption)
“Recursive definition is sound” (Gédel's Second ésption)
“Any consistent theory has a decidable extensiod (herefore a model)” (Zorn’s Lemma)

Proof: Assume CONCAT existed. Then if recursiveirdgbn is sound, CONCAT extended by the
predicates necessary to define provability is cgiast. Then if any consistent theory can be exinhole
a decidable theory, META exists and is completent€aliction.

While some may be prepared to doubt the consisteheyimber theory, the admissability of recursionthe
validity of induction as a rule of inference — aflwhich involve Gddel's second assumption —, atiteis may
want to doubt that all theories have complete (@ndefinition: axiomatisable) extensions, for testrof us this
is as good aeductio ad absurduraf CONCAT's existence as one can hope for.

Godel's Theorem (4" approximation): —~[JCONCAT.

The lesson of Gédel's Theorem: Concatenation, usgdely, can be just as treacherous as the menipersh
relation(]. So in a way Godel's argument does for string tiesovhat Russell’s paradox does for set theory. Fo
both theories, the naive assumption that all petesc ought to be able to have extensions turnscole
inconsistent despite its overwhelming intuitive aglp

Corollary: For any decidable theory Th there exists an n guethCONCAT, has no model in Th.
Proof: The theory would contain a model for CONCIATONCAT, embedded for all n.

The definition of meta theories now needs to beustdf to the realities. All that can be hoped fran
incomplete theory scheme rather than the comphetary META would have been.

13



Definition: The theory PROOF THEORY is as META defined eaylprt with CONCAT replaced by
the following axioms:

1) “Letters are primitive, i.e.
Ox (LETTER(X) « = [u,vc(u,v) =X)
with LETTER(X) defined as x 3dlx=g 0... Ox=a,, for g 0%"
2) “Right- and Left-Concatenation are one-to-ore, i
c(x,u) = c(x,v)dc(u,x) = c(v,X)» u=v
3) “The universe consists of strings arising thtoegncatenation, i.e.
OP ((Ox LETTER(X) - P(x))O(Ox,y PX)OP(Y) - P(c(x,y)) ) ) - Ox P(x)
What, after all, is successor ? Just a functiciedén a formal structure. So if we can define sssor implicitly
— as we must in order to reach infinity — then ¢hisrsome hope that concatenation could be ladgfiped by

the role it performs in relations leading up toyability.

Unlike number theory, however, PROOF THEORY corgtairlations that fail to live up to the meaning
adumbrated in extensional approximations.

Definition: For a predicate P from PROOF THEORY lgthe the sequence of languages that correctly
approximate P up to strings of increasing length n.

Evidently, the sequence, Pr P is a generalisation of CONCATfor concatenation.

Definition: A relationin PROOF THEORY is said to be extensionalishifié can serve as the limit
for its approximating sequence. P

Godel's Theorem (final): There are non-extensionalisable predicates in PROAEORY.

Concatenation is not the only non-extensionalisablation. For obvious reasons the same appliethéo
combination of provability and substitution. Theiugrsal string language in which all of these rielag might
have been extensionalisable can thus be thoughs dhe non-existent limit of a sequence of langsiabat
grows out of bounds.

Definition: Let PROOF THEORYbe PROOF THEORY extended by CONCAT

PROOF THEORY can alternatively be arrived at by replacing CONCAT META with CONCAT,.
If all predicates were extensionalisable, PROOF OIRE, would converge, turning an extension of PROOF
THEORY into META.

So the General Embedding Lemma for meta theorits 8ut for specific theories it can succeed, apdcific
predicates can be extensionalisable.

Embedding Lemma for Number Theory: N is isomorphic to a subtheory of PROOF THEORY.

Proof: Successor is modelled by concatenation Witlvhen the universe of strings is restricted to
numerals of the form®. (For more details see Section Appendix.)

Corollary: The function c(X)) is extensionalisable.
Proof: It is isomorphic to successor.

The lemma shows how arithmetic can be conducted mitmerals. (To get from numerals to “numbers”, a
numeral like 0” would have to be taken as a piiweiterm rather than a nested functional express{s(®)).)

* This definition of ‘extensionalisable’ is equivateo the set-theoretic meaning: Corresponding/émestage
P, of the sequence we can define the finite setlaftiahgs of length less than n that provably $atiyx). The
infinite union, or limit, of these finite sets walihen be the extension of P, the set of all s¢rigch that P(x).
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Corollary: Number theory is at most as powerful as PROOF TREO
with

Definition: A theory Th is said to be at most as powerful abemry M if there exists a modelling
transformation from Th to M.

For the ranking by power to be effective, M does mecessarily have to be decidable, hence a mémeTh.
Modelling transformation can exist also betweeroimplete theories. Top of the ranking are the insbest
theories, least powerful the empty theories (tresotiat prove not a single sentence).

Corollary from Gddel's Theorem: PROOF THEORY is strictly more powerful than numbeory.
Proof: Its non-extensionalisable predicates behali&e any predicates in number theory.

The greater power of PROOF THEORY is owed to whatia effect empty predicate names.

Definition: A predicate Q in a model M is said to representredigsate P from a theory Th if
Q = m(P) under the modelling transformation m: FhW.

Godel's Lemma (revisited): Every extensionalisable predicate in PROOF THEQRNepresented by
a predicate in number theory.

Proof: Godel’s original idea of mapping sets ofrgfs into number theory can only be realised winen t
predicate strings that supposedly denote thes@aseextensionalisable.

So meta theories are more powerful than the unidhgrlitheory but not for the reason given by the Galne
Embedding Lemma, which had claimed that alreadgnallsportion of the meta theory — the sentencethef
form Prov(sub(P,t)) — could express the underltimgpry. The reason meta theories are more powisrfillat
they contain a compartment for empty predicate samwewhich Prov(sub(x,y)) is one.

This then is Godel's paradox: Concatenation-bat@ugsheories are meta theories for any reasoriablguage,
including themselves. Diagonalisation proves théilly extensionalisable meta theory must be marevgrful
than the underlying theory. So because meta tdf,itgeuniversal string language would have to beremo
powerful than itself. Contradiction, or the orderioy power breaking down.
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I. Godel’'s Second Incompleteness Theorem
or
The Confirmed Unprovability of Consistency

The absence of a universal meta language inducasyammetry with respect to proving decidability.

The positive cannot be proved in an ordinary selhseems inescapable that the theorjnMvhich we prove
either consistency or completeness must containdehof the theory Tkor which we prove it, and so must be
at least as powerful. This is because M can onlgnimgfully claim to be ‘about’ the underlying thgaf the
full complexity of Th carries over into the proof M. With a benign twist of circularity, what isqared must be
assumed. The assumption of decidability is neveuged, only transformed into equivalent forms —clhtan
nonetheless be enlightening.

The negative is somewhat different. It is possitdedisprove decidability for particular versions of a
formalism. But once the latest instance of incdesisy or incompleteness is remedied by a modificain the
theory, openness reasserts itself.

So although not demonstrable, decidability is ilraad sense falsifiable. In other words, the claifm
consistency for a theory constitutes a predictiod must be warranted by induction from experiefidee sun
will rise again tomorrow, and no one will find arxconsistency in number theory.

The expectation of reductive proofs of consistehag always been unreasonable. If by finitary onseevie
mean for instance a proof in a bounded quantifieoty then to expect that number theory could toweut
consistent by finitary means is to expect numbeoti to have a model in a bounded quantifier themng so to
expect that the use of unbounded quantifiers cbaldhown to have been spurious and inessential.

No means of proof can show that more powerful mearssound (This is what it must mean to be ‘more
powerful’, according to any sensible definition)eWan shift our ignorance about which sentencesttoemy
will prove into ignorance about another. We carduansformations between theories. What we cadaads to
find foundations: The belief that decidability, fifot already achieved, is achievable precedes atk vio
mathematics. In practical terms, the decidabilitatieast the oldest and best tested theory — puthigory — is
taken for granted.

This belief in being able to make theories workrguably the one useful meaning of the otherwissmded
doctrine of mathematical Platonism, the idea obaststent and definite mathematical reality exgstomior to
theory design.
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Section Appendix

Proof of Lemma— Godel’s First, Second and Third assumptionstt@gamply for any theory Th the existence
of a decidable theory MET# that contains a predicate Prov() expressing prittyafor Th.

Sublemma: The relations VARIABLE, OPEN_TERM, CLOSED_TERM, BSTITUTION,
PREDICATE, SENTENCE, PROOF are definable in terfnsomcatenation.

Proof: Specifics in the definition of meta relatbodepend on the underlying theory. We will give
definitions for one particular formulation of nunmlibeory. The variations, however, are inessential.

A typical example of a meta relation is NUMERAL@s(they are called in number theory, more
generally one would speak of CLOSED_TERMS).

It is defined by the axioms
NUMERAL(0) (“0 is a Numeral”)
Ox NUMERAL(x) - NUMERAL(c(x,")) (“If X is a Numeral, then X' is a Numeral”)

OP (PQ))O(Ox NUMERAL(X) —» P(c(x;))) (“Nothing else is a numeral”)
- (Ox NUMERAL(X) - P(x))

The third axiom is necessary to exclude from NUMHBER&verything that did not originate from its
generation rule.

It is not hard to see how the predicates VARIABLE(OPEN_TERM(x), PREDICATE(x),
SENTENCE(x) can be defined by a similar trinityaobase, a generation, and a closure clause. This
leaves only two more relations — SUBSTITUTION(x%)=which must be primitive recursive in
concatenation if only the underlying theory is fatpand PROOF.

Intuitively, a proof is a string of sentences stlwdt each sentence follows from its predecessdf(e)n

the fact thalN is formal, we have that the relation FOLLOWS_IN_BNTEP(,) is primitive recursive
and definable in terms of concatenation. We alssurag that there exist a predicate codifying
AXIOM(), which need not be more than an explicit lof the formal sentences that represent axioms in
Th.

Ox ( AXIOM(x) — PROOF(X))
Ox ( PROOF(xJFOLLOWS_IN_ONE_STEP(x,y}» PROOF(c(X.y)))

OP ((Ox AXIOM(x) — P(x))
O ( Ox,y PROOF(x)J FOLLOW_IN_ONE_STEP (x,y)» P(c(x,y))))
- (Ox PROOF(x)-» P(x))

The next statement is not really a lemma. And altfiosimilar statements have appeared in the literads
lemmas | prefer to call it an observation.

Observation: The relations described above define the relatiloeg are named for.

“Proof”: Almost from the fact thalN is formal. The formality ofN means that all the operations
required for theorem proving can be defined solalyerms of string manipulations — joining and
splitting strings, that is concatenation and itseise.

Yet ultimately the comparison is to something efxtnamal. We have to argue that the relations based o
concatenation are a reasonable representation ek@aformal notion, that they capture what meta-
properties are conventionally agreed to be.

Traditionally the debt to preformal ideas was expesl by saying

META defines a preformal string property Prop hiéte exists a predicate P in META s.t.
For all &13,*, META |- P(a) iff Prop is true of a.
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But this way of including unexamined propertiesiisatisfactory. Concatenation-based string theories
represent much the clearest expression, the Idippery grip we have on the concept of a string
property. It would therefore in many ways be betteturn the definition talk around and say that th
existence of a predicate in a string theory is whakes a well-defined string predicate. The predica

of string theories would then “define” by definitio

Corollary: The string relations defined above can be madeaiwectly express”.
Proof: Relations in a decidable theory that deérpress correctly. And all the string relationsiroked
so far form part of a decidable theory, since

By Godel's first assumption, CONCAT exists andasisistent;

By Gdodel's second assumption, CONCAT extended lsy ghioms necessary to define the
relations is consistent;

By Gdodel’s third assumption, the consistent themmgtaining CONCAT and the relations can
be further extended into a complete theory.

Label this theory MET Ay..

Corollary: META+, contains a predicate Prov() that expresses prlityafoir the underlying theory.
Proof: If PROOF(x) expresses correctly, then Prpg(Ky PROOF(y)d ENDS(X,y) expresses
provability for the underlying theory (with ENDSgy,defined ask c(z,x) = y).

Agreeing that Prov() correctly expresses is to aghat there is “nothing more to provability” thesat can be
laid down in formalisations in a concatenation-lobigeory.
Proof of the Special Embedding LemmaNumber theory is isomorphic to a subtheory of PROBIEORY.

Definition: The restriction of a theory to one of its predésat/(x) is the subtheory in which all
predicates are of the form U(x) P(x).

U(x) is the universe of the subtheory.

Lemma: PROOF THEORY restricted to NUMERAL(X) is isomorpliacnumber theory.
Proof: The idea is to represent successor by cenatibn with '. In this sprit we map

the constant 0 to 0,
the successor relation s(x) =y to NUMERALGNUMERAL(Y) - c(x,) =,
the equality relation x=y to NUMERALQGQINUMERAL(Y) - x=y.

The axioms for concatenation in PROOF THEORY wéresen to make the Peano axioms provable
under this transformation:

0 is a number This is the base clause defining NUMERALY().

PROOF THEORY |- NUMERAL(0)

0 has no predecessor Immediate from the fact that 0 is a LETTER, and th

11

primitiveness of letters, i.e. the axiom

PROOF THEORY |-~[X c(x;) =0 LETTER(X) - —[u,v c(u,v) = X

Every number has a successor Immediate from the fact that c is a (total) funntio

PROOF THEORY |8x Oy c(x,) =y
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Two numbers are the same if they have the same | Follows from the second concatenation axiom in

successor. PROOF THEORY.

PROOF THEORY |- c(x,") = c(y,’)» X=y

Induction Induction in this or a logically equivalent formas
For all predicates P axiom of PROOF THEORY.
PROOF THEORY [P ( P(0)

O( Ox Numeral(x) - ( P(x) - P(c(x,))))

- (Ox Numeral(x) -» P(x) )

Once successor is established, recursive definifioes addition and multiplication.
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Restructuring Cantor’s Uncountability Argument

N.B. As models under the new definition no longer attetopextensionalise, i.e. “cash in strings for akg&,
they do not have to provide a name string for euedividual of the theory they are modelling. Ircfaalthough
they could voluntarily supply more names, they @wastrained to provide names only for the (finitetgny)
constants of the theory. The idea of an uncountadaldel that contains more individuals than therel¢@ver
be strings does therefore not pose a threat: Thededinition is able to deal with theories indepently of
whether their model in set theory would use a calbletor an uncountable universe. It follows that thanges
to postulates enabled in this section are not nmangfor the programme. The intention is only tostrate the
general way in which diagonal arguments may beuestred.

Cantor’'s diagonal argument forces a choice betwen postulates. But since the traditional postulates
usually remained tacit some work needs to be defard the alternatives can be laid out.

Definition: A function p(n) from the numerals to the predicaténgs of number theory that can be
defined recursively in terms of concatenation itedaa predicate sequence.

As a concession to standard usage wrifg)For a sequence of predicates in a vector ofédes x.

Definition: A predicate sequence is said to be Cauchy conntifge
for all M, for all n,m= M, for all X< M, N |- B(X) « Pn(X).

Predicate sequences that converge according taldfisition will also converge (uniformly) as seaques of
real numbers if the predicates are associatedanliinary expansion valuing P(n), the nth placé/2t

Definition: A predicate L is said to be a limit for a predecaequence if
for all M, for all x<M, N |- L(X) « Pu(x).

The minimal theory in which Cantor’s argument camtade is now given by

Definition: A predicate sequence space is a theory that
a) contains a model for number theory
b) allows concatenation-based predicate sequencesdefmed

Working in a predicate sequence space, we camnprsmall finite number n of predicate strings, stauct by
concatenation the predicate string:

Dy(X) =“x=0 - = Py(x) Ox=1 - =Py(x) O...0x=n - =P,(x)” (also written as:_[ x=i - ~P(x) )
I<n

(Numberings and ‘..." are not symbols of standard bemtheory, so Pis not immediately a well-formed
predicate string. It is what | would like to callpaedicate expression — an expression that ostgri#motes a
predicate. When n is finite and small, howeveseitms safe to assume that any such expressiontmuoidated
back to a well-formed predicate string and themfaince all predicate strings from number theegresent
valid predicates, to a predicate.)

Definition: Predicates in the sequence space are said tarmast (non-standard) if they are
equivalent (not equivalent) to a predicate strimgaaly in available number theory.

Knowing the construction to be successful for srfialte numbers of strings, one assumes that tipeession
denotes valid predicates also for large finite nerab(To formally justify this conclusion, we woufdve to
show the relative consistency of introducing intamier theory two new elements of notation — nunmigeri
subscripts for predicates and finite quantificatmixing subscript with term positions. By the infeal argument
already made, all such expressions can be eliminatdavour of standard predicate strings. Numliheoty
extended by the new notations is not in fact aclyat.)

Finally we come to the predicate expression “lima D,". The expression is clearly diagonal to all predéc

strings covered by the numbering. (More formallymit signs cannot be eliminated in the same wathadirst
two additions to notation if we assume that the nerimg includes all standard predicates.)
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So conceding that the limit expression denotes edipate is tantamount to the accepting a form of
unformalisability: That there are predicates oves hatural numbers not represented by predicatggstof
number theory. But why are we obliged to acceptdizgonal predicate for real ? Could the implicatiuf
unformalisability not also count as a reason fggating the existence of a limit for the diagonedjsence ?

At the decision for which types of sequences liraitist the metaphor of construction ends, infiitaostulates
begin. Many different axioms of existence are coratge to settle the matter, but two stand out.

The traditional favourite:

Completeness Postulate Fhe space contains a limit for every Cauchy cornmergredicate sequence.
The alternative:

The Church-Turing Axiom — All predicates are standard.

which implies

Conservative Convergence- Only predicate sequences that converge to stapdedicates have
limits.

For most underlying theories, including number tigethe limits postulated by completeness are thgimum
of what is consistently possible, conservative evgence describes the minimum.

The two postulates are incompatible according to

Definition: An extension of number theory is said to be pragladiconservative) if it includes (does
not include) non-standard predicates.

Cantor’s Major Theorem: Predicate sequence spaces with the Completenesdd®@sire productive.
The theorem follows directly from

Cantor’'s Lemma: There are predicate sequences that although Caacivergent do not converge to a
standard predicate.
Proof: (D) is one example of such a sequence. For detalSsetion Appendix.

For spaces that recognise only standard predi@tese-to-one correspondence between the set ofahatu
numbers and its powers set is easy to establisii.elimmeration of the ordinary predicate stringsiafmber
theory will serve.

The predicate space under conservative convergsniteis consistent with the assumption thato)P€ ).
Under the completeness postulate, which acts ipthdicate space similar to the way that the Zevrehenkel
axiom of comprehension acts in set theory, theigality of the power set must be strictly larger.

Insofar as both extensions lead to consistent ibgahe Church-Turing Axiom and its denials hagerbshown
to be independent of the axioms of humber theomydependent of the second order axioms no lessfifsin
order.

Uncountability is thus something one postulates, prmves: The diagonal construction only unpacks th
consequences of a postulate it does not attenjpstiy. How many levels of infinity there are ismparable to
the familiar question in geometry of how many platalrun through a point. There is more than omagible
postulate, and therefore always a choice.

Even when the completeness postulate is rejedtedjmit for the diagonal sequence denied to eXxistmtor’s
argument remains to prove a result that can agpegow less trivial the longer it is contemplatadmely

Cantor’s Minor Theorem: There are infinitely many predicates in numbeptie

Proof: Suppose there were only a finite numbert tapresentative strings for each equivalence class
String them together to produce.The result is a valid predicate string that isvably non-equivalent

to any of the strings in the initial list. Contretilon.
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Section Appendix

To illustrate the strength of the Completenesstatst we will prove a more general result — thistexice of a

universal predicate from which the existence oftGas diagonal predicate follows.

Define a sequence t() from the numeral®ohto the binary predicates d¥. The strictly literal definition stands
on the right, a syntactically more relaxed versiorthe left.

TOEy:0—> PO

T =T Oy=n+l- Py

T, describes a growing table of predicates pushinigaw by row from the origin.

g(R)

[=c(y=0-;p0))]

[=c(t(n);Oy = c(n)); —;pcn)) ]

g(Py)

g(P)

g(P)

g(P)

Po

To|

P

Ts

P>

T2

Ps

Ts

Py

It is evident from the definition of ;lthat the sequence is Cauchy convergent. For thainger of this section,

‘convergence’ will be used as a shorthand for ‘@gence to a standard predicate’.

Cantor’'s Lemma: The limit of T, if it exists, is a universal predicate. Thisasstay that if T is the limit

of T,, and g=f, then for all predicate strings P, numerals n, m,

Proof: Assume that the limit exists, and write T ifo

Pick any n,m, and choose M larger than both.

Then from the definition of TN |-0i,j<M T(i,j)) < Twm(i,)).

HenceN |- T(n,m)o Ty(n,m).

We are done if we can show thé&g- Ty (n,m) - P,(m). But this is a propositional tautology of the

form:

((0 = Py(n))0...0(0 - RM))0...0(T-Q)) - Q,

which N will prove.

N |- T(g(P).m) iffN |- B(m).

Corollary: The diagonal predicate sequence defined by d@) #x,x) does not converge

Proof: Let P be any predicate stringNnlet n = p'(P).
And suppose that d() were to converge to P[AM.N |-0i<M P(i) « Dy(i).

Then in particularN |-0i<n P(i) » Dy(i). And againN |- P(n) o Dy(n).



Now p(n) = RB. Therefore, relabelling only |- B,(n) « Dy(n).

On the other hand, by the definition of d(,(l)) ==T,(n,n) ==T,(g(P),n).

Because of string identity, we haMe|- - T,(g(P),n) » D,(n) from rewriting the (provable) tautology

Dn(n) « Dy(n).

Now from the theoreml |- = T,(g(P),n) = = P.(n).

HenceN |-=P,(n) « D,(n).

Contradiction, as was first shown by Cantor ovhuadred years ago.

Proposition: T, converges iff-T,, converges.

Proof:N |- (OisM T(X) o P(X)) « (OisM =T(X) » =P(x)), a propositional tautology.

Proposition: If the diagonal of a binary predicate diverges, bimary diverges.

Proof: The existence of an M s.t M does not priave M P(i,i) ~ P(i) readily implies thalN does not

prove the more gener@li,j <M P(i,j) « P().

Corollary : The sequence,ldoes not converge.
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Restructuring Set Theory

N.B. As the new definition of a model no longer reliesset theory, the postulate changes in this seetiemot
strictly necessary for success. However, the progra is highly sympathetic to the generalisation of
comprehension attempted here. The main point t® takay: There is no one catholic theory of sets ¢bald
serve as a foundation for mathematics, but a mdkitof widely different versions.

The restructuring of set theory begins with a ca@ttwo postulates.

The traditional favourite: The Zermelo-Fraenkel axiom of comprehension
OPOalpOx xOp - P(x)OxOa

The alternative: V, the set of all sets, exists.
A diagonal argument to show that the two postulatesncompatible:

The two assumptions combined are equivalent to#iee axiom of comprehension,
OP [p Ox xOp « P(x), which Russell's predicatéIx shows to be inconsistent.

Three reasons for believing that the alternative ieast as good:

1) The alternative is the more conservative and haatgntuitive appeal. The Zermelo-Fraenkel
axiom, on the other hand, is an example of thatt modesirable sort of assumption: strong yet
intransparent.

2) Only when V exists can set theory extend the Baoldgebra. Under the Zermelo-Fraenkel axiom
no set has a complement that is also a set. Sauglththe Boolean operators of union and
intersection are available, the third operatorissing. This produces an unattractive loss of
symmetry in the Zermelo-Fraenkel system, as stragtowing up froni] is not matched by
structure growing down from V.

3) The Zermelo-Fraenkel axiom makes distinctions betwafinite diagonalisations — banning some
(e.g. Russell's paradox) while allowing others (€gntor’s uncountability argument) — that are
hard to defend on principled grounds.

Since every set is a subset of V the power set efivals V. The identical function i from V to V is
therefore a bijection between V and P(V). Given {ld xi(x) } = {x | xOx }, Russell's diagonal
argument applied to V and i runs exactly paraleCantor’s diagonal argument applied to a
bijection betweerw and P¢).

A thesis ventured in conclusion:
Compared to the alternative the Zermelo-Fraenkielnaof comprehension could seem too narrow
because it excludes V and the identical functiomfiV to V, too wide because it admits the
diagonalisation of infinite sets. In others wortl&re is more than one viable variety of set theory
Comprehension needs to be generalised to enconipafsl range of varieties.
The task which any replacement for the familiaaxiof comprehension will have to take over is sgrtihe
predicates of set theory into those that can bensitnalised, and those that cannot. While it B/da give
upper and lower bounds tracing the exact boundezigsing to require a shift in perspective.

Write EXTEN(P) for[p Ox xOp - P(x) with varying P. The sentence says that tkdipate P has an extension,
the set p.

The upper bound for comprehension is the naivenaxid® EXTEN(P).

Comprehension confers on predicates to abilityetves as names for sets. In this capacity, they ldenany
name, turn out to be empty.

Definition: A predicate that cannot be extensionaliseBEXTEN(P) is provable) is called empty.
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Russell’'s Major Theorem: There are empty predicates.
Proof: Use Russell's predicatélx.

The case of Russell's predicate is easy. It caremée consistently extensionalised. But there dhero
predicates that might plausibly be extensionalesahl some versions of set theory, and not in othEcs

example, the constantly true predicates standinyfdhe set of all sets. If despite this evidemainsist on a
single unified theory of sets, the status of thesensions is rendered ambiguous. Quantifying @eesions
produces a clear result only for predicates that extensionalisable in all versions (‘sets’), antbassible
predicates like Russell's that are extensionaleséatlno version. It leaves the extension of pradicdhat are
extensionalisable only in some versions (‘classesintological limbo.

Traditionally, classes were conceded to exist,ctliyeor indirectly; but not without awkward restitmns.
Provided the theory lost no power any designerxadras would clearly prefer to introduce only on@eyof
extension — sets with full operational privilegesrd to be able, for every predicate, either tiv@ror refute the
existence of its extension. By allowing for moraritone version of set theory this may indeed bsiples

For every particular version of set theory the egienalisability of a predicate is fully determinesen
though it may of course vary across versions. Engpgdicates no longer have bizarrely behaved, likeset
extensions (e.g. the shadow classes of the ZerRralenkel system, or the explicit classes of Neurizarmays-
Godel theory), they have no extension at all. Rdlike limitless sequences, empty predicates acersk order
strings that do not convert into a first order ahj&hey exist as names, and names only.

A lower bound on comprehension is the axiom retgtii¢o finite domains,
0P Ofinite alp Ox xOp « P(x) OxOa
(with finite defined in the usual sense that no bijection sXistween the set and a proper subset)

Only over finite domains is the intuition that segted naive comprehension fully trustworthy. Eadtaince of
comprehension over infinite sets amounts to amitafiy postulate that can only be granted afteefcér
justification.

Finite comprehension is linked to an extensiorhefBoolean algebra by the successor function,s{x}.

Fact: Equations in the six functions, V, O(), n(), = (), s() are isomorphic to predicate sentences in
0. (It makes little difference whether one tre@t®nd V as constants or constant functions).
Proof (Abbreviated): The critical step in the corsien is XxJy < s(X)n y = s(x).

This theory, which can be expressed with only fiomst and equations, or predicates and sentencasnotture
of both, might be called the core of set theory.

Proposition: Finite comprehension is implied by the core.
Proof: The existence of all finite subsets of aegisets is provable from s( ) and ).

In the context of finite comprehension Russellagtdinalisation is revealed as a paradox of infinity.

Russell’'s Minor Theorem: There are infinitely many sets.
Proof: Run Russell's predicate against the findeprehension axiom.

Over the core, the axiom of infinity thus becomesgiom of arithmetic — no longer needed to intiea infinite
sets butw, the structured set of the natural numbers.

Fact: The core of set theory cannot be satisfied ovarite domain. The largest subtheory that can is
known as the theory of a field of sets.

Proof (Abbreviated): Dual theorems involving sjend the Boolean algebra to the field of sets| dua
and non-dual theorems together extend it to the obset theory.

Between these upper and lower bounds lie candadatens, both skewed ones like the Zermelo-Fraeakielm
and symmetric expansions of the core. In order akarset theory as powerful as we can, we wouldtbkeee
the candidates introduce as many extensions a#®ss

Definition: A shot at set theory is a maximally consistento$esentences containing, apart from the
axiom of extensionality, only sentences of the f&@XTEN(P).

It is tempting to think that set theory could bensoarised by the following
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Meta Axiom: The axioms of any set theory form a shot.

The idea is to give, instead of explicit lists oficans for each version of set theory, a generakidon the
axioms for any version must satisfy. Characterisagtheory in this way as the solution to an dqudbrings
freedom almost as great as naive comprehensienctiurages a hypothetical style of reasoning that/sl on
whichever existence assumptions seem necessagy derivation. Only when a contradiction arises,vgihg
that two sets of assumptions of the form EXTEN(R) mutually inconsistent, is the need for a deaisio
established. At that point set theory branches twim systems. By a not very scientific process Ugume of
these systems (the one that “feels” more naturdl) be designated the standard system, the othemoas
standard. So instead of blindly guessing a systemd-none of the axiom systems for set theory mepso far
have been satisfactory — one could begin to expgl@eshape of possible solutions, slowly to nardmwn their
range.

Definition: A sentence is true for set theory if it is proalsl all shots.
Russell’'s Major Theorem is one of the relativelywfeentences true for set theory. The large remaiwilebe
provable only in more restricted shots — each aiorrof set theory. A first divide is between thesesions that

are Boolean, and those that are not.

Definition: A shot is Boolean if it is maximally consistenbgect to these constraints:
EXTEN(P)= EXTEN(-~P)
EXTEN(P) O EXTEN(Q)= EXTEN(PCQ)

Note that because of reverse comprehensigm[P [Ox P(x) - xOp, Boolean shots are consistent with the
existence of the three Boolean functions.

Proposition: In a Boolean shot; EXTEN(XX).

A Boolean shot excludes non-complemented prediceteish exhibit many of the strange properties aisded
with the non-recursive sets of recursion theory.

For n-ary predicates, let the extension p congistaered n-tupels.

Proposition: In a Boolean shot EXTEN(x(y) [0 -EXTEN(x=y).
Proof: XOx is the conjunction of Xy and x=y.

That the main relations of set theory fail to béeesionalisable perhaps explains how classes weenied to
preserve an extensionalisabitity of sorts for sebty.

Definition: A grape is a sentence from a shot.

As we have already seen in the Boolean case, ogeofvaystematising shots is to postulate the emesteof
functions, which effectively condenses infinitel\any grapes into a single assumption.

The next obvious functions after the Boolean trie successor and the power set function. More @oubiy,
one could postulate for some shots the existenedl cécursive functions over given sets.

Definition: A shot is recursive if it is consistent with théstence of all recursive functions.
Proposition: There are non-recursive functions, i.e. functibings that need not be extensionalisable
even in recursive shots.

Proof: Consider the string describing the indicdtmiction of Cantor’s diagonal set.

The extensionalisability assumption for Russelfsdicate is inconsistent by itself. Excluding Caistpredicate
from shots requires a further axiom.

The Axiom of Single Infinity: “There exists a bijection between any two infirgegs”

Single infinity is consistent with the existence\aflt replaces assumptions such as the axiom oicehor the
continuum hypothesis that are independent of thmehtary Zermelo-Fraenkel system.
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The axiom states — truthfully — that being infinigestill compatible with almost any structure. Kving a set to
be infinite is to know very little about it.

It may violate intuitions schooled on Cantorianqaets, but the axiom is no more contrary to comsemse
than the generally accepted fact that the unirwalecontains the same number of points as thelireglthe real
plane, indeed as any finite-dimensional real space.

Definition: A standard shot is a Boolean shot that is alsoistam with the axiom of single infinity.

Because of diagonal arguments, every shot has te rdacisions between bijections and diagonalisation
Standard shots consistently decide in favour ofaheer.

The axiom of single infinity contained in any standl shot makes it possible to refute existencenagsans
leading to uncountability. There are many, and ey be intricately hidden. Only by dropping thegiple of
separation on which the Zermelo-Fraenkel axiomaised — EXTEN(PY EXTEN(POQ), for any Q — can one
hope to become aware of these subtleties.

Proposition: EXTEN(P) and Q- P donotimply EXTEN(Q) (even though Q(»3 Q(x) O x[p).
Proof: A counterexample is given by Russell’s pcaté and x=x.

The fact that Russell’s predicate, R, implies aoistantly true predicate only shows hypothetictibt if R did
have an extension it would be a subset of V. Tom@phism between the relation over predicates and the
relation over sets holds only for extensionalisgirkdicates.

The point of set theory is to discover, not declareich predicates have extensions.
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Section Appendix

Mathematical imagination depends on pictures atlaa much as on formal derivation. For new corscépt
take root mental pictures also have to change.

The picture below wants to argue that Russell’'galilisation is essentially the same as Cantond,that the
success of both constructions is evident only dénite domains.

S S S S| S | S

LYo

The meaning of any picture of diagonalisation tuonswhat is inevitably only hinted at with threetslor a
similar device: Does the table, does its diagomtihaly reach infinitely far ? Or does it come ugamst a
flexible barrier, a barrier that allows the talderéach arbitrarily finitely far but no further ?

Diagonal arguments effectively postulate the eristeof an infinite table, so that they can thenvprthe
existence of the table’s diagonal. Once the postutamade, the existence of the diagonal is setfemt. But
the postulate itself is not self-evident. The etise of the whole table is at most heuristicallggasted as one
of several possible postulates; in the case ahsety it is even inconsistent.

Over any finite domain, the membership relationlddae specified extensionally. Given that it is natealistic
to list all sets — simply by listing the predicateings of set theory, as theories are restritietie objects their
predicates can distinguish — the limit of theserapipations would represent everything there ikriow about
membership, and hence, set theory.

sos, | sOs, S0Ss
SUS SUS, SUSs
S:0S; SUS, S0Ss

And for this reason the limit, the actually infimitable, is never reached.
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Restructuring Computability

N.B. The rejection of the traditional postulate isotat@ this section is mandatory for the successhef t
programme. This is understandable since the changds here retrace those explained in much grdatail in
the Godel section.

l. Recursion Theory

The predicate calculus is the gold standard fodipege expressions. Recursion theory often usese mor
idiosyncratic notation, but fortunately almost &din be related back to the predicate strings deeibumber
theory or PROOF THEORY.

For a formalism that allows all recursive meandeffnition write

S for the class of all predicate expressions im$eof successor,
C for the class of all predicate expressions imgof concatenation (over an alphabgt

We know that S is isomorphically included in C e #bility of recursively enumerating sets of stsimgcludes
the ability to enumerate sets of numerals.

C, however, is much more extensive than S, aneligionship to S more complex.

Defining predicate expressions can do two thingsah describe which expressions are well-formed! i can
deliver a stamp of approval — declaring which egpi@ns are genuine predicates and “really” reptesenbset
of the universe. The first is innocuous, the secefifiectively hides an existence assumption.

Definition: A predicate expression P from a given formalismaigl to be solid (empty) if it there exists
(does not exist) a model in set theory in which higRextensionalisable.

Put more simply, a predicate is solid if can besistent to assume that it has an extension. Tovatetithe
definition, recall how Russell's paradox essenfiafihearses the fact that excluded middle breaksidehen
empty names are introduced into a logic: The appaeatology Bald(x)1 -Bald(x) is false when applied to
‘The present king of France’ as much asxxd x[x is false when applied to ‘The extension of thedicate
XOX' (={x | xOx }).

All expressions in terms of successor are solice MMinits of non-convergent predicate sequenceeramples
of empty predicate expressions. Like the reignioig who is neither bald nor hirsute, the extensidrempty
predicate expressions is neither identical nor idemtical to solid predicates.

Recursion theory now has to make a choice. At ranstof the following two assumptions can be deddree
by definition.

The traditional assumption has been that all pegdiexpressions give rise to a set.
Naive Extensionalisability: All predicate expressions in C are solid.

The naive extensionalisability assumption can bganded as the string-theoretic equivalent of thévena
comprehension axiom for set-theoretic predicates.

The alternative is to concede fewer extensions.|&\thiere are millions of intermediate possibilififse most
natural among the alternatives is also the mogtictge. It consists of tying the concept of a sétstrings to
recursiveness. This move in effect elevates the€@htiuring Thesis into an axiom

% One way of arriving at the Church-Turing Axiontlsough a syllogism:

Church-Turing Thesis: “All formalisable functionseaecursive”
+ Formalism: “All functions are formalisable”

Church-Turing Axiom: “All functions are recursive”
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Church-Turing Axiom: Sets of strings are only well-defined if they ezeursive (i.e. both the set and
its complement are represented by expressions.in C)

Naive extensionalisability says that all prediaatpressions are associated with a set; the ChuidhgrAxiom
says, conversely, that all sets of strings areciasal with a predicate expression.

The two postulates are incompatible according to

Church-Turing Theorem: There are predicate expressions in C that, ifrasglusolid, would give rise
to non-recursive sets of strings.

Proof: As provability and substitution are defirabi terms of concatenation, C can contain a usaler
predicate for any formalism. The diagonal predi¢ateC’s own formalism, if it had an extension, mus
then be non-recursive.

A definition of the form “d(n) = f(n) + 1” presupposes the existence of a univensdipate, u(n,m) =,fm).
That a universal predicate could be “extension#llie” — behave as intimated by the crossover ofomf
subscript in f(m) to argument in u(n,m) — is an assumption omeroake, but it is hardly self-evident, and has
the even less evident consequence of undecidability

The consequences of postulating undecidability vae#-known, and need not be rehearsed again. Fer th
remainder of this section we focus on theories diga¢e on the need to deny naive extensionaligabili

Diagonalisation is inherently non-recursive, whetihéroduced into recursion theory by unconventloraation

or into set theory by the axiom of separation. €hame hence three types of string theories: Stdrtiaories in
which the Church-Turing Axiom holds; non-standahgdries that admit more than the standard extesmsion
and/or non-recursive construction methods but reroansistent with decidability; and non-theorieat thretend

to prove undecidability.

In the standard theories, once non-recursive getdefined out of existence by the Church-Turingofx
proving the existence of a non-recursive set besomamtamount to proving a contradiction. Under the
alternative axiom, the Church-Turing Theorem isstleployed to refute the idea that all predicate€ iare
solid. So rather than assuming the existence d&iceextensions and using it to refute decidabilig can also
assume decidability as basic and use it to rehgekistence of certain extensions.

The natural assumption still remains that a predieapression should be treated as solid unlessxibtence of
the set it would give rise to can be shown to imphdecidability (all theories) or non-recursivengsaly
standard theories). We can safely assume tha firigments of extensions exist; what we cannatrasss that
the fragments will always assemble into a whole.

Definition: A finite fragment of a predicate expression irs@hie extension of P(XJ xS, for any
finite set of strings S.

Let P be an empty predicate expression. WriteopxtHe string length of x. For any n,() = P(x) O |x| <n is
solid. The set of all strings of length less thasuoh that P is recognised to exist. Saying thtgd¥ is not solid
is saying that lim B, o P, does not exist.

Empty expressions do not give rise to non-recursets. They give rise to no set at all. They alaeehno
equivalent among the successor-based expressides aitranslation.

A sharp distinction must be drawn between predieageressions in S, all of which have extensiongl an
attempts to link these predicates to expressiofistimough a code. The link fails because predieapressions
at the other end of the link fail to be extensidsadle. For the string sets ostensibly named byessions in C,
‘recursively enumerable’ should be clarified to mézertain to exist finitely far, limit only if preen safe’.

Proposition: Extensionalisability is not preserved by compositi

Proof: The extension of the monadic predicate Briswecursive and exists for any decidable theory.
Substitution is primitive recursive, so its extemsought to be granted even more readily. The dyadi
predicate Prov(sub(,)), however, cannot be exteasiged.

“The universal predicate” is an empty name ratiker“The extension of the membership relatidmyX.
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Il. Turing machines

Turing machines are a type of successor-basedgatedixpression.

Definition: The typographically represented set of instructioinas Turing machine is called a Turing
programme.

The function a Turing machine computes should leatifled with its (second order) Turing programmet the
(first order) movements on tape. The Turing progremmepresents a completed infinity, which is a mioetter
way of thinking about functions than to imagine @en-ended process of computation. A process igsby
nature ambivalent between ‘for any finite numbestefps/inputs’ and ‘for an infinite number’.

Successor may be granted, but can Turing machomapute concatenation ?

The head of a Turing machine scans only one sqpfatse tape. The machine has no intentions, andlghaot
be credited with being able to see beyond the barimsl of the square it presently scans.

Until we see the machine respond to an input of

with an output of

we would have to conclude that the concatenatidnmfts across the boundaries of fields was anlimtary
addition made by the observer.

The interpreter, whether human or another machimem performs the concatenation to find that an irgfu
strokes stretching over several squares represeidence of the machine having accepted an inpuheif
concatenation must be able to recognise many mgnmebas than the machine being interpreted. The
concatenating machine is thus a type of meta machin

As inputs into the underlying machine stretch avere and more squares of the tape, the interpratachine
has to recognise and put out more and more symolgés own squares to stay ahead. At the limit, the
interpreting machine gets squeezed. A limiting nraehwould have to be able to recognise infinitelgny
different inputs of symbols on a single squarg®fape — which violates the definition of a Turigchine, and
any sensible definition of computability as well.

The assumption that Turing machines can computergesets of strings is equivalent to the existeote
CONCATENATOR, a machine that, before a Turing maehTM starts, deconcatenates (spreads) the input in
the leftmost field over the appropriate number gliaves on the tape and after TM halts concaterthtes
contents of all non-blank fields back into thetedist field.

Turing’s Theorem: CONCATENATOR does not exist.
Proof: CONCATENATOR would be able to do what METAnnot.

The only possible treatment of concatenation ismsibnal, which conflicts with the inability of ags to handle
infinitely many objects.
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Inventing a Language for Paradox

An alternative way of summing up the dilemma betwde incompleteness or inconsistency of META isdg
that concatenation and the predicate calculus toiho

So if the predicate calculus, or other standarchtdations like the Turing machine, fail at the linto contain
concatenation then there is a case to be madedkinlg at an altogether different kind of language.

As PROOF THEORY is in effect the instruction manual for handlimmduages L these revisions take the form
of weakening or strengthening the axioms of PROGIEDRY,.

Definition: The predicates LOGICAL_CONSTANT, VARIABLE, OPEN_RE&, CLOSED_TERM,
PREDICATE, SENTENCE in PROOF THEORY are said tdheeroles of strings.

Definition: A string X is said to be cast into a role ROLE RBOF THEORY proves ROLE(X).
The predicate calculus is distinguished by a sstraft exclusion clauses.

Definition: The Union Regulation Axiom in PROOF THEOR¥tates that for every pairing of roles

ROLE, ROLE, i#j

ROLE - -ROLE(X) DROLE(x) - =-ROLE

The regulation implies no obligation to hire. Aiisyy could be cast into neither ROLitor ROLE and there are
in fact hopeless strings (“noise”) that are nott dasany of the six roles. What is excluded isttaatring actor
play more than one role.
We now define a type of theory that breaks radjoalth the conventions of the predicate calculus.

Definition: A language L is said to be wililPROOF THEORY proves

Ox OPEN_TERM(x) PREDICATE(x)

[x CLOSED_TERM(x)» SENTENCE(X)

Definition: A circular language is a wild language where PRABGIEORY, also proves

Ox OPEN(x) » CLOSED(x)
In a circular language strings can ambiguouslydita,lopen and closed, predicates and functions.

Theorem: Circular languages contain a concatenation fundtidhe sense that
[k Oxy c(X,y) = Xy.

Proof: The legally available functional xy alreddyto all intents and purposes, concatenation. thed
language obviously proveésxy xy = xy. Then merely relabelling xy on one sfehe equality proves
the existence of c.

Among ordinary languages the sequence CONCH&ES no limit; the circular language, insofar ass iaible to
derive more than finitely many concatenation statets, could be spoken of as a limit. Circular laages are
the real home of (infinite) concatenation.

Legalistic, but formally unobjectionable:

Theorem: Circular languages provex,y x=y.

Proof: Since %xy, y#xy, Xy is a variable not bound by eithéx or (y. Any unbound variable may be
replaced by any other free variable.

So fromx,y c(x,y) = Xy we can derivelxy c(X,y) = z, assuming only axioms.

Since z was free, this givesx,y,z c(x,y) = z.
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Corollary (“Out of Eden”): Circular languages are only consistent with a usie®f size one or less.
Proof: Take any two primitive terms a,l%ba Then c(a,b) = a, c¢(a,b) = b. Hence a=b. Conttiaa.
Thereforellx,y x=y.

The language breaks down as soon as it is expibed the paradise of undivided oneness. Collapsiey
distinctions between the roles of strings has fifeceof merging the whole theory into one undiéfetiated
blob.

But this is not the end of the road. The resultstilhbe improved on.
Definition: In a wild language, the merged role of PREDICATEPEN_TERM is called FUNCTOR.

Definition: A wild language L is said to be a Truth-and-Subgtin Language if there exist functors
TRUE and SUB such thatX TRUE(X) - X andOPOX P(X) - SUB(P,X) are theorems of L.

Lemma: A circular language that is consistent with a ende of size greater or equal one has a truth
predicate.

Proof: Fed any term S, the language proM&sS - (S ~ S ). As there is no principled distinction
between sentences and closed terms we can thiBk-ofS as the predicate ‘$S)”. So we have (S)

- S. Relabel S as TRUE, and you have a truth predicate.

Lemma: A circular language that is consistent with a ense of size greater or equal two has a
substitution predicate.

Proof: Fed two terms P and a, the language pra¥ga P(a) = P(a). From rewriting the right hand
side we have P(a) = Sub(P,a). Since P(a) and )R equal as terms they are certainly equivalent
sentences. TherefoféP,a P(a)- Sub(P,a).

Corollary: A circular language that is consistent with a enée of size greater or equal one has a
diagonal substitution predicate SSB Bl P(SSB)- SSB(SSB).
Proof: Same argument as above with P=a.

Theorem (“The General Paradox”): Truth-and-Substitution languages are inconsistent.
Proof: Define FSSB :=TRUE(SUB(X,X)).Then given that FSSB(SSSB)»FRUE(FSSB(SSSB))),

FSSB(FSSB). —~FSSB(FSSB).

Corollary: Circular languages can be satisfied only by thptgraniverse.
Proof: SupposéX. By the lemmas above the language can then dEREB.

This is a strong result. It would be wrong, howeverdismiss circular languages as trivial becaise

Circularity has advantages. Observe the naturaliede “axiom of concatenatiorix,y c(x,y) = xy and the
elegance and intuitiveness of TRUE(X) X. And contrast this with the puritanical awkwaeds of the
predicate calculus (inverted commas, corners,whgn it comes to dealing with the same concept® Th
insistence on enforcing a strict separation of syfetween meta and base, around which the prediaddulus
is built is legitimate but has a price.

As far as one can determine these things mostaldamguages are in fact circular, or stand attleasch
closer to the insouciance of wild languages tharridpour of the predicate calculus. But if natdesdguages are
broadly circular (and suckers that we are, the@raigend to believe in the existence of objectsy do they
avoid inconsistency ? Well, everyday life workshwit background assumption that there are onlyefinimhany
objects, or at least that one can only deal witiidly many objects at any one point in time. Téas still give
rise to a potential sort of infinity by shiftingtabtion from one set of objects to another, andraro

Now over finite domains type violations, or pulliofjects down from one layer of stratification twother,
turn out to be harmless. Let the general case dmngistent as every recurring paradox shows, tstiiceed to a
movable finite domain wild languages can be pelfactlid.

Definition: A wild language from which we drop the soliditysamption (that the mere availability of a
function or predicate letter implies existence) #meh make the truth of relations and the existarifce
values for functions conditional diN 0A; OX ( X=A; OX=A, 0....0X=Ay ) is said to be tamed.

As usual in mathematics it makes no difference hdreN is set to be a small number that can be tefédg
handled, or larger than the number of atoms ingddaxy. The salient distinction is between finitedanfinite,
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not different sizes of the finite. The constramithough real, need not figure as such for any ahgractical
purposes. People can happily live their lives insadrin wild languages and never encounter a profleiess,
that is, they are Greek and called Epimenides).

In a tamed language the paradox simply provesttigatiagonal object is out of scope, and lookingfoam a
small fenced-in patch there is certainly much somgside of it. Refocusing to the patch next desoanalogous
to exchanging the pre-declared list for another.

Definition: A theory Th is said to be pseudo-circular if thexést in Th a predicate T and a binary
function sub and outside of Th a function g: STRENG CLOSED_TERMSs such that

For all sentences S, Th |- T(g(S)) S and
For all predicates P, terms t, Th |- sub(g(P)g{SUBSTITUTION(g(P),t))

Corollary : In a pseudo-circular language there exists aipatelU (“the universal table”) such that
For all predicates P, terms t, Th |- U(g(P)t)P(t)

Corollary : Pseudo-circular languages are inconsistent.
Proof: A pseudo-circular language contains the inaifga Truth-and-Substitution-Language. By the
General Paradox, the image is inconsistent. Thexefe language is.

Lemma: Set theory under naive comprehension is pseudatair

Proof: It is said that Peano, when he inventedih®tation, derived it frongati, the Greek for “is”.

With that we have@P = a “is”" P = P(a) = TRUE(P(a)). In other words, with g the functioratth
sends predicate strings P to term strings {x | }Ptke reverse of membershify is a universal table
(and Russell's Paradox yet another gloss on whdtave called the General Paradox).

Lemma: META, if it existed, would be pseudo-circular.
Proof: For any theory Th powerful enough to motkehieta theory, META, contains a truth predicate
and a substitution function. The function g carsbetto be the modelling function from META to Th.

Corollary: Tarskian model theory is pseudo-circular.

Proof: There are two ways of seeing this. Firstenibtat according to the traditional definition of a
model that goes back to Tarski the predicate Truea imodel is expected to do what only a provability
predicate in a meta theory could. So the circylaoit model theory follows from the circularity of
META.

Second observe that in Tarskian model theoryassimed that

(OPinTh)pinM) dainM) P(a)- |ap.

Where | | represents the “cash’-function that casvgeneral closed terms into canonical names, e.g.
(0'+0) into 0'. Provided Th contains canonical nanfer all its objects, the cash function can be
eliminated and the universe of Th and M merged:

(OPOTh) (Cp) Jadu) P(a)~ alp.
But this is in effect the naive axiom of comprehensHence the circularity of model theory also
follows from the circularity of set theory.

Lemma: If the limit of Cantor’s sequence, Existed, number theory would be pseudo-circular.
Proof: See appendix to Cantor section.

Grelling’s Lemma: Almost natural English is pseudo-circular.
Proof: Grelling’s paradoxical property heterolodfts the predicate diagonal to a universal taiflall
English predicates of the form is_X, where X isaglfective. P is heterological #P(P) (= Fssb(P)).

Epimenides’ Theorem: Natural languages are pseudo-circular.
Proof: The simple reason is that natural languagesain truth, substitution, and concatenation
predicates. For the long version we refer to a fasroretan.

To assimilate the liar paradexThis sentence is falseto the general paradox for
This Sentence has property P

write
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P(This_Sentence).
The value of This_Sentence(), construed as an typera strings, could be paraphrased as
“The string This_Sentence substituted into the@sinl predicate context P.“

Granted that This_Sentence() is a function of mwagei strings, how could it be a function of its own
context predicate ? By diagonalisatiorequating P and Q in Q(func(P)) effectively turnsoatext-
sensitive string function func(P) into a functidiits own predicate context=p.

It is not hard to recognise This_Sentence as selmfjer diagonalisation, the self-substitution fumat
ssb inserted into P does precisely what one woyéa of This_Sentence:

ssb(Pssb) = Pssb(Pssb), with the effect that Pssib(i%s self-referential in P.
So putting This_Sentence(Bksb(Pssb) andss_False, the reconstructed liar paradox
Is_False(This_Sentence(ls_False))
becomes another way of writing the general paradox
Fssb(Fssb).
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Restructuring the Rest

The present situation may run parallel to the histb choice between Euclidean and non-Euclideamggries,
except that up to now we seem to have been livinthé non-standard, bent world. The standard wisrld
defined by the axiom of single infinity, non-standlavorlds by any form of denying single infinity.

Results that were proved based on assumptionshtattrue only in the bent world will of course raim
provable within in their own protected sphere. @i#tsn the big wide straight world, however, theirvival is
not guaranteed. Some can be adapted, others ajlogate.

The quickest way to isolate non-standard assumgptien to re-examine anything that could imply
uncountability. To treat, for the time being, a gfr@f uncountability as a proof df. (In set theory with the
axiom of single infinity any derivation of uncoubtbty automatically amounts to a proof by contietatin.)

Not all results mentioning higher cardinals wilingily be lost. Even under single infinity some réshat
were originally stated as being about cardinaliglyrbe recovered as results about orderings or sthecture
inherent in the set. Recovery presupposes a démpeat the real basis for the results, at striecheyond size —
which would not be bad.

It is not unstructured size that sets the real remnlpart from the rational numbers. The real nusnbee
different from the rational numbers for exactly g@me reason that the rational numbers are différem the
natural numbers: Not because there are ‘more’ bleatuse their ordering is different. The real nuslieus
remain distinguished from the rational numbersHhsjrtcontinuous ordering even when they are nagaed a
higher cardinality.

When substantive results in mathematics — resuitside the hedged garden of cardinal arithmetiely r
solely on size without any basis in ordering, topyl algebraic or other tangible structure thery thmust be
suspected of having been manufactured on the chli@agive an example: There are good reasons foz\dedy
in the existence of transcendental numbers. Thenaegt from the countability of the algebraic nunsber
compared to the uncountability of all reals is oo of them.

In short, there are gains in both directions franrying out the programme: Where traditional pagag that
imply uncountability are maintained, they will &akt have to be declared openly and justified ag&iqually
viable alternatives. Where single infinity is adegbt results that may have been assumed too ghbilge past
will require renewed rewarding work, in a closegagement with structure.

People are free to play with any formalism theyad® and in a liberal society it is no one’s busint
prohibit harmless activities that involve the pdetion of multiple infinities. What does bear sayjmmowever, is
that the bent world postulates appear to be owmarehed. And if indeed they are exhausted theuotsting
programme which began with logic and the foundatioeeds to be extended far into mathematics proper.

RESITUCIUNNG the REST ...t ettt ettt e et e e e e e e e e e e e e e e e e e e e ennebe e eeeeeas
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Second Order Logic

Inside a theory, proving theorems, there has neeen an effective difference between the first onaguction
scheme

For all predicate strings P, P@Y Ox P(x) - P(s(x)) )-» Ox P(x) is an axiom
and the second order induction axiom
OP P(O)O(Ox P(X) » P(s(X)) )-» Ox P(x).
Scheme and axiom allow precisely the same deriatiorovided only that the same predicate strings ar
allowed to be substituted into either.

Thesis: The definition of order for a theory ought to kesbd on the range of substitution.

Because of the interchangeability of axiom and sehenvhat matters is quantification in predicated,axioms:
First order number theory is the theory where gmidicates with bound first order variables arevedld to be
substituted into either scheme or axiom; in secorter number theory the range of substitution eddeto
predicates containing bound second order variables.

There is a difference between axiom and scheme wtagaping theories. The scheme will only achievestme
effect aslIP in a model if the modelling transformation is@n$o although there is otherwise little to choose
between them we propose to adopt the single axmthemore honest way of doing what the infiniteesne
was intended to do.

Thesis: Axiomatisability ought to be defined as finite amiatisability.

Insisting on finite axiomatisability makes no diéace for theories that can alternate betweenfantenscheme
and a single axiom. But it imposes necessary digeipn the ideas for theories that cannot soradtier. It helps
avoid infinite lists and the unfortunate symbaf ‘..

The infinite list of sentences
0zd, 1#d, 2#d, ...

is apparently not reducible to a single axiom,tdeast only to an axiom employing unconventionabtion:
“OngV# o

Second ordetheoriesare, and have always been, compact. Second lmgierwas thought to be non-compact

because the models traditionally used for both &irel second order logic have tolerated forms fafreance that
give rise to non-compactness.

Traditional models implicitly relied on the rule iofference: P(0), P(0’), P(0"), .= Ox P(x).
Or rewritten without triple dotgan P(§") = Ox P(x).
It is not at all clear how the senterida P($”) was meant to be derived for a model. Definitestfbr this form
of quantification inside terms were never articethtthe meaning always remained obscure. MosteoEgtant
reasoning flees from numerals to vague talk of rensitretreating into “extensional intuition”.
No theory can actually support derivations fromiritély many premises. There is no agent to catrysuch
derivations. What a theory can do is to allow unestional forms of notation and/or derivation tieatld be
addressed, in a metaphorical way, as having effeateinfinite derivation, when in fact the deriationly
passes from one finitely long string to another. iNatter where it appears infinity is only a simigdatcreated
with finitely many strings.

Thesis: Theories must be compact.

All logic is compact. What was discussed under hieading of “non-compactness” concerns the unusual
properties theories acquire when supplemented bgnuentional notation such as the quantifierfim‘P($")".
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The pyramid of sentences
X xz0

[k x£0 Ox#£1

or equivalently its summary in unconventional niotat

On X [ xzs)
1<n
are “non-compact” in the sense that although esengence in the pyramid scheme could be provalde in
model, the limit

“[x On xzs™”

need not. (The limit only exists when quantifieasde swapped to pass framix to [x[In — clearly not a
move that is valid in general.)

A similar diagonal argument can be made for theseorder:
[P P(0)~ —Py(0)

[P P(0)~ =Po(0) IP(1) » —~Py(1)

There is finally no good reason to believe thatosecorder quantification is somehow less sound than
unrestricted first order quantification. The re#ths is between finite quantificatiadn<N and unrestricted
quantification On, not betweerlln and OP or Of, all three of which are all essentially and inghably
infinitistic. If there is anything that is suspeutd needs to be handled with care it is the exdeasiforms of
reasoning that used to figure in traditional mod@lsigorous treatment would replace sentence pigarwith

the predicate sequences presented in the Cantmrsec
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Non-Standard Models

For theories, the idea of an extension is simpladd more sentences. For models, i.e. theories uader
transformation, a distinction needs to be drawmvbeh two ways in which sentences can be added.

Definition: A theory M is said to refine a theory Th if M isvadel for Th under a non-surjective
transformation.

Definition: A theory E is said to enlarge a theory Th if agaosubtheory of E (but not E itself) is a
model for Th.

The difference between refinement and enlargensahiait of being a model as opposed to containimgpael.
Let ROQ be the theory of the ordering and algebraic prigeishared by the rational and real numbRfsSQ
can be refined in two directions, by an axiom sgyhmat every element is a rational fraction to¢iede structure
of the rational numbers, or by a completeness aximnsequences to yield the real numbéisis then an
enlargement of), but not a refinemeng) is neither an enlargement nor a refinemeniRfor

General Principle: Every theory has non-isomorphic enlargements.

There is always more to add to the menagerie. Alfaojif unimaginative way of manufacturing enlargmts is
given by

Definition: The Cartesian product of two theories @hd Th is a theory consisting of Thelativised
to a fresh predicate letter, ldnd Th relativised to a fresh predicate letter U

The general principle would hardly be worth menitignhad not a special case been held up as an tampor
theorem: Let the theory Th be extensionalisablé ait infinite universe u. Enlarge its model intbetory by the
power set of its universe. The only constrainttendardinality of the power set is then given byx\p(u)|= |u|

> |o. In a standard shot, all four cardinalities v equal. In different non-standard shots |p(wjcbe set
equal to any cardinality upwards of |u|.

The Léwenheim-Skolem TheoremEvery extensionalisable theory with an infiniteuense has
enlargements that are non-isomorphic because @&izkeassigned to the universe and its power set.

A theory can constrain the elements of its univeesa the elements of the power set of its universe
universe and the power set itself are not objefcteeotheory (Set theory is no exception to this gince it only
manages to talk about its own universe by becomomextensionalisable). The relation of the unigers its
power set is therefore not a relation internalng theory. In particular, the existence or otheends bijective
functions between them must be left open. As tle®rth does not rule on it, almost anything is pdssih
enlargements.

Concerning set theory, the Léwenheim-Skolem Theoapplies only to subtheories with a suitably restd
universe.

Definition: A set over which equality and membership are esttgralisable is called ordinary.
Initial segments of the constructible hierarchyluding most common mathematical sets, are ordinaig not.
To summarise up to this point: The Léwenheim-SkolEneorem is not a source of what were called “non-
standard” models because the models it says exdserlargements. Non-standard models properly Bedca
would have to be refinements.
If the underdetermination of number theory that ldoallow it to have non-isomorphic models was partl
illusory, the tangible theory of non-standard ari#tic that was inspired by it was not. This the@ryust a

somewhat modified set of axioms not for number tiglout for — non-standard arithmetic.

Proposition: A theory is categorical iff it has no refinements.
Proof: Immediate.
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First order number theory is not categorical. I§ Is@cond order number theory and a range of nowlztd
theories as refinements.

Say that two numbers are in the same segmentyifatefinitely many successor steps away from edicér.
Standard number theory is then characterised bfatfi¢hat there is only one segment, non-standetidmetics
by any number of segments other than one. It ofseotakes either set theory or second-order predida
define segments. (The standard refinement is caetbmply by allowing the previously unavailablegicate
P(n) = “n is finitely many successor steps awaymfr6” to feed into induction; in non-standard theeri
induction must be modified so that P(n) does nobbee true of all numbers.)

The general way forward: Instead of questionablgn&tructing” non-standard models, define a theory b
modified axioms. If these modified theories shotich out to be modelled by set theory, then tha Bonus,
but never a requirement.
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Measure Theory

Measure Theory as we currently know it is validyanl the bent world; measure theory under singfimiity has
to be done differently.

Proposition: Under single infinity, no measure can be infinitatiditive for general sets.
Proof: Infinite additivity would equate the measofdghe continuum with that of an isolated point.

What might be conceivable is that a measure remiaiitsitely additive for certain well-behaved, naefo
measure sets. | state it as an open issue (oplasitto me) how far the meaning of ‘well-behavedh be
expanded beyond the obvious — beyond finite unémusintersections of connected sets.

In the bent world, sets of measure zero were déftnenclude allcountablesets. That cannot continue in the
standard world.

Definition (untested): A set is said to be of measure zero if it vanisdfésr finitely many derivations.

It may be possible to reconstruct Lesbesgue intiegrdbased on this changed definition of a neglaibet.
Lesbesgue’s still brilliant idea of defining integjon not for individual functions but rather famictions modulo
zero measure sets, that is equivalence classesaidns that differ in value over at most a setnefasure zero,
could be maintained but with a different meaningegito ‘zero measure’.

Corollary: No dense sets are measure zero.

In particular, the indicator function of the irmatials R\Q over the unit interval [0;1] no longer counts as
integrable.

lllustration: Given some > 0, a dense set s, and instructions to draw erdine vertical line of unit
height and width less tharfor every point in the set, and no lines for psinbt in the set, then which
picture to draw, the one on the left or the onéhanright, would be undecidable on the basis of the
instructions.

So that integrals are no longer defined for funidiscontinuous over a dense set is perhapssasutd be. |
have always found it intuitively offensive to agsitdpe value 1 (all black) to the indicator integoakr the dense
set of irrationalR\Q, but the value 0 (all white) to the indicator igtal of the equally dense set of ration@ls
Any value in between (shade of grey) would havenhjest as justified, and just as arbitrary.
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Topology

A major source of non-standard assumptions in tupobre the postulates underwriting infinitary donstions.
It may seem ironic that constructions, which westecgcated by intuitionists and other reformers asiqaarly
“safe”, should be a cause for concern. But thiié$ surprising once it is considered how the natfre
mathematical construction has been misunderstood.

The trouble with constructive arguments is thatythee often nothing of the sort. That existencéeamg
posited, not proven. And the word ‘constructiorbaled to imply success, when success is at isslieodgh
not as beguilingly intuitive, a non-constructivegament at least always constructs something repioaf by
contradiction, which is a well-defined finite stgirobject. A constructive argument on the other hamght
fundamentally misconstrue the business of constmuct by, for instance, attempting object consinrg that
are not grounded in constructions with stringsne eonjure up a miasma.

Constructions do not, by themselves, prove exigteroonstructions are applications of postulates of
existence. The definition of the object under cartdion is inevitably a string produced accordingcertain
rules. Only when combined with a postulate — bedeselared openly but now often implicit — that siitings
defined in accordance with this method are non-gnagit the “construction” have succeeded in procdhgcan
object. Without the postulate there would only beaae, and no reason not to believe it to be empty.

Cantor’s uncountability argument is the classicecasa construction that depends on rarely acknigdd
postulates. A similar if less famous constructidtrilzuted to the same author, with the same ul@émat
consequence of uncountability, is the Cantor letgisn Theorem. (The Cantor Intersection Theorelsp a
known as the Chinese Box Theorem, serves as a lamth& proof of the Heine-Borel Theorem, whichrthe
implies the uncountability of the real numbers.)eT$uccess of both constructions becomes refutaideru
single infinity.

For general compact spaces the Cantor Intersethienrem is false. The construction used can pushrdy
finitely far — unless the following assumption iddad: That the initial segments, whose construlitylmhay
indeed be granted, are more than just initial segsi®r a sequence.

Initial segments for a sequence exist, initial segts for a sequence that would converge to a sequeh
initial segments exist, etc. But assembling th@sefsegments into a whole requires a postulate.

The Cantor Intersection Property — that certainsual sequences of nested closed sets exist and thei
intersection is non-empty — therefore fails to bevable outright. Where the property is desired, diéher it
down as an axiom, or a construction principle framich it follows. Be aware, however, that both pdestes
lead to non-standard spaces.

To rescue the Heine-Borel Theorem for standardesp#s premise may have to be strengthened from

If a sequence S of open intervals covers [BhEn some finite subset of S covers [0;1].
To

If S is a sequence of open intervals such thahiecs [0;1] and the midpoints of the intervals \&mi
after finitely many derivationthen ...

It is as yet unclear if reconstruction along thirses will prove viable.
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Odds and Ends

To close, an additional number of theorems thaspect ripe for restructuring. The list does natrolto be
complete, or even correct.

e From (Meta-)Set Theory: Forcing
(Uses Godel-numbering for infinite string sets, demmplicitly concatenation)

» From Topology: The Baire Category Theorem
(A consequence of the Cantor Intersection Theorem.)

e From Cardinal Arithmeticopxw] = ||
(Cantor’s image — an enumeration winding its watyddagonally across a table — suggests much, mgsr
little. It does not preclude the possibility of ohéfig a version of set theory in which the cardiyadf a
Cartensian product is larger than the cardinalitysofactors.
The only ‘countable’ sets, in any real sense nagatd counting and ability, are finite. The remami
technical meaning of ‘countable’ refers to the &fise of a bijective function beween the set@nd@hese
functions are infinitary objects, which only a pdate can introduce. No construction, without negyon a
postulate, could vouch for their existence.)

e From Model Theory: “The (countable) categoricityaoflense linear order.”
(Another theorem of Cantor’s. What the constructistablishes is probably only that any finite lifhga
ordered set can be mapped order-isomorphicallyamésy interval of a dense set. The statement is
equivalent to denseness, and could serve as ara#firition of dense.)

* From Model Theory: £dsTheorem
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Afterword

No single paper could ever complete a restructupnggramme, nor could a programme be
completed by a single author. Restructuring, bynéture, requires a collective effort by many
active in a discipline. | have suggested an outlaed hope that others will be able to see
something attractive in that outline. | do not eiahat everything contained in this manuscript is
absolutely right or fully on course. | only claiat it is broadly pointing in a more promising

direction than the status quo of the discipline.atMollows, if indeed anything does follow, is up

to others.
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