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Abstract 

The science of physics possesses today an adequate amount of knowledge that allows 

us to search for the first principles that govern physical reality. It is in the spirit of this 

search that we performed the study presented in this edition. The physical theories of 

the last century did not have the necessary completeness in order to justify the 

quantum phenomena and the cosmological data. There is a fundamental physical law 

that prevails from the microcosm to the observations we perform billions of light 

years away. 
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Introduction 

 

The study we present in the current edition is based on two assumptions that are taken 

as axioms. The first assumption is that the rest masses 
0m  and electric charges q  of 

material particles increase with the passage of time (selfvariations). The second 

assumption is that the consequences of the selfvariations propagate through four-

dimensional spacetime with a zero arc length: 2 0dS = . The set of consequences 

arising from these two assumptions constitutes the “theory of selfvariations”.  

An immediate consequence of the statements-axioms we have introduced, is the 

concept of the generalized photon: a particle carrying energy E , linear momentum P , 

and moving with velocity υ , of magnitude c=υ , in every inertial frame of 

reference. The generalized photon correlates the material particle with its surrounding 

spacetime. In its simplest version, the generalized photon is emitted by the material 

particle into its surrounding spacetime. When the material particle is electrically 

charged, the generalized photon, apart from energy and momentum, also carries 

electric charge.  

The following figure represents the arbitrary motion of a material point particle 

moving with velocity u  in an inertial frame of reference ( ), , ,O x y z t . 
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Figure 1 : A material point particle moving arbitrarily. As the material particle moves 

from point ( ( ), ( ), ( ), )p p pE x w y w z w w  to point ( ( ), ( ), ( ), )p p pP x t y t z t t , the generalized 

photon moves from point ( ( ), ( ), ( ), )p p pE x w y w z w w  to point ( ), , ,A x y z t . 

 

A generalized photon is emitted by the material particle at time 
r

w t
c

= − , from point 

( ( ), ( ), ( ), )p p pE x w y w z w w , and arrives at time t  at point ( ), , ,A x y z t . The velocity of 

the generalized photon in Figure 1, is 

c

r
υυυυ = r  

where r r= . We express the vector 
c

υ
 in the trigonometric form 

cos

sin cos

sin sin

x

y

z

c

c c

c

υ

δ
υ

δ ω
δ ωυ

 
 
   
   = =   
    
 
  

υυυυ
 

Furthermore, we define the following two vectors 

sin

cos cos

cos sin

δ
δ ω
δ ω

− 
 =  
  

ββββ  

0

sin

cos

ω
ω

 
 = − 
  

γγγγ  

The vectors , ,
c

υ
β γ  constitute a right-handed, orthonormal vector basis that 

accompanies the generalized photon in its motion. The consequences of the 

selfvariations are expressed as functions of the parameters , , ,
r

w t r
c

δ ω= − . 

The basic study of the selfvariations leads to two fundamental theorems: the 

“Fundamental Mathematical Theorem”, and the “Trajectory Representation 

Theorem”. The first theorem allows us to correlate any change in energy manifested 

on the material particle at point ( ( ), ( ), ( ), )p p pE x w y w z w w  with a corresponding 
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change in energy at point ( ), , ,A x y z t  of Figure 1. The second theorem represents the 

tangent vector, the curvature and the torsion of the trajectory of the material particle 

onto the geometric characteristics of the generalized photon in the surrounding 

spacetime. The two theorems allow us to express quantitatively the consequences of 

the selfvariations on the surrounding spacetime of the material particle. As a 

consequence of the selfvariations, in the surrounding spacetime of the material 

particle there is energy of density D  

0

4

3 2

2

1

4 1

m
D c

w
r

c
πγ

∂
= −

∂ ⋅ − 
 

υυυυ u
 

and momentum of density J  

2
= D

c
J

υυυυ
 

where 
2

2

1

1
u

c

γ =

−

, and ( )w=u u . 

If the material particle is electrically charged, then in the surrounding spacetime there 

is also electric charge of density ρ  

3

2 2

2

1

4 1

q

c w
r

c

ρ

πγ

∂
= −

∂ ⋅ − 
 

υυυυ u
 

and electric current of density j  

ρυυυυj =  

The Lienard-Wiechert potentials  

0 2

2

0 2

4 1

4 1

q
V

r
c

q

c r
c

πε

πε

=
⋅ − 

 

=
⋅ − 

 

υ u

A u
υ u

 

are not compatible with the theory of selfvariations. Therefore, they are replaced by 

the potentials of the selfvariations 
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( )

2

2

2 2

3

0 02 2

1

4 1 4 1

u
q

qc
V

r c
c c

πε πε

 
−  ⋅ = +

⋅ ⋅   − −   
   

u u

υ αυ αυ αυ α

υ υυ υυ υυ υ

 

2
V

c
=

υυυυ
A  

where ( )w=α α  is the acceleration of the material particle.  

The potentials of the selfvariations are separated into two individual pairs 

2

2

2

0 2

2

1

4 1

u

u u

u
q

c
V

r
c

V
c

πε

 
− 

 =
⋅ − 

 

=

υυυυ

υυυυ

u

A

 

and 

( )
2

3

0 2

2

4 1

q
V

c
c

V
c

α

α α

πε

⋅
=

⋅ − 
 

=

u

A

υ αυ αυ αυ α

υυυυ

υυυυ

 

The ( ),
u u

V A  pair gives the electromagnetic field ( ),
u u

ε B  that accompanies the 

electrically charged material particle 

2

2

3

2

0 2

2

2

3

0 2

1

4 1

1

4 1

u

u

u
q

c

c c
r

c

u
q

c

c c

c

πε

πε

 
− 

  = − 
 ⋅ − 

 

 
− 

 = ×
⋅ − 

 

u

u

u

u

υυυυ
εεεε

υυυυ

υυυυ
ΒΒΒΒ

υυυυ

 

The ( ),V Aα α  pair gives the electromagnetic radiation 
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2

2
20 2

20 2

14 1

14 1

q c

c c
c r

cc

q c

c c c
r

cc

α

α

πε

πε

  
     = − − ⋅  ⋅    −−     

  
     = × − × ⋅⋅    −−      

u

uu

u

uu

υυυυ αααα
υυυυ

ε αε αε αε α
υυυυυυυυ

υυυυ αααα
υ υυ υυ υυ υ

Β αΒ αΒ αΒ α
υυυυυυυυ

 

The pair ( ),V Aα α  of the electromagnetic radiation potentials does not depend on the 

distance r . For each couple ( ),ε B  the following relation holds 

2c
= ×
υυυυ

Β εΒ εΒ εΒ ε  

The energy-momentum tensor for the generalized photon that results from the 

selfvariation of the rest mass 0m  of the material particle is given by the matrix ijΦ  

2

2

22

2

x y z

x x x y x zij

y y x y y z

z z x z y z

c c c c

cD

cc

c

υ υ υ
υ υ υ υ υ υ
υ υ υ υ υ υ
υ υ υ υ υ υ

 
 
 Φ =
 
 
  

 

where 

0

1

2

3

x

y

z

c υ

υ υ
υ υ
υ υ

  
  
   =   
  
     

, , 0,1, 2,3i j =  

The energy-momentum tensor for the generalized photon that results from the 

selfvariation of the electric charge q  of the material particle is given by the matrix 
ijΦ  

2

2

11 12 13

22

21 22 23

2

31 32 33

x y z x y z

x x x x y x zij

y y y x y y z

z z z x z y z

w cS cS cS c c c c

cS cV

cS cc

cS c

υ υ υ
σ σ σ υ υ υ υ υ υρ
σ σ σ υ υ υ υ υ υ
σ σ σ υ υ υ υ υ υ

  
  
  Φ = −
  
  
    

 

where ( ) 0
, ,

x y z
S S S ε= = ×S ε Β  is the Poynting vector, ( )2 2 2

0

1

2
W cε= +ε B  and  

( )2

0
c B B Wαβ α β α β αβσ ε ε ε δ= − − +  



 10 

1,

0,

if

if
αβ

α β
δ

α β
=

= 
≠

 

( ) ( )
( ) ( )

1 2 3

1 2 3

, , , ,

, , , ,

x y z

x y z

ε ε ε ε ε ε= =

Β Β Β = Β Β Β =

ε

Β
 

, 1, 2,3α β =  

The energy-momentum tensors ijΦ  give us important information about the energy 

content of the surrounding spacetime of the material particle. Furthermore, they are 

related with the gravitational and the electromagnetic interaction. As we progress in 

our study however, it becomes evident that there is information about the energy 

content and the properties of spacetime, that is not contained within the ijΦ  tensors. 

The study we presented up to this point has been conducted without a quantitative 

determination of the selfvariations. We made the assumption of the selfvariations in 

order to undertake the relevant calculations, but we have not determined 

quantitatively the rate at which they evolve, i.e. the 0m

w

∂
∂

 and 
q

w

∂
∂

. In order to study 

the consequences of the selfvariations, we have to quantitatively determine these 

rates.  

The quantitative determination of the selfvariations is made on the basis of the total 

energy sE  and the total momentum sP  emitted simultaneously in all directions, by the 

material particle. The rest mass 0m  and the electric charge q  of the material particle 

vary according to the operators 

s

s

i
E

t

i

∂
→ −

∂

∇→ P

ℏ

ℏ

 

where h  is Planck’s constant, and 
2

h

π
=ℏ . The law of selfvariations expresses a 

continuous interaction between the material particle and the generalized photons.  

The partial contribution of an individual generalized photon to the law of 

selfvariations is determined by the percentage-function Φ . Due to this, function Φ  

has a fundamental role in the energy content of the generalized photon. 

 The energy E  and momentum P  of the generalized photon that is related to the 

selfvariation of the rest mass 0m  of the material particle, are given by the equations 
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0

0
2

0

0
2

1

1

mi
E i

m w t

c

mi
i

m c w c

c

∂ ∂Φ
= Φ +

∂ ∂−

∂
= Φ − ∇Φ

∂−

υu

υ
P

υu

ℏ
ℏ

ℏ
ℏ

 

The equations that give the energy and momentum of the generalized photon that is 

related to the selfvariation of the electric charge of the material particle, are of similar 

form.  

The energy E  and the momentum P  of the generalized photon do not obey the 

simple relation 

2
E

c
=

υ
P  

That relation is a special case of the general relation 

2 sin

i i
E

c r rδ δ ω
∂Φ ∂Φ

= − −
∂ ∂

υ
P β γ

ℏ ℏ
 

The generalized photon determines the relation of the material particle with the 

surrounding spacetime. Furthermore, it is related with the energy content of spacetime 

and, hence, with the very properties of spacetime. Because of this, a large part of the 

study we present in the present edition concerns the generalized photon and its 

properties. The resulting equations contain an exceptionally large body of data and 

information. Thus, we shall confine ourselves to a brief report for the structure and the 

properties of the generalized photon. 

The generalized photon carries four energy-momentum pairs, each of which 

transforms autonomously, independently of the rest, according to Lorentz-Einstein. 

Two of these pairs do not possess rest energy, do not depend on the distance r  from 

the material particle, are defined both on the material particle and on the surrounding 

spacetime, while they do not possess intrinsic angular momentum (spin). The other 

two energy-momentum pairs have, respectively, rest energy 

sin

c

r

c

r

δ

δ ω

∂Φ
±

∂
∂Φ

±
∂

ℏ

ℏ
 

Their energy and momentum are inversely proportional to the distance r  from the 

material particle, they are not defined on the material particle but only on the 

surrounding spacetime, while they possess intrinsic angular momentum (spin), given 

respectively by 
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sin

i

i

δ

δ ω

∂Φ
−

∂
∂Φ
∂

γ

β

ℏ

ℏ
 

The total intrinsic angular momentum S  of the generalized photon is given by 

relation 

sin

i
i

δ ω δ
∂Φ ∂Φ

= −
∂ ∂

S β γ
ℏ

ℏ       

The intrinsic angular momentum of the generalized photon exhibits some remarkable 

properties. The first is that it does not depend on the distance r  from the material 

particle, while it is also defined on the material particle itself. Furthermore, the 

component  

uS i
ω
∂Φ

=
∂
ℏ  

in the direction of the velocity of the material particle, remains invariant under the 

action of the Lorentz-Einstein transformations and is, therefore, constant in all inertial 

reference frames. Another property of the intrinsic angular momentum of the 

generalized photon is that it does not vanish even if we consider that the material 

particle is motionless. In other words, the generalized photon carries intrinsic angular 

momentum even in the inertial reference frame in which the material particle is at 

rest. In that sense, we can characterize the intrinsic angular momentum of the 

generalized photon as “rest angular momentum”. One final property, which is not 

included in the present edition is the following: during the interaction of the 

generalized photon with a material particle, the variation ∆S  of the angular 

momentum of the generalized photon manifests a component along the direction of 

the vector 
c

υ
. 

Of particular interest is the fact that the generalized photon, in its general version, 

implies the existence of rest energy in the surrounding spacetime of the material 

particle. The existence of this energy results as a general consequence of the equations 

of the theory of selfvariations.  

We remind that the law of the selfvariations has been stated on the basis of the total 

energy sE  and the total momentum sP  of the generalized photons emitted 

simultaneously and in all directions by the material particle. We can easily prove that 

between the energy 
sE  and the momentum 

sP  the following relation holds 

2s s
E

c
=

u
P  

where ( )w=u u  is the velocity of the material particle at the moment of emission of 

the generalized photons. The energy sE  is always correlated with a rest energy 
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0 0E ≠  through equation 0sE Eγ= , where 
2

2

1

1
u

c

γ =

−

. Therefore, in the energy sE , 

which results from the aggregation of the generalized photons, a rest mass of 0

2
0

E

c
≠  

is implicit. The law of selfvariations expresses exactly the interaction between the rest 

mass 0m  of the material particle, and the rest mass 0

2

E

c
 that results from the 

aggregation of the generalized photons.  

The physical object that results from the aggregation of the generalized photons, 

always accompanies the material particle. Because of this, we named it 

“accompanying particle”. The accompanying particle has rest mass 0

2

E

c
, while in the 

part of spacetime it occupies it holds that 2 0dS = . The combination 0

2
0

E

c
≠  and 

2 0dS = , leads to the conclusion that the accompanying particle corresponds to an 

intermediate state between “matter” ( 0

2
0

E

c
≠ ) and the “photon” ( 2 0dS = ). This 

intermediate state of matter is the cause of quantum phenomena, and its prediction 

constitutes one of the most important results of the theory of selfvariations.  

In Nature, the system material particle-accompanying particle exists and behaves as a 

“generalized particle” which extends in a part of spacetime. The part of space 

occupied by the generalized particle can be the point where the material particle is 

located, or it can extend up to an infinite distance away from the material particle. In 

the part of spacetime where the generalized particle extends, the trajectories and 

velocities of the generalized photons are altered with respect to the strictly defined 

trajectories and velocities presented in Figure 1. There is an extreme case where the 

concepts of trajectory and velocity of the generalized photon become meaningless; 

they are not defined. The same is true for the trajectory and velocity of the material 

particle in case it is located in the part of spacetime occupied by the generalized 

particle. This prediction provides us with the basic idea about the method we have to 

develop in order to study the generalized particle. 

One way in which to study the internal structure and physical properties of the 

generalized particle, is to eliminate the velocity, which also represents the trajectory, 

from the equations of the theory of selfvariations. This elimination of the velocity can 

be accomplished in several ways. One is to introduce into the equations of the theory 

of selfvariations the potential energy U  of the material particle. The resulting 

equation is the time-independent wave equation of Schrödinger 

( )02

2

2m Uε −
∇ Ψ = − Ψ

ℏ
 

The differential equations of the theory of selfvariations are of first order. When we 

convert them to second order equations, we can eliminate the velocity without having 

to introduce potential energy, or any other physical quantity, into the equations. The 



 14 

elimination of velocity leads to the Klein-Gordon equation. As a special case of the 

Klein-Gordon for 
0 0m = , we get the wave equation 

2
2

2 2
0

c t

∂ Ψ
∇ Ψ − =

∂
 

which appears in Maxwell’s theory of electromagnetism. 

Observing the way in which we use Schrödinger’s operators in quantum mechanics, 

we realize that, what we are primarily doing, is to eliminate the kinematic 

characteristics of the material particle from the resulting differential equations. Dirac 

does the same thing in the method he develops, in combination, of course, with his 

additional assumptions, in order to derive his eponymous equation.  

In order to study the internal structure of the generalized particle we have to answer 

specific questions. These questions, and more generally all the issues concerning the 

generalized particle, are completely different from the ones we usually have to answer 

when we study physical reality.  

The material particle can be located at any position in the part of spacetime it 

occupies. Judging by the success of quantum mechanics and by the high accuracy 

calculations it permits, we conclude that statistical interpretation is one way of 

studying the internal structure of the generalized particle. However, the theory of 

selfvariations poses a question, the answer to which, leads us to an unknown territory 

of physical reality. 

In order to study the internal structure of the generalized particle we have to answer 

the question, how is the total rest mass of the generalized particle distributed between 

the material particle ( 0m ) and the accompanying particle ( 0

2

E

c
). During the 

quantitative determination of this particular distribution, the Schrödinger and Klein-

Gordon equations show up, together with the wave equation of Maxwell’s 

electromagnetic theory. In the part of spacetime occupied by the generalized particle, 

an external cause suffices to shift the rest mass towards either the material particle or 

the accompanying particle. In the first case, the generalized particle behaves as a 

material particle, which moves on a defined trajectory, with defined velocity, energy, 

etc. In the second case, the generalized particle spreads in spacetime, while the 

consequences of the aggregation of the generalized photons are intensified. This is the 

phenomenon we observe in the double-slit experiment.  

The law of selfvariations results in the differential equation 

2 0
0

0

0
m

m c i
m

 
+ = 

 

i

ɺ
ℏ  

the only unknown being the rest mass 0m  of the material particles. This simple 

equation contains as information and rationalizes, the totality of the cosmological data 

within a Universe that is flat and static, with the exception of a very slight variation of 
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the fine structure constant predicted by the equations of the theory of selfvariations 

for observations at distances greater than 96 10 ly× . 

The redshift z  of a distant astronomical object located at distance r  is given by 

equation  

1
1

1

kr

cAe
z

A

−
−

= −
−

  

where k  is a constant and A  is a scalar parameter that obeys the inequality  

1
1

z
A

z
< <

+
     

for every value of the redshift z . Therefore, the value of parameter A  is close to 1, 

with 1A < . 

The distance ( )r r z=  of a distant astronomical object as a function of the redshift z , 

is given by equation 

( )
ln

1

c A
r

k A z A

 
=   − − 

 

In Diagram 1 we present the plot of the function ( )r r z=  for 

0.900, 0.950, 0.990, 0.999A A A A= = = =  up to 5z = . We observe that, as we 

increase the value of parameter A , the curve tends to become a straight line. This 

result is not accidental. It is proven that, for 1A −→ , function ( )r r z=  gives 

Hubble’s law.  
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Diagram 1: The plot ( )r r z=  of the distance of an astronomical object as a function 

of redshift z , for 0.900, 0.950, 0.990, 0.999A A A A= = = = . As the value of the 

parameter A  is increased, the curve ( )r r z=  tends to a straight line. 

 

The energy ( )E z  which fuels the radiance of astronomical objects, and which 

originates from the process of fusion, and generally from the conversion of mass into 

energy, is smaller than the corresponding energy E  in our galaxy, according to 

equation 

( )
1

E
E z

z
=

+
 

Therefore, the intrinsic luminosity of the astronomical object is lower than the 

standard luminosity we use. As a consequence, the luminosity distance R  we measure 

is in fact greater than the real distance r  of distant astronomical objects. The relevant 

calculations lead to equation 

1R r z= +  

Consideration the arithmetic values of the parameters that factor into function 

( )R R z= , we obtain equation 
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5000 1R z z= +      

where the luminosity distance R  is given in Mpc . In Diagram 2 we present the plot 

of function ( )R R z=  up to 1.5z = . 

 

Diagram 2.: The plot of the luminosity distance R  of astronomical objects as a 

function of the redshift z . The measurement of the luminosity distances of type aI  

supernova, confirms the theoretical prediction of the law of selfvariations.  

 

Type aI  supernovae are cosmological objects for which we can measure the 

luminosity distance at great distances. At the end of the last century, these 

measurements were performed by the independent scientific groups of Adam J. Riess 

and Saul Perlmutter. The graph that results from those measurements, exactly matches 

Diagram 2, which is theoretically predicted by the law of selfvariations. The concept 

of dark energy was invented in order to justify the inconsistency between the Standard 

Cosmological Model and Diagram 2.  

At cosmological scales, the rest mass ( )0m r  with which an astronomical object exerts 

gravitational action at distance r  from itself, is given by equation 

( ) 70 0 2 10

0.001

1 0.999 r
m r m

e
−− ×

=
−
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where 0m  is the laboratory value of the rest mass. The distance r  is measured in 

Mpc .  

For values of r  of the order of kpc , it turns out that ( )0 0m m r= . For 100r kpc=  we 

get ( )0 00.99999m r m= . Consequently, the strength of the gravitational interaction is 

not affected on the scale of galactic distances. The selfvariations do not affect the 

stability of the solar system and of galaxies. 

On the contrary, at distances of the order of magnitude of Mpc , a clearly smaller 

value of mass ( )0m r  compared to 0m , is predicted. For 100r Mpc=  we get 

( )0 00.98m r m= . For even larger distances, the ratio 
( )0

0

m r

m
 becomes even smaller. 

For an astronomical object located at a distance corresponding to redshift 9z = , it is 

( )0

0

0.1
m r

m
= . The strength of the gravitational interaction exerted by an astronomical 

object with 9z =  on our galaxy is just 10%  of the expected. For still greater 

distances, the gravitational interaction practically vanishes. This is why gravity cannot 

play the role attributed to it by the Standard Cosmological Model.  

The Thomson scattering coefficient 

4

2 2

0

8

3

q

m c
τ

π
σ =  

as well as the Klein-Nishina scattering coefficient  

2

0

2

0

3 2 1
ln

8 2

m c E

E m c
τσ σ

  
= +  

  
 

obtain different values, namely 

( ) ( )
( )

4

2 2

0

8

3

q r
r

m r c
τ

π
σ =  

and  

( ) ( ) ( )
( )

( )
( )

2

0

2

0

23 1
ln

8 2

m r c E r
r r

E r m r c
τσ σ

  
= +      

  

respectively, at distant astronomical objects. The mathematical calculations give  

( ) ( )
2

1

1

kr

cr r Ae

A

τ

τ

σ σ
σ σ

− 
− = =  − 

 
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At very large distances ( r →∞ ), and equivalently for the very early Universe, we get  

( ) ( ) 2
1

1

r r

A

τ

τ

σ σ
σ σ
→∞ →∞  = =  − 

 

Because of the inequality 1
1

z
A

z
< <

+
 we see that 1A −→  and, therefore, the 

Thomson and Klein-Nishina scattering coefficients obtain enormous values in the 

very early Universe. Consequently, in its very early stages, the Universe went through 

a phase during which it was opaque to electromagnetic radiation. The cosmic 

microwave background radiation originates from that period. The theory of 

selfvariations predicts that, in that phase, the temperature of the Universe was slightly 

above 0K . Furthermore, it predicts that the cosmic microwave background radiation 

originates from the whole extent of the space occupied by the Universe.  

The ionization and excitation energy ( ) ( )n nX r X z=  of the atoms of distant 

astronomical objects differs from the laboratory value nX  according to equation 

( )
1

n
n

X
X z

z
=

+
 

This equation has consequences regarding the degree of ionization of distant 

astronomical objects. In other words, the redshift z  affects the degree of ionization of 

atoms in distant astronomical objects. Boltzmann’s formula  

1 1

nX

n n KT
N g

e
N g

−
=  

gives the number of excited atoms nN , that occupy the energy level n  on a stellar 

surface which is in thermodynamic equilibrium. With nX  we denote the excitation 

energy from the ground energy level 1 to the energy level n , T  denotes the 

temperature of the stellar surface in Kelvins 231.38 10
J

K
K

−= ×  is Boltzmann’s 

constant, and ng  is the degree of degeneracy of energy level n  (that is, the number of 

energy levels in which the energy level n  splits in a magnetic field). At distant 

astronomical objects Boltzmann’s formula becomes 

( )1

1 1

nX

KT zn nN g
e

N g

−
+=  

From this equation it follows that the degree of ionization at distant astronomical 

objects is greater than expected. The mathematical calculations lead to the conclusion 

that the Universe went through a phase of ionization. The dependence of the degree of 

ionization, as well as of the Thomson and Klein-Nishina scattering coefficients, on the 

redshift z , demands an overall re-evaluation of the electromagnetic spectra we 

receive from distant astronomical objects. 
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The law of selfvariations correctly predicts the structures in the Universe. It predicts 

the monstrous webs of matter in between vast expanses of empty space which we 

observe with current observational instruments. At smaller scales, it predicts galaxies 

and galactic clusters.  

The theory of selfvariations also solves a fundamental problem concerning physical 

reality, which the physical theories of the last century were unable to solve: the arrow 

of time is included within the equations of the theory of selfvariations. The Universe 

comes from the vacuum and evolves towards a particular direction defined by the 

selfvariations. As mentioned earlier, at cosmological scales, all the equations resulting 

from the law of selfvariations give at the limit, for r →∞ , that the initial form of the 

Universe only slightly differs from the vacuum at a temperature of 0K . The origin of 

matter from the vacuum, in combination with the principles of conservation, with 

which the law of selfvariations agrees, necessitate that the energy content of the 

Universe remains zero. The selfvariations continually “remove” the Universe from the 

state of the vacuum, while at the same time the Universe remains consistent with its 

origin. 

In contrast to what happens at the macrocosm, the equations predict that in the 

laboratory the arrow of time does not exist. This prediction definitively solves the 

problem with the arrow of time. 

A measure of the future evolution of the Universe is the rate of increase of the redshift 

z  predicted by the law of selfvariations. Substituting the arithmetic values of the 

parameters into the corresponding equation, we get 

11 16.3 10z z year− −= ⋅ ×ɺ  

It is very characteristic the fact that one simple differential equation, having as a 

unique unknown the rest mass, contains as information, and at the same time justifies, 

the totality of the cosmological data, as we observe and record them, from the time of 

Hubble up to the present. Generally, the equations of the theory of Selfvariations 

contain an extremely large amount of data and information. 
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CHAPTER 2 

 

The study of the selfvariations for an arbitrarily moving point particle 

 

2.1 Introduction 

 

In this chapter we present the fundamental study for the mathematical background of 

the theory of selfvariations. We prove a set of equations which permits us the 

following: We can represent in the surrounding spacetime of a material particle any 

kinematic characteristic which concerns the material particle. At every point of 

spacetime, the velocity, the acceleration, the tangent vector, the curvature and the 

torsion of the trajectory of the material particle can be mapped in a one-to-one 

correspondence. This mapping allows us to take the next step: we exactly determine 

the contribution of the material particle to the energy content of the surrounding 

spacetime. What emerges is a continuous interaction of every material particle with 

the surrounding spacetime. 

The equations are proven for a material point particle in arbitrary motion. We present 

a more general statement of the equations in the Appendix at the end of the book. 

 

2.2 Arbitrarily moving material point particle 

 

The theory of selfvariations is based upon two hypotheses which are taken as axioms. 

a) The rest mass and the electric charge of the material particles increase slightly 

with the passage of time. We shall call this increase “selfvariations”. 

b) The consequences of the selfvariations propagate within the four-dimensional 

spacetime with a vanishing four-dimensional arc length:  
2 0dS =   

In an inertial frame of reference (0, , , , )S x y z t , according to the second postulate, the 

velocity of propagation of the selfvariations υυυυ  remains constant as a vector 

x

y

z

υ

υ υ

υ

 
 = = 
  

 constant        (2.2.1) 

This vector has magnitude  

2 2 2

x y z cυ υ υ υ= + + =        (2.2.2) 

The selfvariations cause energy changes to every material particle and, as a 

consequence, energy, linear momentum and angular momentum propagate into the 

surrounding spacetime. 

We shall later call the carrier of this energy, “generalized photon”. Initially, we will 

refer to the generalized photon as a signal emitted by the material particle, moving 

with velocity υυυυ , and, as our study advances, its properties as a real physical object 

will be revealed. 

We consider an inertial frame of reference (0, , , , )S x y z t  and a material point particle 

moving with velocity u as depicted in figure 2.2.1. 
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Figure 2.2.1 Material point particle in arbitrary motion. As the material particle 

moves from point ( ( ), ( ), ( ), )p p pE x w y w z w w  to point ( ( ), ( ), ( ), )p p pP x t y t z t t , a 

generalized photon moves from point ( ( ), ( ), ( ), )p p pE x w y w z w w  to point ( , , , )A x y z t . 

 

At moment t , when the particle is located at point ( ( ), ( ), ( ), )p p pP x t y t z t t , the rest 

mass om  and the electric charge q  of the particle act at point ( , , , )A x y z t  with the 

value they had at time 
r

t
c c

∆ = =
r

, when the material particle was located at 

( ( ), ( ), ( ), )p p p

r r r r
E x t y t z t t

c c c c
− − − − . 

During the time interval 
r

t
c

∆ =  the material particle moved from point E  to point P , 

while the generalized photon moved from point E  to point A . 

We now denote 

r
W t

c
= −          (2.2.3) 

Hence, the coordinates of E  are 

( ( ), ( ( ), ( ( ), )p p pE x w y w z w w        (2.2.4) 

The vector EA
����

r =  of figure 2.2.1 is given by 

( )

( )

( )

p

p

p

x x w

EA y y w

z z w

 −
 

= − 
 − 

����
r =         (2.2.5) 

The velocity of propagation of the selfvariations υυυυ  is given by  

( )

( )

( )

p

p

p

x x w
c c

y y w
r r

z z w

 −
 

= − 
 − 

= rυυυυ        (2.2.6) 

Here, 

( ) ( ) ( )2 2 2

( ) ( ) ( )p p pr x x w y y w z z w= = − + − + −r    (2.2.7) 
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The velocity ( )w=u u  of the material particle at point E , where it emitted the 

generalized photon, is  

( )

( )
( )

( )

p

p

p

dx w

dw

dy w
w

dw

dz w

dw

 
 
 
 

= =  
 
 
 
 

u u          (2.2.8) 

From equation (2.2.7) we have 

( ) ( )

( )

( ) ( )1
2 ( ) 2 ( )

2

( )
2 ( )

p p

p p

p

p

dx w dy wr w w
x x w y y w

t r dw t dw t

dz w w
z z w

dw t

       ∂ ∂ ∂
= − − + − −       ∂ ∂ ∂       

  ∂
+ − −   ∂   

  

Taking into account equations (2.2.5) and (2.2.6) we have  

1
(

r w
)

t r t

∂ ∂
= − ⋅

∂ ∂
r u   

And with equation (2.2.3) we get 

1
(

r r
) 1-

t r c t

∂ ∂ = − ⋅  ∂ ∂ 
r u   

Taking into consideration that 
r c
=
r υυυυ

, as deduced by equation (2.6.6) we obtain 

r r
1-

t c c t

∂ ⋅ ∂ = −  ∂ ∂ 

uυυυυ
  

and finally  

2

r

t
c 1-

c

∂ ⋅
= −

⋅∂  
 
 

u

u

υυυυ
υυυυ

         (2.2.9) 

where ( )w=u u  and 
x x y y z zu u u u u u⋅ = + +uυυυυ . 

Similarly, starting from equation (2.2.7) and differentiating with respect to , ,x y z  we 

get 

2

1

1

r

x

r
r

y c

cr

z

 ∂
 ∂ 
∂ ∇ = =  ⋅∂ − 
∂ 
 ∂ 

υυυυ
υυυυ u

        (2.2.10) 

From equation (2.2.3) we obtain initially  

2

1

1

w

t

c

∂
=

⋅∂ −
uυυυυ

         (2.2.11) 
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Similarly, from equation (2.2.3) we have 
1r

w t r
c c

 ∇ = ∇ − = − ∇ 
 

 and, in combination 

with equation (2.2.10), we get 

2

2

1

1

w

c
c

∇ = −
⋅ − 

 

u
υυυυ

υυυυ
       (2.2.12) 

From equation (2.2.7) and after differentiating with respect to x , we get  

( ) ( ) ( )( ) ( ) ( )1
( ) 1 ( ) ( )

2

p p p

p p p

x w y w z wr
x x w y y w z z w

x r x x x

 ∂ ∂ ∂  ∂
= − − − − − −  ∂ ∂ ∂ ∂  

 

Equivalently, 

( ) ( )

( )

( ) ( )1
( ) 1 ( ) 1

( )
( ) 1

p p

p p

p

p

dx w dy wr w w
x x w y y w

x r dw x dw x

dz w w
z z w

dw x

    ∂ ∂ ∂
= − − − − −    ∂ ∂ ∂   

 ∂
− − −  ∂ 

  

and also,  

( ) ( )

( )

( ) ( ) ( )1
( ) ( )

( )
( )

p p p

p p

p

p

x x w dx w dy wr
x x w y y w

x r r dw dw

dz w w
z z w

dw x

−     ∂
= − − + −    ∂    

  ∂
+ −   ∂ 

  

Taking into account equations (2.2.8) and (2.2.6) we arrive at 

xr w

x c c x

υ∂ ⋅ ∂
= −

∂ ∂
uυυυυ

  

and substituting 
2

2

2
1

xw

x
c

c

υ∂
= −

∂ ⋅ − 
 

uυυυυ
  

as inferred from equation (2.2.12), we finally obtain 

2

1

1
x

r

x
c

c

υ
∂

= −
⋅∂  − 

 

uυυυυ
        (2.2.13) 

Following the same procedure differentiating with respect to y  and z , we finally 

have 

2

1

1

r
c

c

∇ =
⋅ − 

 

u

υυυυ
υυυυ

        (2.2.14) 

Differentiating with respect to time t , we obtain from equation (2.2.5)  

( ) ( )

( ) ( )

( ) ( )

p p

p p

p p

x w dx w w

t dw t

y w dy w w

t t dw t

z w dz w w

t dw t

∂   ∂
− −   ∂ ∂   
∂∂ ∂   

= − = −   ∂ ∂ ∂   
∂ ∂   

− −   ∂ ∂   

r
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Taking into consideration equation (2.2.8) 
w

t t

∂ ∂
= −

∂ ∂
r

u , and in combination with 

equation (2.2.11), we finally get 

2

1

1
t

c

∂
= −

⋅∂ −

r
u

uυυυυ
        (2.2.14) 

From equation (2.2.6) we successively obtain 

c

r
= rυυυυ   

2

c r c

t r t r t

∂ ∂ ∂
= − +

∂ ∂ ∂
r

r
υυυυ

  

1 r c

t r t r t

∂ ∂ ∂
= − +

∂ ∂ ∂
rυυυυ

υυυυ         (2.2.15) 

taking into account 
c

r
r = υυυυ . Substituting into equation (2.2.15) the quantity 

r

t

∂
∂

, from 

equation (2.2.9), and 
t

∂
∂
r

, from (2.2.14), we finally obtain relation 

( )
2

2
1

c

t c
r

c

⋅ ∂
= − ⋅∂    − 

 

u
u

u

υυυυυυυυ
υυυυ

υυυυ
      (2.2.16) 

Starting from equation (2.2.6) we get ( )( )x p

c
x x w

r
υ = − , and differentiating with 

respect to x  we get 

( )

( )

2

2

( )
( ) 1

( )
( ) 1

px
p

px
p

x wc r c
x x w

x r x r x

dx wc r c w
x x w

x r x r dw x

υ

υ

∂ ∂ ∂
= − − + − ∂ ∂ ∂ 

 ∂ ∂ ∂
= − − + − ∂ ∂ ∂ 

  

Since 
( )p

x

dx w
u

dw
= , as arises from equation (2.2.8), we have that  

( )2
( ) 1x

p x

c r c w
x x w u

x r x r x

υ∂ ∂ ∂ = − − + − ∂ ∂ ∂ 
  

and considering that 

2

1

1
x

r

x

c

υ
∂

=
⋅∂ −

υυυυ u
 from equation (2.2.13), and that 

2

2

1

1
x

w

x
c

c

υ
∂

= −
⋅∂  − 

 

υυυυ u
 from equation (2.2.12), we get 

2

2

2 2

1

1 1

x x x x
uc

x r
cr c

c c

υ υ υ
 
 ∂
 = − + +

⋅ ⋅∂     − −        

υ υυ υυ υυ υu u
  

and finally 
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( )

2
1

x x xx
uc

x r
cr

c

υ υυ −∂
= +

⋅∂  − 
 

υυυυ u
       (2.2.17) 

Working similarly, we finally obtain 

( )

( )

2

2

1

1

i i i

i

j j i i

uc
for i j

r
cr

c

x u
for i j

cr
c

υ υ

υ
υ υ

−
+ = ⋅  − 

∂  
= 

∂ − ≠ ⋅ −  
 

υυυυ

υυυυ

u

u

     (2.2.18) 

where, ( ) ( )1 2 3, 1,2,3 , , , ,i j x x x x y z= = . 

Equations (2.2.18) can be summarized in equation 

( )
2

1

1

c
grad I

r c
r

c

+ ⊗ −
⋅ − 

 

υυυυ
υ = υυ = υυ = υυ = υ

υυυυ
u

u
     (2.2.19) 

where, 

x x x

y y y

z z z

x y z

grad
x y z

x y z

υ υ υ

υ υ υ

υ υ υ

∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

υυυυ   

1 0 0

0 1 0

0 0 1

I

 
 =  
  

  

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

a b a b a b

a b a b a b

a b a b a b

 
 ⊗  
  

αααα b =        (2.2.20) 

This holds for any two arbitrary vectors 

1

2

3

a

a

a

 
 
 
  

a =  and 

1

2

3

b

b

b

 
 =  
  

b  

We now have 
yx z

x y z

υυ υ∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
υυυυ , and from equations (2.2.18) we get 

( ) ( ) ( )

2

3

1

x x x y y y z z z
u u uc

r
cr

c

υ υ υ υ υ υ− + − + −
∇⋅ = +

⋅ − 
 

u
υυυυ

υυυυ
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2 2 2

2

2

3

1

x x y y z z x y z
u u uc

r
cr

c

υ υ υ υ υ υ+ + − + +
∇⋅ = +

⋅ − 
 

u
υυυυ

υυυυ
  

and since 
2 2 2 2

x y z cυ υ υ+ + =  and 
x x x y z zu u uυ υ υ+ + = ⋅υυυυ u , we see that  

2

2

3

1

c c

r
cr

c

⋅ −
∇ ⋅ = +

⋅ − 
 

υυυυ
υυυυ

υυυυ
u

u
  

Finally, we arrive at relation 

2c

r
∇ ⋅ =υυυυ          (2.2.21) 

Now, we consider the curl of vector υυυυ   

yz

x z

y x

x z

curl
z x

x y

υυ

υ υ

υ υ

 ∂∂
− 

∂ ∂ 
∂ ∂ 

∇× = = − ∂ ∂ 
∂ ∂ − ∂ ∂ 

υ υυ υυ υυ υ        (2.2.22) 

Taking into account equations (2.2.18) we obtain 

( )
2

1

1

curl

cr
c

∇× = = ×
⋅ − 

 

υ υ υυ υ υυ υ υυ υ υ
υυυυ

u
u

      (2.2.23) 

where, 

y z z y

z x x z

x y y x

u u

u u

u u

υ υ
υ υ
υ υ

 −
 

× = − 
 − 

uυυυυ  

We now consider the acceleration vector 

( )

( )

( )( )

( )

x

y

z

du w

dw

du wd w
w

dw dw

du w

dw

 
 
 
 = = =  
 
 
  

α αα αα αα α
u

      (2.2.24) 

of the material particle at the moment w , located at point E  of figure 2.2.1. We have 

that  

( ) ( )x x x
x

u u w du w w w

t t dw t t
α

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
  

and since, from equation (2.2.11), it is 

2

1

1

w

t

c

∂
=

⋅∂ −
υυυυ u

, we get 

2
1

x xu

t

c

α∂
=

⋅∂ −
υυυυ u

.  

Working similarly for the differentials xu

t

∂
∂

 and zu

t

∂
∂

, we get 
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2

1

1
t

c

∂
=

⋅∂ −
αααα

υυυυ
u

u
        (2.2.25) 

For the differentiation of the velocity ( )w=u u  with respect to , ,x y z  we initially get 

( ) ( )x x x
x

u u w du w w w

x x dw x x
α

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
. 

Similarly, from equation (2.2.12) we have that 

2

2
1

xuw

x
c

c

∂
= −

⋅∂  − 
 

υυυυ u
 , hence 

2

2
1

x x xu

x
c

c

υ α∂
= −

⋅∂  − 
 

uυυυυ
. 

Working similarly we finally obtain  

2

2

, 1,2,3

1

j ii

j

u
i j

x
c

c

υ α∂
= − =

⋅∂  − 
 

uυυυυ
      (2.2.26) 

Here we use the notation ( ) ( )1 2 3, , , ,x x x x y z=   

From equation (2.2.26) we obtain 

 

2

1

1

grad
c

r
c

⊗
⋅ − 

 

υυυυ
= −= −= −= −

υυυυ
u u

u
      (2.2.27) 

We now consider the vector  

( )
( )

d w
w

dw
= =

αααα
b b         (2.2.28) 

Working as we did in order to prove equations (2.2.16), (2.2.25) and (2.2.26), we 

arrive at relations 

2

1

1
t

c

∂
⋅∂ −
b

u

αααα
====

υυυυ
        (2.2.29) 

2

2

, 1,2,3

1

j ii

j

b
i j

x
c

c

υα∂
= − =

⋅∂  − 
 

uυυυυ

      

(2.2.30) 

where ( ) ( )1 2 3, , , ,x x x x y z= , and 

2

1

1

grad
c

c
c

⊗
⋅ − 

 

υυυυ
α = −α = −α = −α = −

υυυυ
b

u
      (2.2.31) 

The equations of this paragraph express the fact that in every inertial reference frame 

the velocity υυυυ  of the selfvariations remains constant as a vector with magnitude 

c=υυυυ . It can easily be proven that all the equations are consistent with the Lorentz-

Einstein transformations, as we pass from one inertial reference frame to another. The 

equations we have proven are fundamental for the theory of selfvariations. As we 

advance our study, we will find that they allow us to correlate any physical quantity 

defined on the material particle, with any physical quantity defined on the 

surrounding spacetime. Using the concept of information, we can correlate any 

information concerning the material particle with any information concerning the 
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surrounding spacetime. Part of this information are the potential fields, while the 

quantum phenomena arise spontaneously. 

 

2.3 The trigonometric form of the velocity of selfvariations 

Starting from equation (2.2.2) we get 1
c
=

υυυυ
 for every inertial reference frame. We 

express the unit vector 
c

υυυυ
 into the trigonometric form 

cos

sin cos

sin sin

x

y

z

c

c c

c

υ

δ
υ

δ ω
δ ωυ

 
 
   
   = =   
    
 
  

υυυυ
       (2.3.1) 

where ( , , , )x y z tδ δ=  and ( , , , )x y z tω ω=  are functions of the coordinates , , ,x y z t  in 

an inertial frame of reference (0, , , , )S x y z t .  

From equation (2.3.1) we see that  

1
cosx

c c

υ
δ= =

υυυυ
e   (a) 

2sin cos
y

c c

υ
δ ω= =

υυυυ
e  (b)      (2.3.2) 

3
sin sinz

c c

υ
δ ω= = e

υυυυ
  (c) 

where 1

1

ˆ 0

0

x

 
 = =  
  

e , 2

0

ˆ 1

0

y

 
 = =  
  

e , 3

0

ˆ 0

1

z

 
 = =  
  

e . 

We now consider the vectors 

sin

cos cos

cos sin

δ
δ ω
δ ω

− 
 =  
  

ββββ         (2.3.3) 

and 

0

sin

cos

ω
ω

 
 = − 
  

γγγγ          (2.3.4) 

It is easily proven that the set of vectors { , ,
c

υυυυ
β γβ γβ γβ γ } form a right-handed orthonormal 

vector basis which is defined at every point Α  of figure 2.2.1. Furthermore, the 

following relations hold: 
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sin

cos

0

sin cos

c

c

c

c

δ

δ
ω

δ

δ
ω

δ

δ δ
ω

∂   = ∂  
∂   = ∂  
∂

= −
∂
∂

=
∂
∂

=
∂
∂

= − −
∂

υυυυ
ββββ

υυυυ
γγγγ

β υβ υβ υβ υ

ββββ
γγγγ

γγγγ

γ υγ υγ υγ υ
ββββ

       (2.3.5) 

Differentiating the vectors , ,
c

υυυυ
β γβ γβ γβ γ  with respect to , , ,x y z t  we obtain the following 

equations: 

sin
c

δ δ ω ∇ ⋅ ⋅∇ + ⋅∇ 
 

υυυυ
= β γ= β γ= β γ= β γ   (a) 

sin
t c t t

δ ω
δ

∂ ∂ ∂  + ∂ ∂ ∂ 

υυυυ
= β γ= β γ= β γ= β γ    (b)    (2.3.6) 

sin
c

δ δ ω∇× ∇ × + ∇ ⊗
υυυυ
= β γ= β γ= β γ= β γ   (c) 

singrad
c

δ δ ω∇ ⊗ + ∇ ⊗
υυυυ
= β γ= β γ= β γ= β γ   (d) 

cos
c

δ δ ω∇ ⋅ ∇ + ⋅∇
υυυυ

β = − γβ = − γβ = − γβ = − γ    (a) 

cos
t t c t

δ ω
δ

∂ ∂ ∂
+

∂ ∂ ∂
β υβ υβ υβ υ
= − γ= − γ= − γ= − γ    (b)    (2.3.7) 

cos
c

δ δ ω∇× ×∇ − ×∇
υυυυ

β = γβ = γβ = γβ = γ   (c) 

cosgrad
c

δ δ ω∇ ⊗ + ∇ ⊗
υυυυ

β = − γβ = − γβ = − γβ = − γ   (d) 

sin cos
c

δ ω δ ω∇ ⋅ ∇ − ⋅∇
υυυυ

γ = − βγ = − βγ = − βγ = − β   (a) 

sin cos
t t c t

ω ω
δ δ

∂ ∂ ∂
∇⋅ −

∂ ∂ ∂
γ υγ υγ υγ υ

= − β= − β= − β= − β   (b)    (2.3.8) 

sin cos
c

δ ω δ ω∇× ×∇ + ×∇
υυυυ

γ = βγ = βγ = βγ = β   (c) 

sin cosgrad
c

δ ω δ ω∇ ⊗ − ∇ ⊗
υυυυ

γ = − βγ = − βγ = − βγ = − β  (d) 

We prove indicatively equation (2.3.6)(a). The rest of the equations are proven along 

similar lines. Taking into account equation (2.3.1) we get 
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( ) ( ) ( )cos sin cos sin sin

sin cos cos cos sin

0 sin sin sin cos

c x y z

x y z

y z

δ δ ω δ ω

δ δ δ
δ δ ω δ ω

ω ω
δ ω δ ω

∂ ∂ ∂ ∇ ⋅ =  ∂ ∂ ∂ 
∂ ∂ ∂

+ +
∂ ∂ ∂

∂ ∂
+ − +

∂ ∂

υυυυ
+ + =+ + =+ + =+ + =

−−−−   

and considering equations (2.3.3) and (2.3.4), as well as relations  

x

y

z

δ

δ
δ

δ

 ∂
 ∂ 
∂ ∇ =  ∂
 
∂ 
 ∂ 

 , 

x

y

z

ω

ω
ω

ω

 ∂
 ∂ 
∂ ∇ =  ∂
 
∂ 
 ∂ 

  

we finally obtain 

sin
c

δ δ ω ∇ ⋅ = ⋅∇ + ⋅ 
 

υυυυ
β γβ γβ γβ γ . 

We now expand the vector of velocity ( )w=u u  with respect to the vector basis 

{ , ,
c

υυυυ
β γβ γβ γβ γ } as 

( ) ( ) ( )1 2 3w u u u
c c c

 = = + ⋅ + ⋅ + ⋅ 
 

υ υ υυ υ υυ υ υυ υ υ
β + γ = β β γ γβ + γ = β β γ γβ + γ = β β γ γβ + γ = β β γ γu u u u u  

and combining with equations (2.2.16) we get 

( ) ( ) ( )

( ) ( )

2

2

1

1

1

1

t c c c c c
r

c

t c
r

c

⋅ ∂    = − − ⋅ ⋅    ⋅∂      − 
 

∂   = ⋅ ⋅    ⋅∂    − 
 

u
u u u

u

u u
u

υυυυυ υ υ υυ υ υ υυ υ υ υυ υ υ υ
β β − γ γβ β − γ γβ β − γ γβ β − γ γ

υυυυ

υυυυ
β β + γ γβ β + γ γβ β + γ γβ β + γ γ

υυυυ

  

Considering equations (2.3.6)(b) we get 

( ) ( )
2

1
sin

1
t t

r
c

δ ω
δ

∂ ∂
+ = − ⋅ ⋅  ⋅∂ ∂  − 

 

β γ β β + γ γβ γ β β + γ γβ γ β β + γ γβ γ β β + γ γ
υυυυ

u u
u

  

and finally 

2
1

t
r

c

δ∂ ⋅
= −

⋅∂  − 
 

ββββ
υυυυ

u

u
        (2.3.9) 

2

sin

1
t

r
c

ω
δ
∂ ⋅

= −
⋅∂  − 

 

γγγγ
υυυυ

u

u
       (2.3.10) 

because of the linear independence of the vectors ββββ  and γγγγ . 

We now write vectors δ∇  and ω∇  as a linear combination of vectors , ,
c

υυυυ
β γβ γβ γβ γ . 
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1
K L

c
δ λ∇ = + +

υυυυ
β γβ γβ γβ γ         (2.3.11) 

2
M N

c
ω λ∇ = + +

υυυυ
β γβ γβ γβ γ        (2.3.12) 

We combine equations (2.2.16) and (2.2.19), and get relation  

( )

( )

2

2 2

2

2 2

1 1 1

1 1

1 1 1

1 1

grad I
t c c c r c

r cr
c c

c r c
r cr

c c

 
 ∂  ⋅        + = − + + ⊗ −      ⋅ ⋅∂            − −        

 ⋅    − + + ⊗ −    ⋅ ⋅       − −   
   

u
u u

u u

u
u u

u u

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ
υ υ υ υ =υ υ υ υ =υ υ υ υ =υ υ υ υ =

υ υυ υυ υυ υ

υ υυ υυ υυ υ
υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

υ υυ υυ υυ υ

  

Using the identity 

( ) ( )⊗ ⋅α β α βα β α βα β α βα β α βc = c         (2.3.13) 

which holds for every set of vectors , ,α βα βα βα β c , we see that 

( )
2

2 2

2 2 2

2 2 2

1 1 1

1 1

1 1 1 1
1 1

1 1 1

grad
t c c c r

r r
c c

c r c c
r r r

c c c

∂  ⋅      + = − + − =      ⋅ ⋅∂          − −   
   

⋅  ⋅ ⋅      − = + − − =      ⋅ ⋅ ⋅           − − −     
     

0

υ υ υυ υ υυ υ υυ υ υ
υ υ υ + υυ υ υ + υυ υ υ + υυ υ υ + υ

υ υυ υυ υυ υ

υ υ υυ υ υυ υ υυ υ υ
υ + υ υ υυ + υ υ υυ + υ υ υυ + υ υ υ

υ υ υυ υ υυ υ υυ υ υ

u
u u

u u

u u u

u u u

  

That is, 

grad
t c c

∂    + =   ∂    
0

υ υυ υυ υυ υ
υυυυ        (2.3.14) 

Into equation (2.3.13) we replace 
t c

∂  
 ∂  

υυυυ
 from equation (2.3.6)(b), and grad

c

υυυυ
 from 

equation (2.3.6)(d), and obtain  

( )sin sin
t t

δ ω
δ δ δ ω

∂ ∂
+ + ∇ ⊗ + ∇ ⊗ =

∂ ∂
0β γ β γ υβ γ β γ υβ γ β γ υβ γ β γ υ   

Using the identity (2.3.13) we get 

( ) ( )sin sin 0
t t

δ ω
δ δ δ ω

∂ ∂
+ + ⋅∇ + ⋅∇ =

∂ ∂
β γ β υ γβ γ β υ γβ γ β υ γβ γ β υ γu   

and due to the linear independence of the vectors ββββ  and γγγγ  we see that 

0
t

δ
δ

∂
+ ⋅∇ =

∂
υυυυ         (2.3.15) 

0
t

ω
ω

∂
+ ⋅∇ =

∂
υυυυ         (2.3.16) 

Combining equations (2.3.15) and (2.3.11) we obtain 
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1

1

0
t

t

δ
λ

δ
λ

∂
+ =

∂
∂

= −
∂

  

Through equation (2.3.9) we have that  

1

2
1r

c

λ
⋅

=
⋅ − 

 

ββββ
υυυυ

u

u
  

and replacing into equation (2.3.11) we get 

2

2
1

K L
c

r
c

δ
⋅

∇ = + +
⋅ − 

 

β υβ υβ υβ υ
β γβ γβ γβ γ

υυυυ
u

u
      (2.3.17) 

Performing the corresponding combinations, we arrive at equation 

2
sin 1

M N
c

r
c

ω
δ

⋅
∇ = + +

⋅ − 
 

γ υγ υγ υγ υ
β γβ γβ γβ γ

υυυυ
u

u
     (2.3.18) 

We shall now prove that 
1

K
r

= , 0L = , 0M = , 
1

sin
N

r δ
= , hence equations (2.3.17) 

and (2.3.18) obtain their final form 

2

2

1

1
c r

r
c

δ
⋅

∇ = +
⋅ − 

 

β υβ υβ υβ υ
ββββ

υυυυ
u

u
       (2.3.19) 

2

2

1

sin
sin 1

c r
r

c

ω
δδ

⋅
∇ = +

⋅ − 
 

γ υγ υγ υγ υ
γγγγ

υυυυ
u

u
      (2.3.20) 

We will prove that 
1

K
r

= , 0L = . In a similar manner we can also calculate the 

factors ,M N . From equation (2.3.2)(a) we successively obtain 

cos

sin

x

x

c

c

υ
δ

υ
δ δ

=

 − ∇ = ∇ 
 

  

We calculate x

c

υ ∇ 
 

 from equations (2.2.18), hence we have 

1

2

1
sin

1

x xu

r c
r

c

υ
δ δ

−
− ∇ = −

⋅ − 
 

e
u

υυυυ
υυυυ

      (2.3.21) 

where 1

1

0

0

 
 =  
  

e . 

We take the inner product of equation (2.3.21) with vector ββββ  and obtain  

1

1
sin

r
δ δ− ⋅∇ = ⋅β ββ ββ ββ βe   
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From equation (2.3.17) we have Kδ⋅∇ =ββββ , hence we have 

1

1
sin K

r
δ− = ⋅ ββββe   

From equation (2.3.3) we obtain 

1 sinδ⋅ = −ββββe   

Therefore,  

( )1
sin sinK

r
δ δ− = −   

Finally, we obtain  

1
K

r
=   

We take the inner product of equation (2.3.21) with vector γγγγ  and obtain  

1

1
sin

r
δ δ− ⋅∇ = ⋅γ γγ γγ γγ γe   

From equation (2.3.17) it holds that Lδ⋅∇ =γγγγ , hence 

1

1
sin L

r
δ− = ⋅γγγγe   

From equation (2.3.4) we see that 1 0⋅ =γγγγe , therefore sin 0Lδ− = , and finally 0L = . 

The equations of this paragraph promote the theory of selfvariations considerably, and 

their fundamental character will become obvious as our study continues. One first 

fundamental conclusion emerges from equations (2.3.15) and (2.3.16). The functions 

( ), , ,x y z tδ δ=  and ( ), , ,x y z tω ω=  remain invariable on the trajectory of the 

generalized photon. Through equations (2.3.1), (2.3.3) and (2.3.4) we conclude that 

the vector basis { , ,
c

υυυυ
β γβ γβ γβ γ } accompanies without change, that is remaining constant, 

the motion of the generalized photon. We can, of course, straightforwardly prove that  

( )

( )

0

0

0

grad
t c c

grad
t c

grad
t c

∂    + =   ∂    
∂

+ =
∂
∂

+ =
∂

υ υυ υυ υυ υ
υυυυ

β υβ υβ υβ υ
ββββ

γ υγ υγ υγ υ
γγγγ

       (2.3.22) 

by combining equations (2.3.6), (2.3.7) and (2.3.8) with equations (2.3.19) and 

(2.3.20). 

 

2.4 The generalized photon as a geometric object. Representation of the 

trajectory of a material point particle  

In the present paragraph we shall look for points iA  in the neighborhood of point 

( ), , ,A x y z t  of figure 2.2.1, for which the velocity of the generalized photon is the 

same with the velocity at point ( ), , ,A x y z t  at the same moment t . We use the 

notation 

iAA d=
����

R          (2.4.1) 

and we search for points iA , i.e. vector dR , such that 
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( ) ( ), ,d t t=υ υυ υυ υυ υR+ R R        (2.4.2) 

According to equations (2.3.1), equation (2.4.2) is equivalent to the relations 

( ) ( ), ,d t tδ δ=R+ R R        (2.4.3) 

and 

( ) ( ), ,d t tω ω=R+ R R        (2.4.4) 

After expanding the functions ( ), tδ R  and ( ), tω R  in Taylor series up to the first 

order terms, we obtain 

( ) ( )
( ) ( )

, ,

, ,

d t t d

d t t d

δ δ δ

ω ω ω

= + ⋅∇

= + ⋅∇

R+ R R R

R+ R R R
  

Through equations (2.4.3) and (2.4.4) we have that 

0d δ⋅∇ =R          (2.4.5) 

0d ω⋅∇ =R          (2.4.6) 

Combining equations (2.3.19) and (2.3.20) we obtain 

2
2 2

2 2

2
2 2

2 2

sin

1

1 1

1

1 1

=

c c r
r r

c c

r c
r r

c c

δ δω∇ × =

⋅ ⋅
× + × + ×

⋅ ⋅   − −   
   

⋅ ⋅
= − +

⋅ ⋅   − −   
   

t

u u

u u

u u

u u

β υ γ υβ υ γ υβ υ γ υβ υ γ υ
γ β β γγ β β γγ β β γγ β β γ

υ υυ υυ υυ υ

β γ υβ γ υβ γ υβ γ υ
β − γβ − γβ − γβ − γ

υ υυ υυ υυ υ

  

taking into account that the set of the vectors { , ,
c

υυυυ
β γβ γβ γβ γ } form a right-handed 

orthonormal vector basis. We now have  

 

( ) ( )

( ) ( )

2
2

2

2
2

2

1
1

1

1

1

c c
r

c

c c c
r

c

 ⋅  = − − ⋅ − ⋅  ⋅    − 
 

 ⋅  = − − ⋅ − ⋅  ⋅    − 
 

u
t u u

u

u
t u u

u

υ υυ υυ υυ υ
β β γ γβ β γ γβ β γ γβ β γ γ

υυυυ

υ υ υυ υ υυ υ υυ υ υ
β β γ γβ β γ γβ β γ γβ β γ γ

υυυυ

  

and from equation (2.3.9) we get 

2

1

1
c c

r
c

 = − ≠ ⋅   − 
 

0
u

t
u

υυυυ
υυυυ

       (2.4.7) 

According to equations (2.4.5) and (2.4.6) the vector dR  is parallel to the vector 

≠ 0t , hence we finally arrive at relation 

d
c c

 − 
 
�

u
R

υυυυ
         (2.4.8) 

Thus, we conclude that points A  and iA , at which the generalized photon moves with 

the same velocity υυυυ , are arranged parallel to the vector 
c c
−
uυυυυ

. This conclusion is the 
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result of a more general theorem, which we present in the Appendix. For the case of a 

material point particle the theorem gives relation (2.4.8). 

In figure 2.2.1 and for the time interval from 
r

t
c

−  to t , i.e. for 
r

t w t
c

− ≤ ≤ , the 

generalized photons emitted by the material point particle reside within a sphere with 

center , , ,p p p

r r r r
E x t y t z t t

c c c c

      − − − −      
      

 and radius r = r . During the same 

time interval the material particle moved from point E  to point 

( ) ( ) ( )( ), , ,p p pP x t y t z t t . 

We now consider a point iE  in the neighborhood of point E  and on the trajectory 
pC  

of the material particle as it moves from point E  to point P , from which point iE
 

was emitted the generalized photon which at moment t  is located at point iA , as 

depicted in figure 2.4.1. 

 
Figure 2.4.1 A material point particle moves from point E  to point P  on the curved 

trajectory 
pC
 
in the time interval from 

r
w t

c
= −  to t . The generalized photons 

emitted by the material particle with the same velocity υ , in the time interval 

r
t t w

c
∆ = − = , are on curve C  at moment t . 

 

 

Point iE  has coordinates , , ,i p p p

r r r r
E x t y t z t t

c c c c

′ ′ ′ ′      − − − −      
      

, where 

c c

r r
′= =

′
r rυυυυ . 

The points , ,E P A  appear in figure 2.2.1 as well as in figure 2.4.1, while the points 

iE  and iA  are shown in figure 2.4.1.  

For the vector iAA d=
����

r  we have, according to figure 2.4.1 
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( )

id EE

r r
d

c c

r r
d r r

c c c

′= − + +

′  ′= − + − + 
 

′ ′= − − − 
 

����
r r r

r r u r

r + u
υυυυ

  

( )d r r
c c

 ′= − − − 
 

u
r

υυυυ
       (2.4.9) 

For the time interval dw , during which the material particle moved from point E  to 

point iE , it is 
r r r r

dw t t
c c c c

′ ′   = − − − = −   
   

, therefore from equation (2.4.9) we 

obtain 

iAA d cdw
c c

 = = − − 
 

���� u
r

υυυυ
       (2.4.10) 

In figure (2.4.1) we consider curve C  which includes all the generalized photons 

emitted by the material particle during the time interval from 
r

w t
c

= −  to t  towards a 

particular direction 
c

υυυυ
, that is, with the same velocity υυυυ . 

We now consider the tangent vector t  of the curve C  at point A  

d c c

d

c c

− −
= = =

−−

u

r u
t

ur u

υυυυ
υυυυ

υυυυ υυυυ
       (2.4.11) 

as follows from equation (2.4.10). For the three-dimensional arc length dS  of curve 

C  at point A  we obtain from equation (2.4.10) 

dS d dw= = −r u υυυυ         (2.4.12) 

Now, we calculate the curvature k  and the torsion τ  of curve C  at point A . First, we 

calculate the curvature vector k . 

1d d d

ds dw dw

 −
= = =   − − − 

t t u
k

u u u

υυυυ
υ υ υυ υ υυ υ υυ υ υ

     (2.4.13) 

Taking into account that 0
d

dw
=

υυυυ
, 

d

dw
=

u
αααα  and ( )2 2 2c− = + − ⋅u u uυ υυ υυ υυ υ , we 

calculate the vector 

( ) ( )
( )

− × × −  = =
− − ×

u uk
n

k u u

υ α υυ α υυ α υυ α υ

υ υ αυ υ αυ υ αυ υ α
      (2.4.14) 

Combining equations (2.4.11) and (2.4.14), we calculate vector = ×b t n  appearing in 

the Frenet formulas: 

( )
( )
− ×

=
− ×

u
b

u

υ αυ αυ αυ α

υ αυ αυ αυ α
        (2.4.15) 

We remind that the Frenet equations 
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d
k

ds

d
k

ds

d

ds

τ

τ

=

= −

= −

t
n

n
t + b

b
n

         (2.4.16) 

uniquely determine the curve C . Having calculated vectors , ,t n b  we now determine 

the curvature k  and the torsion τ  of curve C  from equations (2.4.16). After the 

necessary calculations, we obtain 

( )
22 2

3
k

− − ⋅ −  =
−

u u

u

υ α α υυ α α υυ α α υυ α α υ

υυυυ
      (2.4.17) 

( )

( )
2

22 2

d

dwτ

 − ×  = −
− − − ⋅  

u

u
u u

ααααα υα υα υα υ
υυυυ

α υ υ αα υ υ αα υ υ αα υ υ α
     (2.4.18) 

We repeat the same procedure deriving vectors ,p pt k  και 
pb  at point E  of the curve 

pC  of the material particle. For 0≠u  it is 

p =
u

t
u

         (2.4.19) 

while the three-dimensional arc length is 

pdS dw= u          (2.4.20) 

The curvature vector 
pk  is given by 

( )
2 4

1p

p

p

d d

dS dw

  ⋅
= = = −  

 

t uu
k u

u u u u

αααααααα
 

and finally, 

( )
4p

× ×
=

u

u

u
k

αααα
        (2.4.21) 

From equation (2.4.21) we get for vector 
pn  

( )p

p

p

× ×
= =

×

u

u

k u
n

uk

αααα
αααα

       (2.4.22) 

From equations (2.4.19) and (2.4.22) we get vector 
p p p= ×b t n  

p

×
=

×
u

b
u

αααα
αααα

         (2.4.23) 

From the Frenet formulas (2.4.16) for curve 
pC , we get for the curvature 

pk  and the 

torsion 
pτ : 

( )2 2 2

3p
k

− ⋅
=

u u

u

α αα αα αα α
       (2.4.24) 



 39 

( )
2

2 2 2p

d

dwτ

 ⋅ × 
 =

− ⋅

u

u
u u

αααααααα

α αα αα αα α
       (2.4.25) 

Comparing equations (2.4.11), (2.4.14), (2.4.15), (2.4.17) and (2.4.18) for curve C , 

with equations (2.4.19), (2.4.22), (2.4.23), (2.4.24) and (2.4.25) for curve 
pC
 
we 

arrive at the following theorem: 

Trajectory representation theorem 

“For every direction 
c

υυυυ
 the following hold: 

a) The map :f → −u u υυυυ  maps the trajectory 
pC  of the material particle to the 

curve C  of the generalized photons moving with velocity υυυυ  

: ( ) ( ): , , , , , , , ,p p p p pf k kτ τ→t n b t n b   

b) The map 
1
:f

− − →u uυυυυ  maps the curve C  of the generalized photons 

moving with velocity υυυυ  to the curve 
pC  of the material particle: 

( ) ( )1 : , , , , , , , ,p p p p pf k kτ τ− →t n b t n b  ” 

According to the “trajectory representation” theorem, if we know the position 

( ), , ,P x y z t  of the material particle at moment t  and the trajectory 
pC  at some past 

time, we can determine the distribution of the generalized photons the material 

particle has emitted in this specific past time. We know exactly how each kinematic 

characteristic of the material particle maps to its surrounding spacetime. 

 

2.5 The fundamental mathematical theorem 

The interaction of the material point particle with the surrounding spacetime depends 

on the following four parameters: 

• The moment 
r

w t
c

= −  of emission of the generalized photon by the material 

particle. All the physical quantities, such as the rest mass, the electric charge, 

the velocity ( )w=u u  and the acceleration ( )wα = αα = αα = αα = α  of the material particle 

depend upon the moment w  of the emission of the generalized photon. 

•  The distance r = r  of the arbitrary point ( ), , ,A x y z t , as depicted in figure 

2.2.1, from the point of emission ( ) ( ) ( )( ), , ,p p pE x w y w z w w  of the 

generalized photon. 

• The direction in space, i.e. the functions ( ), , ,x y z tδ δ=  and ( ), , ,x y z tω ω=  

In this paragraph we will prove the fundamental equations concerning these four 

parameters. 

Initially we prove that the vectors w∇ , δ∇  και ω∇  are linearly independent. Let us 

suppose that 1 2 3 0w w wλ λ λ∇ + ∇ + ∇ = , 1 2 2, ,λ λ λ ∈ℝ   

Taking into account equations (2.2.12), (2.3.19) and (2.3.20), we obtain 
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1 2 3

2 2 2

1 1 1
0

sin
1 1 sin 1

c c r c r
c r r

c c c

λ λ λ
δδ

   
   ⋅ ⋅   − + + + + =

⋅ ⋅ ⋅        − − −                

υ β υ γ υυ β υ γ υυ β υ γ υυ β υ γ υ
β γβ γβ γβ γ

υ υ υυ υ υυ υ υυ υ υ
u u

u u u
  

From the linear independence of the vectors , ,
c

υυυυ
β γβ γβ γβ γ  we see that 

1
2 3

2

3

0
sin

0

0
sin

c r r

r

r

λ
λ λ

δ
λ

λ
δ

− ⋅ ⋅
+ + =

=

=

β γβ γβ γβ γu u

  

Finally, we have 1 2 3 0λ λ λ= = = . 

Therefore the vectors , ,w δ ω∇ ∇ ∇  are linearly independent.  

We now focus our attention on the variation of the quantities , ,w δ ω  and r  on the 

trajectory of the material particle and on the trajectory of the generalized photon. The 

following two theorems hold:  

Theorem I 

1
w

w
t

∂
+ ⋅∇ =

∂
u   (a) 

0
t

δ
δ

∂
+ ⋅∇ =

∂
u   (b)      (2.5.1) 

0
t

ω
ω

∂
+ ⋅∇ =

∂
u   (c) 

0
r

r
t

∂
+ ∇ =

∂
u    (d) 

 

Theorem II 

0
w

w
t

∂
+ ⋅∇ =

∂
υυυυ   (a) 

0
t

δ
δ

∂
+ ⋅∇ =

∂
υυυυ   (b)                                 

0
t

ω
ω

∂
+ ⋅∇ =

∂
υυυυ   (c)      (2.5.2) 

1
r

r
c t c

∂
+ ⋅∇ =

∂
υυυυ

  (d) 

From equations (2.2.11) and (2.2.12) we have 

2

2

2 22

2

2

2 2

1
1

1

1 11

1
0

1 1

w cw
t

c
c cc

w
w

t
c

c c

⋅
−∂ ⋅

+ ⋅∇ = − = =
⋅ ⋅⋅∂  − −− 

 

∂
+ ⋅∇ = − =

⋅ ⋅∂  − − 
 

υυυυ
υυυυ

υ υυ υυ υυ υυυυυ

υυυυ
υυυυ

υυυυ υυυυ

u

u
u

u uu

u u
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From equations (2.3.9) and (2.3.19) we have  

( )

( )

2

2 2

2

2 2

2 2

2

1

1 1

1 1

1 1 0

1

t c r
r r

c c

c

r
r r

c c

c c
r

c

δ
δ

 
 ⋅∂ ⋅  + ∇ = − + +

⋅ ⋅∂     − −        

 ⋅  ⋅ ⋅ = − + + =
⋅ ⋅   − −   

   
⋅ ⋅ ⋅ = − + + − = ⋅   − 

 

βββββ υβ υβ υβ υ
ββββ

υ υυ υυ υυ υ

υυυυββββ
β ββ ββ ββ β
υ υυ υυ υυ υ

β υ υβ υ υβ υ υβ υ υ
υυυυ
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u u

u u
u u

u u

u u u
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( )

( )

2

2 2

2

2

2 2

1

1 1

0

1 1

t c r
r r

c c

c r
r r

c c

δ
δ

 
 ⋅∂ ⋅  + ⋅∇ = − + +

⋅ ⋅∂     − −        

⋅⋅ ⋅
= − + + =

⋅ ⋅   − −   
   

βββββ υβ υβ υβ υ
υ υ βυ υ βυ υ βυ υ β

υ υυ υυ υυ υ

υυυυβββββ υ ββ υ ββ υ ββ υ β
υ υυ υυ υυ υ

uu

u u

uu

u u

  

since 
2 2c=υυυυ  and 0⋅ =υ βυ βυ βυ β . 

Similarly, starting from equations (2.3.10) and (2.3.20) we arrive at equations 

(2.5.1)(c) and (2.5.2)(c). 

From equations (2.2.9) and (2.2.10) we get 

2

22

2

22

2

22

2

2

1
0

11

1

11

1

11

1
1 1

1

r
r

c t c c c
c

cc

r
r

c t c c c
c

cc

c
cc

c

c

 
 ∂ ⋅

+ ∇ = − + = ⋅⋅∂    −−    

 
 ∂ ⋅

+ ∇ = − + = ⋅⋅∂    −−    
⋅

= − + =
⋅⋅  −− 

 
⋅ − = ⋅  −

υ υυ υυ υυ υ
υυυυυυυυ

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ
υυυυυυυυ

υυυυ
υυυυυυυυ

υυυυ
υυυυ

u u u

uu

u

uu

u

uu

u

u

  

With the aid of the above theorems we can prove the following fundamental theorem: 

 

The Fundamental Mathematical Theorem 

For every function ( ), , ,f f w rδ ω=  the following hold: 
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A) 

f f
f

t w

∂ ∂
+ ⋅∇ =

∂ ∂
u         (2.5.3) 

( )( ) f
f grad f

t c c w

∂ ∂  + = ∂ ∂ 

υ
u

υυυυ
ββββ       (2.5.4) 

( ) ( )( ) f
f grad f

t w

∂ ∂
+ =

∂ ∂
β β ββ β ββ β ββ β βu       (2.5.5) 

( ) ( )( ) f
f grad f

t w

∂ ∂
+ =

∂ ∂
γ γ γγ γ γγ γ γγ γ γu       (2.5.6) 

B) 

f f
f c

t r

∂ ∂
+ ⋅∇ =

∂ ∂
υυυυ         (2.5.7) 

f
f grad f

t c c r

∂   ∂   + =    ∂ ∂    

υ υυ υυ υυ υ
υ υυ υυ υυ υ       (2.5.8) 

( ) ( )( ) f
f grad f

t r

∂ ∂
+ =

∂ ∂
β β υ ββ β υ ββ β υ ββ β υ β       (2.5.9) 

( ) ( )( ) f
f grad f

t r

∂ ∂
+ =

∂ ∂
γ γ υ γγ γ υ γγ γ υ γγ γ υ γ       (2.5.10) 

We prove equations (2.5.3), (2.5.4) and (2.5.7). The rest of the equations of the 

fundamental mathematical theorem are proven similarly. For the proof of equation 

(2.5.3) we have 

f f w f f f r
f

t w t t t r t

f f f f
w r

w r

f w f
w

w t t

f f r
r

t r t

δ ω
δ ω

δ ω
δ ω

δ
δ

δ

ω
ω

ω

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ ⋅∇ = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ + ⋅ ∇ + ∇ + ∇ + ∇ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂   = + ∇ + + ⋅∇   ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂   + + ⋅∇ + + ⋅∇   ∂ ∂ ∂ ∂   

u

u

u u

u u

  

and taking into account equations (2.5.1) we obtain 
f f

f
t w

∂ ∂
+ ⋅∇ =

∂ ∂
u , which is 

equation (2.5.3).  

In order to prove equation (2.5.4) we use the identity 

( )grad f f fgrad=∇ ⊗ +α α αα α αα α αα α α       (2.5.11) 

which holds for every vector αααα  and scalar function f . We can now prove equation 

(2.5.4) as: 

f grad f
t c c

f
f fgrad f

t c t c c c

∂     + =    ∂     
∂ ∂    + + +∇ ⊗   ∂ ∂    

υ υυ υυ υυ υ

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

u

u

  

Using identity (2.3.13) ( ) ( )⊗ ⋅α αα αα αα αb c = c b  we obtain 
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( )f
f fgrad f

t c t c c c

f
f f grad

t c t c c

f

w c

∂ ∂    + + ⋅∇ =   ∂ ∂    

∂  ∂      + ⋅∇ + + =      ∂ ∂      
∂
∂

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

υ υ υυ υ υυ υ υυ υ υ

υυυυ

u+ u

u u   

since 
f f

f
t w

∂ ∂
+ ⋅∇ =

∂ ∂
u  , according to equation (2.5.3) and furthermore  

( )sin sin

grad
t c c

t t

δ ω
δ δ δ ω

∂    + =   ∂    
∂ ∂

+ ∇ ⊗ + ∇ ⊗
∂ ∂

υ υυ υυ υυ υ

β + γ β γβ + γ β γβ + γ β γβ + γ β γ

u

u

  

according to equations (2.3.6)(b), (d). Hence we obtain  

( ) ( )sin sin

sin 0

grad
t c c

t t

t t

δ ω
δ δ δ ω

δ ω
δ δ ω

∂    + =   ∂    
∂ ∂

+ ⋅∇ + ⋅∇
∂ ∂
∂ ∂   + ⋅∇ + + ⋅∇ =   ∂ ∂   

β

u

u u

u u

υ υυ υυ υυ υ

β + γ γ =β + γ γ =β + γ γ =β + γ γ =

β γβ γβ γβ γ

     

according to equations (2.5.1)(b), (c). 

The proof of equation (2.5.7) goes as follows: 

f f w f f f r
f

t w t t t r t

f f f f
w r

w r

f w f
w

w t t

f f r
r

t r t

δ ω
δ ω

δ ω
δ ω

δ
δ

δ

ω
ω

ω

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ ⋅∇ = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ + ⋅ ∇ + ∇ + ∇ + ∇ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂   = + ⋅∇ + + ⋅∇   ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂   + + ⋅∇ + + ⋅∇   ∂ ∂ ∂ ∂   

υυυυ

υυυυ

υ υυ υυ υυ υ

υ υυ υυ υυ υ

  

Taking into consideration equations (2.5.2) we get
 

f f
f c

t r

∂ ∂
+ ⋅∇ =

∂ ∂
υυυυ , which is 

equation (2.5.7). 

An immediate consequence of the fundamental theorem is the following lemma: 

For every vector function ( ), , ,w rδ ω=F F  the following relations hold: 

( )grad
t w

∂ ∂
+ ⋅ =

∂ ∂
F F

F u        (2.5.12) 

( )grad c
t r

∂ ∂
+ =

∂ ∂
υυυυ

F F
F        (2.5.13) 

The proof is done by writing the vector function F  in the form 

( ) ( ) ( )1 2 3, , , , , , , , ,F w r F w r F w r
c

δ ω δ ω δ ω= + +
υυυυ

β γβ γβ γβ γF   

and applying the theorem. 
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The fundamental mathematical theorem determines the variation of any scalar, 

vectorial and tensorial physical quantity, both as defined on the material particle, as 

well as on the surrounding spacetime. Of special interest are the applications of this 

theorem for the variations of the rest mass, the electric charge, the energy, the linear 

momentum, the angular momentum, and any other conserved physical quantity, for 

the system “material particle-generalized photon”. The fundamental theorem allows 

us to correlate the variations that take place on the material particle with the 

corresponding variations that take place in the surrounding spacetime. 

 

2.6 The properties of the vector basis { , ,
c

υ
β γ }  

The properties of the right-handed orthonormal vector basis { , ,
c

υ
β γ } are given by 

equations (2.3.6), (2.3.7) and (2.3.8). In these equations we already know their second 

parts from the study conducted in the preceding paragraphs. Thus, we can express 

them in a simpler form. 

 The first of equations (2.3.6), (2.3.7) and (2.3.8) can be written as: 

2

c r

 ∇ ⋅ = 
 

υ
          (2.6.1)                                                             

2

cos

sin
1

r
cr

c

δ
δ

⋅
∇ ⋅ = − +

 − 
 

u β
β

υu
       (2.6.2) 

2
1cr

c

∇⋅ = −
 − 
 

uγ
γ

υu
         (2.6.3) 

Equation (2.6.1) results directly from equation (2.2.21). But we can also prove it in a 

different way, starting from the first of equations (2.3.6) 

sin
c

δ δ ω ∇ ⋅ = ⋅∇ + ⋅∇ 
 

υ
β γ  

With the help of equations (2.3.19) and (2.3.20) we obtain 

1 1 2

c r r r

 ∇ ⋅ = + = 
 

υ
 

taking into account that the set of the vectors { , ,
c

υ
β γ } form a right-handed, 

orthonormal vector basis.  

From the first of equations (2.3.7) we obtain 

cos
c

δ δ ω∇⋅ = − ∇ + ⋅∇
υ

β γ  

Through equations (2.3.19) and (2.3.20) we get  

2

cos

sin
1

r
cr

c

δ
δ

∇⋅ = − +
 − 
 

uβ
β

υu
 

From the first of equations (2.3.8) we have that 

sin cos
c

δ ω δ ω∇⋅ = − ∇ − ⋅∇
υ

γ β  

Using equation (2.3.20) we see that 
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2
1cr

c

⋅
∇ ⋅ = −

 − 
 

u γ
γ

υu
 

Accordingly we can write in a simpler form the rest of the equations (2.3.6), (2.3.7) 

and (2.3.8), whenever it is demanded by the mathematical calculations performed. 

 

2.7 List of auxiliary equations 

We prove the following auxiliary equations:  

( ) ( )2 2 2

3

2 2
1 1

c u

t
c r

c c

∂ ⋅ ⋅ −⋅
= +

⋅ ⋅∂  − − 
 

υ υυ υυ υυ υυ αυ αυ αυ α
υυυυ υυυυ

u u

u u
       (2.7.1) 

( ) ( )2

2

2 2
1 1

uc

r c
c cr

c c

− ⋅⋅
∇ ⋅ = − + +

⋅ ⋅   − −   
   

υu
u u

u u

υυυυυ αυ αυ αυ α
υ υυ υυ υυ υ

υ υυ υυ υυ υ
     (2.7.2) 

( ) ( )( ) ( )2

2 2
1 1

c

t
cr

c c

∂ ⋅ ⋅ ⋅ − ⋅⋅
= +

⋅ ⋅∂  − − 
 

υ α υ υ α υ αυ α υ υ α υ αυ α υ υ α υ αυ α υ υ α υ αυυυυ
υυυυ υυυυ

ub

u u
     (2.7.3) 

( )
2

2 2
1 1

c

r
c cr

c c

⋅ ⋅ − ⋅
∇ ⋅ = − + +

⋅ ⋅   − −   
   

υb u

u u

υ α αυ α αυ α αυ α α
υ α υ α υυ α υ α υυ α υ α υυ α υ α υ

υ υυ υυ υυ υ
     (2.7.4) 

where ( ) ( )d w
w

dw
= =α αα αα αα α

u
 and ( ) ( )d w

w
dw

= =
αααα

b b  and 
22u = u . 

Indeed, it holds that 

( )

( )
t t t

w

t t w t

∂ ⋅ ∂ ∂
+

∂ ∂ ∂
∂ ⋅ ∂ ∂ ∂

+ ⋅
∂ ∂ ∂ ∂

υυυυ υυυυ
υυυυ

υυυυ υυυυ
υυυυ

u u
= u

u u
= u

  

Through equations (2.2.24) and (2.2.11) we obtain 

( )

2
1

t t

c

∂ ⋅ ∂ ⋅
+

⋅∂ ∂ −

υυυυ υ υ αυ υ αυ υ αυ υ α
υυυυ

u
= u

u
  

With the help of equation (2.2.16) we get 

( ) ( )2

2

2

22
11

c
u

t c
r

cc

 ∂ ⋅ ⋅ ⋅
− 

⋅⋅∂      −− 
 

υ υυ υυ υυ υ υ αυ αυ αυ α
υυυυυυυυ

u u
= +

uu
  

and performing the necessary algebraic transformations we obtain equation (2.7.1). 

In order to prove equation (2.7.2) we start from the identity  

( ) ( ) ( )T T
grad grad∇ ⋅ = +υ υ υυ υ υυ υ υυ υ υu u u   

where 
T

grad υυυυ  and 
T

grad u  are the transpose matrices of gradυυυυ  and gradu .  

From equations (2.2.19) and (2.2.27) we obtain 
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( ) ( )

( ) ( )

2 2

2 2

1 1

1 1

1 1

1 1

T

T

T

c
I

r c c
r c

c c

c
I

r c c
r c

c c

 
    ∇ ⋅ = + ⊗ − ⊗ ⋅ ⋅      − −        

 
    ∇ ⋅ = + − ⊗ ⊗ ⋅ ⋅      − −        

u u u
u u

u u u
u u

υ υυ υυ υυ υ
υ υ − α υυ υ − α υυ υ − α υυ υ − α υ

υ υυ υυ υυ υ

υ υυ υυ υυ υ
υ υ − α υυ υ − α υυ υ − α υυ υ − α υ

υ υυ υυ υυ υ

  

Using identity (2.3.13) we get 

( ) ( )

2 2
1 1

c

r c c
r c

c c

⋅ − ⋅
∇ ⋅ = + ⋅

⋅ ⋅   − −   
   

υυυυ υ υ α υυ υ α υυ υ α υυ υ α υ
υ −υ −υ −υ −

υ υυ υυ υυ υ
u u

u u
u u

  

which is equation (2.7.2). We can similarly prove equations (2.7.3) and (2.7.4). In 

order to prove the last equation we use equation (2.2.31), in exactly the same manner 

we used equation (2.2.27). In the same way, we can prove corresponding equations 

for all of the inner products such as ⋅υυυυ b , ⋅ααααu  etc., that appear in the equations of the 

theory of selfvariations. 
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CHAPTER 3 

 

The study of the selfvariations for a material point particle moving with constant 

speed 

 

3.1. Introduction 

In this chapter we present the study of the selfvariations for a material point particle 

moving with constant speed. This study was regarded as necessary for two reasons. 

The first is that constant-speed motion is the simplest possible and, therefore, we are 

studying the consequences of the selfvariations in their simplest version. The second 

reason is that arbitrary motion can be considered as a multitude of successive 

constant-speed motions. 

By studying the constant-speed motion of a material particle we can derive the 

Lorentz-Einstein transformations for the physical quantities , , ,w rδ ω  that appear in 

the equations of the theory of selfvariations. Of special interest is the transformation 

of the volume of the generalized photon, which differs from the volume 

transformation of material particles as we know it within the framework of Special 

Relativity. After having studied both the arbitrary motion, as well as the constant-

speed motion of the material particle, we have the knowledge necessary for advancing 

our study in the forthcoming chapters.  

 

3.2 The case of a material point particle moving with constant speed 

We consider a material point particle with rest mass 0m  and electric charge q , which 

moves with velocity 0

0

u 
 =  
  

u  in the inertial frame of reference ( )0, , , ,S x y z t , as 

depicted in figure 3.2.1 

 
Figure 3.2.1 Material point particle moving with constant speed along the x  axis of 

the inertial reference frame ( )0, , , ,S x y z t . As the material particle moves from point 

E  to point P , during the time interval 
r

t
c

∆ = , a generalized photon moves from 

point E  to point A . 
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At moment t  when the material particle is at point ( ),0,0,P ut t , the rest mass 0m  and 

the electric charge q  of the material particle act at point ( ), , ,A x y z t  through the 

generalized photon that was emitted from point E  and arrived at point A  moving 

with velocity c . Therefore, the coordinates of point E  are 

,0,0,
u r

E ut r t
c c

 − − 
 

        (3.2.1) 

where r EA= =
����

r . Due to the selfvariations, the rest mass 0m  and the electric 

charge q  of the material particle act at point ( ), , ,A x y z t  with the value they had at 

time 

r
w t

c
= −          (3.2.2) 

at point ,0,0,
u r

E ut r t
c c

 − − 
 

, and not with the value they have at point ( ),0,0,P ut t  

at time t  . For the vector r  we have 

u
x ut r

c

EA y

z

 − + 
 

= =  
 
 
 

����
r        (3.2.3) 

The magnitude of r=r  can be derived from equations (3.2.3) as 

( ) ( )22 2 2 2u
r x ut x ut y z

c
γ γ γ= = − + − + +r     (3.2.4) 

where 
2

2

1

1
u

c

γ =

−

  

Combining equations (3.2.3) and (3.2.4) we obtain 

( ) ( )22 2 2 2u
x ut x ut y z

c

y

z

γ γ γ − + − + + 
 

=  
 
 
 

r      (3.2.5) 

The velocity υυυυ  of the selfvariations has magnitude c=υυυυ , and is parallel to the 

vector r , thus we have 

( ) ( )22 2 2 2u
x ut x ut y z

c
c c

y
r r

z

γ γ γ − + − + + 
 

= =  
 
 
 

rυυυυ    (3.2.6) 

The position vector R  of point ( ), , ,A x y z t
 
with respect to point ( ),0,0,P ut t , where 

the material particle is located, is 
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x ut

PA y

z

− 
 = =  
  

����
R         (3.2.7) 

From equation (3.2.7) we obtain 

( )2 2 2R x ut y z= = − + +R       (3.2.8) 

From figure 3.2.1 we see that 

EA

r

c

= +

= +

����
r R

r u R
  

Finally, we obtain 

c

r
= +u Rυυυυ          (3.2.9) 

r
c c

 = − 
 

u
R

υυυυ
         (3.2.10) 

Combining equations (3.2.1) and (3.2.2) we have for the coordinates of point E  

( ),0,0,E uw w          (3.2.11) 

The relations between the scalar, vectorial and tensorial quantities of this paragraph 

can be derived by the corresponding relations proven in the second chapter, 

considering that the acceleration of the material body vanishes, that is ( ) 0w= =α αα αα αα α , 

and that the velocity of the material particle is ( )
( )

0 0

0 0

u w u

w

   
   = = =   
     

u u . 

 

3.3 The case of a material point particle at rest 

We consider an inertial reference frame ( )0 , , , ,S x y z t′ ′ ′ ′ ′ ′  moving with velocity 

0

0

u 
 =  
  

u  with respect to the inertial reference frame ( )0, , , ,S x y z t  of the previous 

paragraph. We also suppose that for 0t t′= =  the origins of the axes of coordinates 0  

και 0′  of these two frames coincide. In the way we have chosen these two inertial 

frames, the material particle is at rest in frame S ′  or, equivalently, frame S ′  
accompanies the material particle during its motion. Figure 3.3.1 is the one 

corresponding to figure 3.2.1 for reference frame S ′ . 
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Figure 3.3.1 A material point particle remains at rest at the origin ( )0,0,0,0,O t′ ′  of 

the inertial reference frame ( )0 , , , ,S x y z t′ ′ ′ ′ ′ . A generalized photon moves from point 

0,0,0,0,
r

E t
c

′ ′ − 
 

 and arrives at point ( ), , ,A x y z t′ ′ ′ ′ , during the time interval 

r
t

c

′
′∆ = . 

 

 

At moment t′ , when the material particle is located at point ( )0,0,0,P t′ , the mass om  

and the electric charge q  of the material particle act at point ( ), , ,A x y z t′ ′ ′ ′  through 

the generalized photon that was emitted from point 0,0,0,
r

E t
c

′ ′ − 
 

 and arrived at 

point ( ), , ,A x y z t′ ′ ′ ′  moving with velocity c . Therefore, the coordinates of point E  

are 

0,0,0,
r

E t
c

′ ′ − 
 

        (3.3.1) 

where r EA′ ′= =
����

r . Due to the selfvariations, the rest mass om  and the electric 

charge q  of the material particle act at point ( ), , ,A x y z t′ ′ ′ ′  with the value they had at 

time 

r
w t

c

′
′ ′= −          (3.3.2) 

and not with the value they have at ( )0,0,0,P t′ .  

For the vector ′r  it holds that 

x

EA y

z

′ 
 ′ ′= =  
′  

����
r          (3.3.3) 

while its magnitude r′ ′=r  is given by (3.3.4) 

2 2 2
r x y z′ ′ ′ ′ ′= = + +r        (3.3.4) 
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The velocity of the selfvariations ′υυυυ  has magnitude c′ =υυυυ , and is parallel to the 

vector ′r , therefore it is 

x
c c

y
r r

z

′ 
 ′ ′ ′=  ′ ′
′  

r =υυυυ         (3.3.5) 

The position vector ′R  of point ( ), , ,A x y z t′ ′ ′ ′  with respect to ( )0,0,0,P t′ , where the 

material particle is located, is given by 

x

PA y

z

′ 
 ′ ′ ′= 
′  

����
R = = r         (3.3.6) 

From equation (3.3.6) we get 

2 2 2
R r x y z′ ′ ′ ′ ′ ′ ′= = = = + +R r       (3.3.7) 

Combining equations (3.3.1) and (3.3.2) we obtain for the coordinates of point E  

( )0,0,0,E w′          (3.3.8) 

The relations between the scalar, vectorial and tensorial quantities of this paragraph 

can be derived from the corresponding relations we proved in the second chapter, 

considering that the acceleration and the velocity of the material particle vanish, that 

is [ ]w= = 0α αα αα αα α  και [ ]w= = 0u u . 

 

3.4 Lorentz-Einstein transformations of the quantities , , ,w rδ ω   

In this paragraph we shall study the way in which the fundamental physical quantities 

appearing in the equations of the theory of selfvariations transform under the action of 

the Lorentz-Einstein transformations. 

In the way we have chosen the inertial reference frames S  and S ′ , the 

transformations of the coordinates in the four-dimensional spacetime are given by the 

set of equations 

( )

2

x x ut

y y

z z

u
t t x

c

γ

γ

′ ′= +

′=

′=

 ′ ′= + 
    

( )

2

x x ut

y y

z z

u
t t x

c

γ

γ

′ = −

′ =

′ =

 ′ = − 
 

    (3.4.1) 

where 
2

2

1

1
u

c

γ =

−

. 

The coordinates of point E  are given by relation (3.2.11), and are ( ),0,0,E uw w  for 

inertial frame S , and by relation (3.3.8), and are ( )0,0,0,E w′  for inertial frame S ′ . 

Applying transformations (3.4.1) we obtain 

w wγ ′=          (3.4.2) 

 

Indeed, based on the fourth equation of the first column of transformations (3.4.1) for 

the coordinates of point E , we get 
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( )0w w u

w w

γ

γ

′= + ⋅

′=
  

We now consider the trigonometric form of the velocity υυυυ , as defined in paragraph 

2.2 of the second chapter. From equations (2.3.2) we get for reference frames S  and 

S ′  respectively 

cos

sin cos

sin sin

x

y

z

c

c

c

υ
δ

υ
δ ω

υ
δ ω

=

=

=

        (3.4.2) 

cos

sin cos

sin sin

x

y

z

c

c

c

υ
δ

υ
δ ω

υ
δ ω

′
′ =

′
′ ′ =

′
′ ′ =

        (3.4.3) 

From the Lorentz-Einstein transformations for the velocity we have 

2

2

2

1

1

1

x
x

x

y

y

x

z
z

x

u

u

c

u

c

u

c

υ
υ

υ

υ
υ

υ
γ

υ
υ

υ
γ

′ +
=

′
+

′
=

′ + 
 

′
=

′ + 
     

2

2

2

1

1

1

x
x

x

y

y

x

z
z

x

u

u

c

u

c

u

c

υ
υ

υ

υ
υ

υ
γ

υ
υ

υ
γ

−
′ =

−

′ =
 − 
 

′ =
′ − 

 

   (3.4.4) 

From transformation (3.4.4) and from equations (3.4.2) and (3.4.3) the following 

transformations are derived for the functions ( ), , ,x y z tδ δ=  και ( ), , ,x y z tω ω= : 

cos

cos

1 cos

sin
sin

1 cos

u

c
u

c

u

c

δ
δ

δ

δ
δ

γ δ

ω ω

−
′ =

−

′ =
 − 
 

′ =

  

cos

cos

1 cos

sin
sin

1 cos

u

c
u

c

u

c

δ
δ

δ

δ
δ

γ δ

ω ω

′ +
=

′+

′
=

 ′+ 
 

′=

  (3.4.5) 

 

We shall prove the first equation. The rest are proven similarly. 

From the first equation of the second column of transformations (3.4.4) we obtain 
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2
1

1

x
x

x

x

x

x

u

u

c

u

c c
uc

c c

υ
υ

υ

υ
υ

υ

−
′ =

−

−′
=

−

  

Through equations (3.4.3) and (3.4.2) we get 

cos

cos

1 cos

u

c
u

c

δ
δ

δ

−
′ =

−
  

From equation (3.3.7) and transformations (3.4.1) we see that 

( )22 2 2r x ut y zγ′ = − + +        (3.4.6) 

Combining equations (3.2.4) and (3.4.6) we get 

( )2 u
r x ut r

c
γ γ ′= − +  

and since 

( )x ut xγ ′− =   

from transformations (3.4.1) we obtain 

u
r x r

c
γ γ′ ′= +         (3.4.7) 

From equation (3.3.5) we see that 

x

x

c
x

r

x r
c

υ

υ

′ ′=
′
′

′ ′=
  

Substituting into equation (3.4.7) we get 

2

2
1

x

x

u
r r r

c

u
r r

c

υ
γ γ

υ
γ

′
′ ′= +

′ ′= + 
 

  

From equation (3.4.3) we obtain 

1 cos
u

r r
c

γ δ ′ ′= + 
 

  

and with the help of transformations (3.4.5) we get 
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2

2

cos

1

1 cos

1

1 cos

1 cos

u

u cr r
uc

c

u

cr r
u

c

r
r

u

c

δ
γ

δ

γ
δ

γ δ

 − 
′= + 
 −
 

−
′=
−

′
=

 − 
 

  

2
1 cos 1

u
r r r

c c
γ δ γ

⋅   ′ = − = −   
   

uυυυυ
      (3.4.8) 

 

From transformations (3.4.5) we obtain 

2

2

2

sin
sin

1 cos

cos 1 cos sin sin

cos

1 cos

cos

cos

1 cos

cos cos

1 cos 1 cos

1

1 cos

u

c

u u

d c c

d u

c

u

d c

d u

c

u u

dc c
u d u
c c

d

ud

c

δ
δ

γ δ

δ δ δ δ
δ

δ
δ

γ δ

δδ
δ

δ
γ δ

δ δδ
δδ γ δ

δ
δ γ δ

′ =
 − 
 

 − − ′  ′ =
 − 
 

−′
′ =

 − 
 

− −′
=

 − − 
 

′
=

 − 
 

  

1

1 cos

d d
u

c

δ δ
γ δ

′ =
 − 
 

       (3.4.9) 

Repeating the same procedure we also arrive at relation 

1 cos
u

c
γ δ

δ δ
∂ ∂ = − ′∂ ∂ 

       (3.4.10) 

among the operators 
δ
∂
′∂
 and 

δ
∂
∂

. 

From equation (3.2.10) we get 
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2

2 2
1 2

u
R r

c c
= + −

υu
  

2

2
1 2 cos

u u
R r

c c
δ= + −        (3.4.11) 

From equation (3.4.11) we are able, whenever it is necessary, to derive the Lorentz-

Einstein transformation of the quantity R  through the use of transformations (3.4.5) 

and (3.4.8). 

We consider now the angle θ  between the vectors R  and u, as depicted in figure 

3.2.1. From the law of sines for the triangle EAP we have that 

sin sin

sin sin

r R

r

R

ϑ δ

ϑ δ

=

=
  

Using equation (3.4.11) we obtain 

2

2

sin
sin

1 2 cos
u u

c c

δ
ϑ

δ

=

+ + −

       (3.4.12) 

From the familiar identity 2 2sin cos 1ϑ ϑ+ =  we have that 

2

2

cos

cos

1 2 cos

u

c

u u

c c

δ
ϑ

δ

−
=

+ + −

       (3.4.13) 

From transformations (3.4.5) we can, after applying equations (3.4.12) and (3.4.13), 

derive the Lorentz-Einstein transformations for the quantities sinϑ  and cosϑ . 

Furthermore, in the inertial reference frame S ′  it is θ δ′ ′= , as can be seen from 

figure 3.3.1. 

 

3.5 The Lorentz-Einstein transformation of the volume of the generalized photon 

The generalized photon moves with velocity υυυυ  of magnitude c=υυυυ  in any inertial 

reference frame. This has as a consequence that the following transformation does not 

hold:  

dV dVγ′ =   

This transformation holds for the volume dV  of a material particle that is at rest in 

the inertial reference frame S ′ . We shall prove that the volume of the generalized 

photon transforms according to relation 

2
1 cos 1

dV dV
dV

u

c c
γ δ γ

′ = =
⋅   − −   

   

υυυυ u
      (3.5.1) 

for our chosen inertial reference frames S  and S ′ . 
In the region of point ( ), , ,A x y z t′ ′ ′ ′  of figure 3.3.1 we consider the elementary area 

2 sindA r d dδ δ ω′ ′ ′ ′ ′=  

of a sphere with center O′  and radius r ′ . Furthermore, we consider a point 1A  close 

to point A  on line OA , as depicted in figure 3.5.1 

Figure 3.5.1 
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The elementary volume of the generalized photon in the inertial reference frame S ′  is 
2

1 1sindV dA AA r d d AAδ δ ω′ ′ ′ ′ ′ ′= =
���� ����

     (3.5.2) 

assuming that 1A A→ . 

In figure (3.5.2) we present the volume dV  occupied by the generalized photon in the 

inertial frame of reference S . 

 
Figure 3.5.1 The infinitesimal volume of the generalized photon in the vicinity of 

point A  of the inertial reference frame ( )0 , , , ,S x y z t′ ′ ′ ′ ′ . The material point particle is 

at position ( )0,0,0,P t′ . The infinitesimal surface of area dA′  is vertical to the vectors 

r PA
→

′ =  and 11r PA
→

′ = . The points ,P A  and 1A  are collinear.  

 

The elementary area dA  in S  is 
2 sindA r d dδ δ ω=  

while the elementary volume dV  is 

2

1 1sindV dA HA r d d HAδ δ ω= =
����� �����

      (3.5.3) 

since 1A A→ . 

From the Lorentz-Einstein transformations it directly follows that points 1, ,P A A , 

which are collinear in reference frame S ′  are also collinear in reference frame S . The 

conclusions of paragraph 2.4 about the representation of the trajectory of the material 

particle in the surrounding spacetime, also lead to figure 3.5.2. Here, the trajectory of 

the material particle is on the x  axis. We now use the following notation, as depicted 

in figure 3.5.2 
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Figure 3.5.2 Figure 3.5.1 as modulated in the inertial reference frame ( )0, , , ,S x y z t , 

in which the material particle moves with constant speed. The points ,P A  and 1A
 

remain collinear, as results from the Lorentz-Einstein transformations.  

 

r EA=
����

         (3.5.4) 

1 1 1r E A=
�����

         (3.5.5) 

according to the notation we have established. Similarly, in figure 3.5.1 we use the 

notation 

r O A′ ′=
����

         (3.5.6) 

1 1r O A′ ′=
�����

         (3.5.7) 

From figure 3.5.2 we have that 

1 1 1 1E A E K KH HA= + +
����� ����� ���� �����

  

and with equations (3.5.4) and (3.5.5) we get 

1 1 1r E K r HA= +
����� �����

 

1 1 1HA r r E K= − −
����� �����

        (3.5.8) 

From the triangle 1E KE  of figure 3.5.2 we see that 

1

1

cos
E K

E E
δ =

�����

�����   

1 1 cosE K E E δ=
����� �����

        (3.5.9) 

Similarly, we have that 

1
1

r r
E E u udw

c

−
= =

�����
        (3.5.10) 

since in the time interval 1r r
t dw

c

−
∆ =  the point particle moved from point 1E  to 

point E . Combining equations (3.5.9) and (3.5.10) we obtain 

1 cosE K udw δ=
�����

        (3.5.11) 
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Combining equations (3.5.8) and (3.5.11) we also get 

1 1 cos
u

HA cdw
c

δ = − 
 

�����
       (3.5.12) 

since 1r r cdw− = . 

Combining equations (3.5.3) and (3.5.12) we get 

2
sin 1 cos

u
dV r d d cdw

c
δ δ ω δ = − 

 
      (3.5.13) 

From figure 3.5.1 we have that 

1 1AA O A O A′ ′= −
����� ����

  

and with equations (3.5.6) and (3.5.7) we get 

1 1AA r r cdw′ ′ ′= − =
����

        (3.5.14) 

Combining equations (3.5.3) and (3.5.14) we also get 
2 sindV r d d cdwδ δ ω′ ′ ′ ′ ′ ′=        (3.5.15) 

Combining equations (3.5.13) and (3.5.15) we get 
2

2

sin

sin 1 cos

dV r d d cdw

udV
r d d cdw

c

δ δ ω

δ δ ω δ

′ ′ ′ ′ ′ ′
=

 − 
 

  

and with transformations (3.4.8), (3.4.5), (3.4.9) and (3.4.2) we get 
2

2

2

2

1 1 1
1 cos

1 cos1 cos

1

1 cos

dV u

udV c u
cc

dV

udV

c

γ δ
γ δγ δ

γ δ

′  = − 
    −− 

 
′
=

 − 
 

  

1 cos

dV
dV

u

c
γ δ

′ =
 − 
 

        (3.5.16) 

This is equation (3.5.1). Given that 0

0

u 
 =  
  

u  we arrive at relation 

2
cosxu u

c c c c

υ
δ

⋅
= =

uυυυυ
        (3.5.17) 

since, according to equation (3.4.2), cos x

c

υ
δ = . 

Combining equations (3.5.16) and (3.5.17) we have 

2
1 cos 1

dV dV
dV

u

c c
γ δ γ

′ = =
⋅   − −   

   

uυυυυ
  

This is the final form of equation (3.5.1). 

In the form 
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2
1

dV
dV

c
γ

′ =
⋅ − 

 

uυυυυ
        (3.5.18) 

transformation (3.5.1) also holds in the case of a material particle in arbitrary motion. 

In figure 2.4.1 the length of the three-dimensional arc iEE  equals 
iEE

����
 at first 

approximation, that is, for an infinitesimal displacement of the material particle from 

point E  to point iE . Thus, we have exactly the situation we describe in figure 3.5.2. 

On the other hand, for a finite, but not infinitesimal, displacement iEE
����

 of the material 

particle, the curvature ( )pk w  and the torsion ( )p wτ  of curve 
pC  of figure 2.4.1 enter 

the transformation of the volume. 
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CHAPTER 4 

 

The study of selfvariations at macroscopic scales 

 

4.1 Introduction 

In the present chapter we study the consequences of the selfvariations at macroscopic 

scales. The main conclusion we derive is the existence of energy, momentum, electric 

charge and electric current in the surrounding spacetime of the material particle as a 

direct consequence of the selfvariations. We calculate the density of energy, 

momentum, electric charge and electric current in the surrounding spacetime of an 

arbitrarily moving material point particle. 

We present the four-dimensional electromagnetic potential which is compatible with 

the selfvariations. An important element that emerges is the splitting of the 

electromagnetic potential into two individual potentials, where the first one gives the 

electromagnetic field that accompanies the material particle in its motion, while the 

second one gives the electromagnetic radiation.  

We prove that the selfvariations are compatible with the principles of conservation of 

electric charge, energy, and momentum. This is accomplished through either direct 

calculation, based on the continuity equation, and also through the energy-momentum 

tensor of the generalized photon. These different approaches help the reader 

comprehend the physical reality that prevails in the surrounding spacetime of material 

particles.  

In the preceding chapters we studied the generalized photon as a geometric object. In 

this chapter we shall see for the first time that the generalized photon is a carrier of 

energy, momentum, and electric charge. The density of electric charge and electric 

current in the surrounding spacetime of the material particle is correlated with the 

electromagnetic field that accompanies the material particle in its motion. The 

electromagnetic radiation does not contribute to the density of electric charge and 

electric current.  

We calculate the energy-momentum tensor for the electromagnetic field and for the 

generalized photon. The energy-momentum tensor describes the energy content of 

spacetime, but only in macroscopic scales. In microscopic scales, the energy-

momentum tensor, as defined by the theory of Special Relativity, cannot describe the 

energy content of spacetime. 

 

 

4.2 The density of electric charge and electric current in the surrounding 

spacetime of an electrically charged point particle  

In figure 3.2.1 the electric charge q  acts at point ( , , , )A x y z t  with the value it had at 

point E . Thus, we have ( )q q w= . Hence, it follows that  

q q w

t w t

q
q w

w

∂ ∂ ∂
=

∂ ∂ ∂
∂

∇ = ∇
∂

 

and with equations (2.2.11) and (2.2.12) we have that 

2

1

1

q q

t w

c

∂ ∂
=

⋅∂ ∂ −
υυυυ u

        (4.2.1) 
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2

1

1

q
q

c w c

c

∂
∇ = −

⋅∂ −

υυυυ
υυυυ u

       (4.2.2) 

According to Special Relativity and the symbols we use in figure 3.2.1, the intensity 

εεεε  of the electric field at point A  is 

3

04

q

r

γ
πε

=
′

εεεε R          (4.2.3) 

where R  is given by equation (3.2.7), r ′  by equation (3.3.7), and 
2

2

1

1
u

c

γ =

−

. From 

Gauss’s law we obtain for the electric charge density ρ  at point A : 

0

0 3

0
4 r

ρ ε

γ
ρ ε

πε

= ∇ ⋅

 
= ∇ ⋅ ′ 

εεεε

R
 

3 3

04 4

q
q

r R

γ γ
ρ

π πε
 = ∇ ⋅ + ⋅∇ ′ ′ 

R
R       (4.2.4) 

We can easily prove that 

3
0

r

 ∇ ⋅ = ′ 

R
         (4.2.5) 

We can avoid the calculation, if we take into account that, ignoring the selfvariations, 

for constant electric charge q , classical Electromagnetism predicts that 0ρ =  at point 

A . This is equivalent with equation (4.2.5). 

Combining equations (4.2.4) and (4.2.5) we get 

 
34

q
r

γ
ρ

π
= ⋅∇

′
R   

Using equation (4.2.2) we get 

3

2
4 1

q

c w c
r

c

γ
ρ

π

∂
= − ⋅

⋅∂  ′ − 
 

υυυυ
υυυυ

R
u

  

After applying equation (3.2.10) we have that 

3

2

3 2

2

3

4 1

1
1

4
1

4

q r

c w c c c
r

c

q r

c w r c

c

q r

c w r

γ
ρ

π

γ
ρ

π

γ
ρ

π

∂  = − − ⋅∂    ′ − 
 

∂ ⋅ = − − ⋅′∂    − 
 

∂
= −

′∂

υ υυ υυ υυ υ
υυυυ

υυυυ
υυυυ

u

u

u

u
  

Using transformation (3.4.8) we get 

3

2 2

2

1

4 1

q

c w
r

c

ρ

πγ

∂
= −

∂ ⋅ − 
 

υυυυ u
       (4.2.6) 
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We can derive the same equation in a different way. We will develop the second 

method in the next paragraph for the calculation of the density of energy D  due to the 

selfvariations of the rest mass of the material particle, where we will not be able to 

use Gauss’s law. The reader can easily apply the method of the next paragraph to the 

electric charge, and still come up with equation (4.2.6). 

The generalized photon moves with velocity υυυυ , therefore the current density j  is 

given by equation 

ρυυυυj =          (4.2.7) 

where the charge density ρ  is given by equation (4.2.6). Equation (4.2.7) can also be 

easily inferred from Ampere’s law  

0 2c t
µ

∂
∇× +

∂
εεεε

B = j         (4.2.8) 

The intensity of the magnetic field B  at point A  of figure 3.2.1 is given initially by 

the Biot-Savart law: 

2c
= ×εεεε
u

B          (4.2.9) 

Combining equations (4.2.3) and (3.2.10) we get 

3

04

q u
r

r c c

γ
πε

 = − ′  

υυυυ
εεεε   

and from equation (3.4.8) we have 

3

2 2

0 2
4 1

q u

c c
r

c
πε γ

 = − 
 ⋅ − 

 

υυυυ
εεεε

υυυυ u
      (4.2.10) 

From equation (4.2.10) we get 

2c c
× ×

υυυυ
ε = εε = εε = εε = ε

u
  

and from equation (4.2.9) we get 

2c
= ×
υυυυ

εεεεB          (4.2.11) 

In equation (4.2.11) the velocity υυυυ  of the generalized photon refers to point A  of 

figure 3.2.1. This has as a consequence that all physical quantities B , υυυυ , εεεε  appearing 

in equation (4.2.11) refer to the same point in spacetime. On the contrary, in equation 

(4.2.9) the velocity u of the material particle does not refer to point A , where the 

electromagnetic field is manifested. Equation (4.2.11) also holds for the case where 

the material particle is in arbitrary motion, as we shall see in a later paragraph.  

 

4.3 The density of energy and momentum in the surrounding spacetime of a 

material point particle. 

In the case of the rest mass we cannot apply Gauss’s law in order to calculate the 

energy density D  in the surrounding spacetime of the material particle. Because of 

this we will develop a completely different proving procedure. We initially calculate 

the energy density D′  in the inertial reference frame S ′  in which the material particle 

is at rest. At point A  of figure 3.3.1 the energy density D′  due to the selfvariations is  
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     (4.3.1) 

From equation (3.3.2) and for a specific time t′  we have that 
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dr
dw

c

′
′ = −   

and equation (4.3.1) becomes 
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2 24 4

dm dm

dr dwD c c
r rπ π
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       (4.3.2) 

We now consider the Lorentz-Einstein transformations for the energy E  and the 

momentum P  of the generalized photon: 
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    (4.3.3) 

Defining as dV  the infinitesimal volume occupied by the generalized photon at point 

A  of figure 3.2.1 we have 

dE
D

dV
=   

Applying the transformations (4.3.3) and (3.5.18) we get 
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From transformations (3.4.4) for the velocity we get  
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and since 
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cos
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, we get 
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Combining equations (4.3.5) and (4.3.6) we have 
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and with (4.3.2) we get 
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Applying transformations (3.4.2) and (3.4.8) we obtain  
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      (4.3.7) 

The generalized photon moves with velocity υυυυ , so we have 

2
= D

c

υυυυ
J          (4.3.8) 

for the momentum density J  at point A  of figure 3.2.1. 

Factor 0m

w

∂

∂
, which appears in the equations of this paragraph, corresponds to factor 

q

w

∂
∂

 in the equations of the previous paragraph. In figure 3.2.1, the rest mass 0m  of 

the point particle acts on point ( ), , ,A x y x t  with the value it had at point E , namely 

( )0 0m m w= . Therefore, we have 

0 0

0
0

m m w

t w t

m
m w

w

∂ ∂ ∂
=

∂ ∂ ∂
∂

∇ = ∇
∂

 

and with equations (2.2.11) and (2.2.12), we get 
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       (4.3.9) 

These equations are analogous to equations (4.2.1) and (4.2.2) for the electric charge. 

 

 

4.4 The selfvariations are in accordance with the principle of conservation of the 

electric charge  
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In figure 3.2.1 and for the time interval from 
r

w t
c

= −  to t , the generalized photons 

emitted by the material particle are contained within a sphere with centre E  and 

radius r . In order for the conservation of the electric charge to hold, we have to prove 

the validity of equation: 
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q t q t dV q t q
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  ∫       (4.4.1) 

where V  is the volume of the sphere with centre E  and radius r , and 

i

V

q dVρ= ∫          (4.4.2) 

is the electric charge, due to the selfvariations, contained within the sphere. From 

equation (3.5.13), we get for the infinitesimal volume dV  
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Combining equations (4.2.6) and (3.4.10) we get 
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Combining equations (4.4.2) and (4.4.4) we also get 
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We now denote 

1 cos
u

c
λ δ= −          (4.4.6) 

Thus, we have  
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1 1
u u
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So we have 
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and equation (4.4.5) becomes 

( )

( )

( )

t

i

r
t

c

t

ri t
c

i

i

q
q dw

w

q q w

r
q q t q t

c

r
q t q q t

c

−

−

∂
= −

∂

= −   

 = − − 
 

 + = − 
 

∫

  

which is equation (4.4.1). 

We can also prove the conservation of the electric charge through the equation of 

continuity 

0
t

ρ∂
+∇ ⋅ =

∂
j          (4.4.9) 

Indeed, taking into account equation (4.2.7) we have 
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and with equation (2.2.21) we get 
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Applying equation (2.5.7) of the fundamental mathematical theorem, for f ρ= , we 

get 
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From equation (4.4.4) we have 
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r r

ρ ρ∂
= −

∂
         (4.4.11) 

Combining equations (4.4.10) and (4.4.11) we finally get 

0
t

ρ∂
+∇ ⋅ =

∂
j   

 

4.5 The selfvariations are in accordance with the conservation principles of 

energy and momentum  
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In figure 3.2.1, for the time interval from 
r

w t
c

= −  to t , the generalized photons 

emitted by the material particle due to the selfvariation of the rest mass are contained 

within the sphere with centre E  and radius r . In order for the conservation of energy 

to hold, it is enough to prove the validity of the following equation:  
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where V  is the volume of the sphere with centre E  and radius r , and  

i

V

E DdV= ∫          (4.5.2) 

is the energy due to the selfvariation of the rest mass, which is contained within the 

sphere. Combining equations (4.3.7) and (3.4.10) we get 
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Combining equations (4.5.2) and (4.5.3), and following the notation of equation 

(4.4.3), we get  
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Using the notation of equations (4.4.6), (4.4.7), and (4.4.8) we have 
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Now (4.5.4) becomes 
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which is equation (4.5.1). 

The conservation of energy can also be proven using the continuity equation  

2
0

D

c t

∂
+∇ ⋅ =

∂
j         (4.5.5) 

Indeed, if we take into account equation (4.3.8) we obtain  
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and with equation (2.2.21) we have 
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Using equation (2.5.7) of the fundamental mathematical theorem for f D= , we get 
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From equation (4.5.3) we have 
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Combining equations (4.5.6) and (4.5.7) we get 
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In order to prove the conservation of momentum, it suffices to prove the 

corresponding of equation (4.5.1), that is, it is enough to prove equation  

( ) ( )0 0 0 i

V

r
m t m t dV m t

c
γ γ γ − = + = + 

  ∫u u J u P     (4.5.8) 

where 

i

V
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is the momentum due to the selfvariation of the rest mass, contained within the sphere 

of centre E  and radius r . Combining equations (4.5.9) and (4.3.8) we obtain 
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We first work on the x -axis: 
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Using equation (3.4.2) we get 
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Using the notation appearing in equations (4.4.6), (4.4.7), and (4.4.8) we have  
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and equation (4.5.1) becomes  
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Similarly for the y -axis we get 
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and with equation (3.4.2) 
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The presence of factor cosω  causes integral (4.5.13) to vanish, and we have 
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We can similarly prove that 
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equations (4.5.12), (4.5.14) and (4.5.15) can be written as  
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From equation (4.5.1) we get 
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From equation (4.5.8) we also have 
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Combining equations (4.5.16) and (4.5.17) we get 
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Equations (4.5.18) and (4.5.19) hold for every volume V , i.e. for every radius r  of 

the sphere with centre E  and radius r  of figure 3.2.1. Therefore, they also hold for 

0r = , that is, on the material particle at time w . Hence, the total energy sE  and the 

total momentum sP  emitted by the material particle at time w  in all directions, are 

connected through the relation 

2s sE
c

=
u

P          (4.5.20) 

where ( )w=u u . This equation has fundamental consequences for the material 

particle, and we shall encounter them as our study continues.  

 

4.6 The electromagnetic field in the macrocosm. The electromagnetic potential of 

the selfvariations  

Using the symbols at point ( ), , ,A x y z t  of figure 2.2.1, the scalar potential V  and the 

vector potential A  of the selfvariations are given by the following equations: 
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The intensity εεεε  of the electric field, and the intensity B  of the magnetic field arising 

from these two potentials, are given by 
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where ( )w=u u  is the velocity, and ( )w=α αα αα αα α  is the acceleration of the material 

particle. Furthermore, the density of electric charge at point A  is 
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w
r

c

ρ

πγ

∂
= −

∂ ⋅ − 
 

υυυυ u
       (4.6.5) 

exactly as given by equation (4.2.6). 

In equations (4.6.3) and (4.6.4) we recognize the electromagnetic field as we know it 

experimentally, but also as predicted by the Lienard-Wiechert potentials. However, 

the electromagnetic potentials of the selfvariations have a fundamental characteristic 

that is not shared by the Lienard-Wiechert potentials. Namely, they split into two 

individual couples of potentials 
2
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       (4.6.6) 

and 

( )
2

3
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q
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c
c
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α α

πε

⋅
=

⋅ − 
 
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A

       (4.6.7) 

The (4.6.6) potentials express the electromagnetic field  



 73 

2

2

3

2

0 2

2

2

3

0 2

1

4 1

1

4 1

u

u

u
q

c

c c
r

c

u
q

c

c c

c

πε

πε

 
− 

  = − 
 ⋅ − 

 

 
− 

 = ×
⋅ − 

 

υυυυ
εεεε

υυυυ

υυυυ
ΒΒΒΒ

υυυυ

u

u

u

u

      (4.6.8) 

that accompanies the material particle in its motion. The (4.6.7) potentials express the 

electromagnetic radiation  
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    (4.6.9) 

The (4.6.7) potential of the electromagnetic radiation does not depend on the distance 

r , while it vanishes for 0⋅ =υ αυ αυ αυ α . Furthermore, for each couple of the electromagnetic 

field we can easily prove that equation (4.2.11) holds 

2u u
c

= ×
υυυυ

Β εΒ εΒ εΒ ε          (4.6.10) 

2c
α α= ×

υυυυ
Β εΒ εΒ εΒ ε          (4.6.11) 

We remind the reader that the electromagnetic field can be calculated from the 

electromagnetic potentials via equations 

V
t

∂
= −∇ −

∂
ΑΑΑΑ

εεεε         (4.6.12) 

=∇×Β ΑΒ ΑΒ ΑΒ Α          (4.6.13) 

where 

V

x

V
V

y

V

z

 ∂
 ∂ 
∂ ∇ =  ∂
 
∂ 
 ∂ 

, and curl∇× =A A . 

We shall now prove equation  

V
t

α
α α

∂
= −∇ −

∂

ΑΑΑΑ
εεεε         (4.6.14) 

and the general equations (4.6.3) and (4.6.4) can be proven similarly. We shall make 

use of the equations of paragraph 2.7. From the (4.6.7) potentials we obtain 
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(4.6.15) 

Combining equations (4.2.1) and (4.2.2) we get 

2
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∂
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∂
υυυυ         (4.6.16) 

Combining equations (2.7.3) and (2.7.4) we get 
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υ α = α υυ α = α υυ α = α υυ α = α υ       (4.6.17) 

Combining equations (2.7.1) and (2.7.4) we get 
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We substitute equations (4.6.16), (4.6.17) and (4.6.18) into equation (4.6.15) and we 

obtain  
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which is equation (4.6.9) for the electric field αεεεε . 

In order to prove equations (4.6.8) we also need equations 
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We can prove equation (4.6.19) as follows 
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This results immediately from the combination of equations (2.2.11) and (2.2.12). 

Equation (4.6.20) results from the combination of equations (2.2.9) and (2.2.14). 

In order to prove equation (4.6.5), we denote 
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and 
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Using the notation of equations (4.6.21) and (4.6.22), and from equations (4.6.8) and 

(4.6.9) we obtain 

u qα= + =ε ε εε ε εε ε εε ε ε f         (4.6.23) 

U qα= + =B B B g         (4.6.24) 

From Gauss’s law we have  

0ρ ε= ∇⋅εεεε   

and using equation (4.6.23) we have 

( )0 qρ ε= ∇⋅ f   

0 0q qρ ε ε= ∇⋅ ⋅∇f + f        (4.6.25) 

From classical electromagnetism we know that 

∇ ⋅ f = 0   

Hence, equation (4.6.25) becomes 
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Using equation (4.6.16) we obtain  
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From equation (4.6.21) we see that 
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Combining equations (4.6.26) and (4.6.27) we get 
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and with equation (4.2.1) we finally obtain 
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which is equation (4.6.5), since 
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Similarly we can prove equation 

0∇⋅ =B          (4.6.28) 

From equation (4.2.24) we have that  
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From classical electromagnetism we know that  

0∇ ⋅ =g   

Thus, equation (4.6.29) becomes  
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and with equation (4.6.16) we obtain 
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From equation (4.6.22) it immediately can be seen that 
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and from equation (4.6.30) we also obtain 
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Combining equations (4.6.30) and (4.6.24) we have that 
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From equation (4.6.31) it follows that 
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if and only if  
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From equations (4.6.10) and (4.6.11) we get 
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Therefore, it holds that  
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or equivalently 
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Combining equations (4.6.26) and (4.6.23) we get  
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From equation (4.6.33) it follows that 

0ρ =   

if and only if 

0⋅ =υ ευ ευ ευ ε   

From equation (4.6.9) for the electric field αεεεε , we can immediately deduce that 
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0α⋅ =υ ευ ευ ευ ε          (4.6.34) 

Therefore, the electromagnetic radiation does not contribute to the charge density ρ . 

On the contrary, for the electric field uεεεε  that accompanies the material particle, it 

holds that  

0u⋅ ≠υ ευ ευ ευ ε   

as follows from equation (4.6.8). 

From equation (4.6.32) we obtain 
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After performing the necessary calculations we finally get 
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We end this paragraph with an interesting observation. Comparing equations (4.6.8) 

for the electric field uεεεε  with equation (2.4.11), we conclude that the vectors t  and uεεεε  

are parallel. Then, the “trajectory representation theorem” informs us that the 

direction of the electric field uεεεε  represents the tangential vector 
pt  of the trajectory 

pC  of the material particle. 

 

4.7 The energy-momentum tensor of the electromagnetic field at macroscopic 

scales  
The equations of this paragraph as well as οf the remaining paragraphs of this chapter, 

could be stated differently, so that they also hold for non-inertial reference frames. 

However, such a formulation does not serve the purposes of the present edition. 

Therefore, we will formulate the equations for an inertial reference frame, while 

simultaneously suggesting the way in which the same equations can also be 

formulated for a non-inertial reference frame.  

From the axiomatic foundation of the theory of selfvariations, as stated in paragraph 

2.2, we have that  
2 0dS =   

or, equivalently, 

, 0,1,2,30
i k

ik i kg dx dx ==        (4.7.1) 

where 

( ) ( )0 1 2 3
, , , , , ,x x x x ct x y z=        (4.7.2) 

and ikg  are the components of the metric tensor. In equation (4.7.1) we use the 

Einstein summation convention for the indices i  and k . 

We denote 

0,1,2,3

i
i

i

dx

dt
υ ==         (4.7.3) 

that is, 
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( ) ( )0 1 2 3, , , , , ,x y zcυ υ υ υ υ υ υ=        (4.7.4) 

From equation (4.7.1) we obtain 
1

0
k

ik

dx dx
g

dt dt
= =   

and with equation (4.7.3) we get 

, 0,1,2,30
i k

ik i kg υ υ ==        (4.7.5) 

Using this notation, all the equations we will formulate also hold for non-inertial 

reference frames if we replace differentiation with respect to kx  with covariant 

differentiation with respect to , 0,1,2,3
k

x k = . 

We now denote the four-vector of velocity as 
0

1

2

3

x

y

z

cυ
υυ
υυ
υυ

   
   
   = =
   
   

  

υυυυ         (4.7.6) 

and the four-vector of current density as  
0 0

1 1

2 2

3 3

x

y

z

cj

j

j

j

ρρυ
ρυρυ
ρυρυ
ρυρυ

     
     
     = = =
     
     

    

j        (4.7.7) 

as results from equations (4.2.6) and (4.2.7). Also, according to equations (4.6.1) and 

(4.6.2), the four-vector of the electromagnetic potential is 

0

0

1
1

2
2

3

3

x

y

z

V
V

c
VA V
cA c
V

VA
c

cA
V

V
c

c

υ

υυ

υυ

υυ

 
  
             = = =             
    

 

A        (4.7.8) 

Subsequently we will symbolize the differentiation with respect to 
kx

∂
∂

 with 

( ), , 0,1,2,3k k = . 

We now consider the tensor of the electromagnetic field  

1

4 4

I
T F F g F F

µν µα ν µν αβ
α αβπ

 = − 
 

      (4.7.9) 

where g
µν

 is the inverse of the matrix gµν , 
k

kg g
ν

µ µνδ=   

1

0

for

for

µν

µ ν
δ

µ ν

=


= 
 ≠

       (4.7.10) 

and F µν
 is the Maxwell stress tensor  

, ,F A A
µν ν µ

µ ν= −         (4.7.11) 
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Using this notation and taking into account that in the surrounding spacetime of the 

material particle there is an electric current j , as given by equation (4.7.7), the 

energy-momentum tensor of the electromagnetic field is given by the tensor 

T j Aµν µν µ νΦ = −         (4.7.12) 

We now write the tensor T µν  in the form 

x y z

xij

y

z

w cS cS cS

cS
T

cS

cS

αβσ

 
 
 =
 
 
 

       (4.7.13) 

0ε= ×εεεεS B          (4.7.14) 

where S  is the Poynting vector, and εεεε  and ΒΒΒΒ  are the intensities of the electric and 

magnetic field, respectively. Taking into account equations (4.6.10) and (4.6.11), as 

summarized in equation  

2c
= ×
υυυυ

εεεεB          (4.7.15) 

equation (4.7.14) becomes 
2

0 02 2c c
ε ε
  ⋅ = −   

  

ε υ εε υ εε υ εε υ ε
υ ευ ευ ευ εS        (4.7.16) 

The Maxwell stress tensor αβσ  is given by relation  

( )2

0 c B B Wαβ α β α β αβσ ε ε ε δ= − − +       (4.7.17) 

where αβδ  is given by relation (4.7.10), and 

( )2 2 2

0

1

2
W cε= +εεεε B         (4.7.18) 

1

2

3

x

y

z

ε ε

ε ε

εε

   
   = =   
     

ε  

1

2

3

x

y

z

B B

B B

BB

   
   = =   
     

B  

Combining equations (4.7.12) and (4.7.13), we arrive at the energy-momentum tensor  
2

2

11 12 13

22

21 22 23

2

31 32 33

x y z x y z

x x x x y x zij

y y y x y y z

z z z x z y z

w cS cS cS c c c c

cS cV

cS cc

cS c

υ υ υ
σ σ σ υ υ υ υ υ υρ
σ σ σ υ υ υ υ υ υ
σ σ σ υ υ υ υ υ υ

  
  
  Φ = −
  
  
    

  (4.7.19) 

We shall now prove that the scalar potential, as given by equation (4.6.1), satisfies the 

relation  

V
V

t

∂
+ ⋅∇ = − ⋅

∂
υ υ ευ υ ευ υ ευ υ ε         (4.7.20) 

From equation (4.6.12) we have that 
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V
t

V
t

∂ − ⋅ = − −∇ − ∂ 

∂ − ⋅ = ∇ + ∂ 

υ ε υυ ε υυ ε υυ ε υ

υ ε υυ ε υυ ε υυ ε υ

A

A
  

Using equation (4.6.2) we have 

2

2

V V
V

c t c c t c

V V
V

t c t c

V V
V

t c t c

V
V

t

 ∂ ∂  − ⋅ = ∇ + +   ∂ ∂   
∂ ∂  − ⋅ = ⋅∇ + + ⋅  ∂ ∂  

 ∂ ∂
− ⋅ = ⋅∇ + +  ∂ ∂  

∂
− ⋅ = ⋅∇ +

∂

υ υυ υυ υυ υ
υ ε υυ ε υυ ε υυ ε υ

υυυυ
υ ε υ υυ ε υ υυ ε υ υυ ε υ υ

υυυυ
υ ε υυ ε υυ ε υυ ε υ

υ ε υυ ε υυ ε υυ ε υ

  

since 2 2c=υυυυ . 

We will now prove the conservation of energy and momentum, as expressed by 

equation  

, 0
ij

ij

j jx

∂Φ
Φ = =

∂
        (4.7.21) 

We begin with an observation which allows us to avoid complex calculations. 

Equation (4.7.21) holds in classical electromagnetic theory, i.e. if we ignore the 

consequences of the selfvariations and consider the electric charge q  constant, both in 

the electromagnetic potential, as well as in the intensity of the electromagnetic field. 

Furthermore, 0ρ =  in equation (4.7.19). Therefore, it is enough to prove that in 

equation (4.7.21) the factors resulting from the selfvariation of the electric charge q , 

also vanish. Certainly, in equation (4.7.19) it holds that 0ρ ≠ , where the charge 

density ρ  is given by equation (4.6.5). 

The energy density W  of the electromagnetic field as given by equation (4.7.18), as 

well as the Poynting vector S , given by equation (4.7.16), are proportional to 
2

q . 

Therefore, in our calculations we will have to take into consideration the rate of 

change of the factor 
2

q . From equations (4.2.1) and (4.2.2) we have 
2

2

2

2

2

2
2

1

2
2

1

q q q q
q

t t w

c

q q
q q q

w c

c

∂ ∂ ∂
= =

⋅∂ ∂ ∂−

∂
∇ = ∇ = −

⋅ ∂−

υυυυ

υυυυ
υυυυ

u

u

  

Thus, we arrive at equations  
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2
2 2

2

2
2

2

2
2

2

2
2

2

2

2
2

1

2

2

2

1

1

x

y

z

q q
q q

t q w

c

q
q

x c

q
q

y c

q
q

z c

q

q w

c

λ

υ
λ

υ
λ

υ
λ

λ

∂ ∂
= = −

⋅∂ ∂−

∂
=

∂
∂

=
∂

∂
=

∂
∂

= −
⋅ ∂−

υυυυ

υυυυ

u

u

      (4.7.22) 

From equation (4.7.20), and for 0i = , we have that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 00 01 02 03

0 1 2 3

2

2

1

j

j

x y z

x y z

x x x x x

w cS cS cS
c t x y z

Vc Vc Vc Vc
c c t x y z

ρ ρ υ ρ υ ρ υ

∂Φ ∂Φ ∂Φ ∂Φ ∂Φ
= + + + =

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
− + + + ∂ ∂ ∂ ∂ 

  

and using relations (4.7.22), which we apply on the quantities , , ,x y zW S S S , which are 

proportional to 
2

q , we get 

( ) ( ) ( )

( )

( )

0

0

2 2 2 2

2

j

x x y y z zj

x y z

x y z

j

x x y y z zj

W S S S
x

V

c t x y z

V V V V

c t x y z

W S S S
x

V V
V

c t c t

λ λυ λυ λυ

ρ
ρυ ρυ ρυ

ρ
υ υ υ

λ υ υ υ

ρ ρ
ρ

∂Φ
= − + + +

∂

 ∂ ∂ ∂ ∂
− + + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
− + + + ∂ ∂ ∂ ∂ 

∂Φ
= − + + +

∂
∂ ∂   − +∇ ⋅ − + ⋅∇  ∂ ∂   

υ υυ υυ υυ υ

  

and from the equation of continuity, as well as equation (4.7.19), we get  

( ) ( )
0

2
j

x x y y z zj
W S S S

x c

ρ
λ υ υ υ

∂Φ
= − + + + + ⋅

∂
υ ευ ευ ευ ε   

and with equations (4.7.16) and (4.7.17) we get 
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( )( )

220
2 2 2 2

0 2 2 2

2
2

2 2 2

2 2 20
2 2 2 2

0 2

1 1
2

2 2

1 1
2

2 2

j
yx

x xj

z
y y z z

j
x y z

x x y y z zj

x c c c

c c c c

c
x c

c

υυ
λε υ ε

υ
υ ε υ ε ρ

υ υ υ
λε υ ε υ ε υ ε

ρ

∂Φ ⋅ = − − + − +  ∂  

⋅ ⋅ ⋅     − + − +     
     

 + +∂Φ
= − − − + − ⋅ + + 

∂   
⋅ +  

 

υ ευ ευ ευ ε
ε ε εε ε εε ε εε ε ε

υ ε υ ε υ ευ ε υ ε υ ευ ε υ ε υ ευ ε υ ε υ ε
εεεε

ε ε υ εε ε υ εε ε υ εε ε υ ε

υ ευ ευ ευ ε

B

B

  

and since it is 
2 2 2 2

x y z cυ υ υ+ + =  and also 
x x y y z zυ ε υ ε υ ε+ + = ⋅υ ευ ευ ευ ε , we see that  

20
2 2 2

0

1 1
2

2 2

j

j
c

x c c
λε ρ

 ∂Φ ⋅ ⋅   = − − − − +    ∂      

υ ε υ ευ ε υ ευ ε υ ευ ε υ ε
εεεε B   

From equation (4.6.35) we obtain 
20

0

0

0

1
2

2

0

j

j

j

j

x c c

x c c

λε ρ

ρ λε

∂Φ ⋅ ⋅   = − +   ∂    

∂Φ ⋅ ⋅   = − =   ∂    

υ ε υ ευ ε υ ευ ε υ ευ ε υ ε

υ ε υ ευ ε υ ευ ε υ ευ ε υ ε
  

since 

0
0

c
ρ λε

⋅
− =

υ ευ ευ ευ ε
        (4.7.23) 

Indeed, substituting the factor λ  from equations (4.2.22), we have  

( )

0 0

2

0 0

2

1

1

1

1
u

q

c q w c

c

q

c q w c

c

α

λε ε

λε ε

⋅ ∂ ⋅
= −

⋅ ∂−

⋅ ∂
= − +

⋅ ∂−

υ ε υ ευ ε υ ευ ε υ ευ ε υ ε
υυυυ

υ ε υυ ε υυ ε υυ ε υ
ε εε εε εε ε

υυυυ

u
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From equation (4.6.34) we have 

0α⋅ =υ ευ ευ ευ ε   

Hence, we see that  

0
0

2
1

u

q

c q w c

c

ε
λε

⋅ ∂
= −

⋅ ∂−

υ ε υυ ε υυ ε υυ ε υ
εεεε

υυυυ u
  

and with equation (4.6.8) for the electric field uεεεε  we get  
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Applying equation (4.6.5) we get 

0

0 0

c

c

λε ρ

ρ λε

⋅
=

⋅
− =

υ ευ ευ ευ ε

υ ευ ευ ευ ε
  

The validity of equation (4.7.21) for 1, 2,3i =  is proven similarly. 

In paragraph 4.5 we proved that the selfvariations are in agreement with the 

conservation of energy and momentum. The proof was done in two different ways: by 

direct calculation, and by applying the continuity equation. While it is of interest that 

the two different proofs, both lead to the conclusion that the selfvariations are 

compatible with the conservation principles of Physics, the calculation for the energy-

momentum tensor was done for a completely different, and very substantial, reason. 

At macrocosmic scales, that is at large distances from the material particle, where 

equations (4.2.1) and (4.2.2) hold, the energy-momentum tensor 
ijΦ , as given by 

equation (4.7.19), indeed contains all the information about the energy content of 

spacetime. At microcosmic scales the equations of the theory of selfvariations 

highlight additional parameters about the energy content of spacetime. These 

parameters bring the quantum phenomena to the forefront. 

 

4.8 The energy-momentum tensor of the generalized photon at macrocosmic 

scales  
In this paragraph we shall study the energy-momentum tensor for the generalized 

photon that balances the selfvariation of the rest mass of the material particle. Using 

our notation the energy-momentum tensor is given by  
2

2

22

2

x y z

x x x y x zij

y y x y y z

z z x z y z

c c c c

cD

cc

c

υ υ υ
υ υ υ υ υ υ
υ υ υ υ υ υ

υ υ υ υ υ υ

 
 
 Φ =
 
 
  

      (4.8.1) 

with the energy density D  given by equation (4.3.7). 

We shall prove the conservation of energy and momentum as given by equation  

, 0
ij

ij

j jx

∂Φ
Φ = =

∂
        (4.8.2) 
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For 0i =  we have 
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and with equation (4.3.8) we get 
0

0
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For 1i =  we have 
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and with equation (4.3.8) we get 
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and with (4.5.5) we arrive at 
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D

x c t

υ
υ
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υυυυ        (4.8.3) 

From equation (2.3.1) we have 

( ) ( )cos cos

sin

x
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x
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c c
t t

c
t t

υ
υ δ δ

υ δ
υ δ δ

∂ ∂
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∂ ∂
∂ ∂ + ⋅∇ = − + ⋅∇ ∂ ∂ 

υ υυ υυ υυ υ
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and with equation (2.5.2)(b) we get 

0x
x

t

υ
υ

∂
+ ⋅∇ =

∂
υυυυ         (4.8.4) 

Combining equations (4.8.3) and (4.8.4), we see that  

0
ij

j
x

∂Φ
=

∂
  

We can similarly prove the validity of equation (4.8.1) for 2,3i = . 

By comparing the results of the last two paragraphs we find substantial differences 

between the generalized photon that counterbalances the selfvariation of the electric 

charge and the generalized photon that counterbalances the selfvariation of the rest 

mass of the material particle. Within the energy-momentum tensor of the first, there 

appears the electromagnetic field, as expressed by the first matrix of the second part 

of equation (4.7.19). On the contrary, in the expression of the energy-momentum 

tensor of equation (4.8.1), no corresponding matrix appears. Therefore, the 

generalized photon counterbalancing the rest mass does not correspond to a kind of 
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field with the structure and content of the electromagnetic field. Furthermore, by 

comparing the second matrix of equation (4.7.19) with the matrix of equation (4.8.1), 

we observe that in place of the potential V  in the first, the factor 2c  appears in the 

second. These observations hold even if we formulate the equations for a non-inertial 

reference frame (we have already suggested a way for formulating the equations in 

non-inertial reference frames). By careful observation of the equations appearing in 

paragraphs 4.2, 4.3 and 4.4, we realize that the difference in the “behavior” of the 

couples ( ),ρ j  and ( ),D J  is the result of the different way the electric charge and the 

energy transform according to Lorentz-Einstein. It is exactly this difference that is 

captured on tensors (4.7.19) and (4.8.1). The generalized photon gives us the exact 

mechanism of transport of energy and momentum from one material particle to the 

other. At the same time, it highlights the similarities and differences between the 

electromagnetic and the gravitational interaction.  

We could call the generalized photon that counterbalances the selfvariation of the rest 

mass by a different name. In any case it is obvious when we refer to the electric 

charge and when we refer to the rest mass. We shall, therefore, keep the name 

“generalized photon” for both cases.  

The observation we made at the end of the previous paragraph regarding the tensor 

given by equation (4.7.19), also holds for tensor (4.8.1). It is valid at macrocosmic 

scales. At microcosmic scales, further parameters emerge from the theory of 

selfvariations, which cannot be given by the energy-momentum tensor.  

 

4.9 The internality of the universe to the measurement procedure  

The selfvariations hypothesis brings to the foreground the “internality of the Universe 

to the measurement procedure”. Usually, in order to measure a physical quantity, we 

define as unit an arbitrary quantity with which we compare other physical quantities 

of the same kind. If the defined unit of measurement depends on the rest mass or the 

electric charge, then it is itself subject to the selfvariations. This fact must be taken 

into account every time we perform a measurement.  

The photon does not have rest mass or electric charge and is, therefore, not affected 

by the selfvariations. The evidence we have suggests that the selfvariations take place 

at extremely slow rates. Therefore, the first consequence of the selfvariations we 

expect to observe is the following: photons with great lifetimes will be measured to 

have less energy than expected. 

The extremely slow rate of evolution of the selfvariations, combined with the 

“internality of the Universe to the measurement procedure”, do not allow their 

immediate observation in the laboratory. In the laboratory we only observe the 

consequences of the selfvariations. These consequences are the potential fields and 

the quantum phenomena.  
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CHAPTER 5 

 

The quantitative determination of the selfvariations 

 

 

5.1 Introduction 

In the present chapter we develop the main axis of the structure of the theory 

of selfvariations. We determine quantitatively the rate of evolution of the 

selfvariations, and formulate the law of selfvariations. 

The law of selfvariations dominates from the microcosmic scales up to the 

observations we conduct billions of light years away. It reveals the causes of quantum 

phenomena, while it contains as physical information the totality of the cosmological 

observational data. At the same time, it sets the path for understanding the interactions 

between material particles.  

The equations resulting from the law of selfvariations are of fundamental 

nature for the science of Physics and the related Physical Sciences. They contain a 

large amount of physical information, which permits the full understanding of 

physical reality.  

 

5.2 The law of selfvariations 

The conclusions derived in the previous chapters refer to the surrounding 

spacetime of the material particle. These conclusions are grounded on the second 

proposition-axiom of the theory of selfvariations, which states that  
2 0dS =        (5.2.1) 

                                                                                                                             This 

proposition is equivalent to the relation c=υ  which holds in every inertial system of 

reference. 

In figure 2.2.1 the rest mass 0m  and the electric charge q  of the material 

particle act at point ( , , , )A x y z t  with the value they acquired at the moment 
r

w t
c

= − . 

Thus, we have that 0 0 ( )m m w=  and ( )q q w= . For the relevant calculations and 

proofs we have taken into consideration the axioms of the theory of selfvariations, but 

we have not yet defined the rate of evolution of their manifestation. In order to study 

the consequences of the selfvariations we have to determine quantitatively the first 

proposition-axiom of the theory of selfvariations.  

Equation (5.2.1), combined with the first proposition-axiom of the 

selfvariations, leads directly to the concept of the “generalized photon”. The material 

particle emits generalized photons, and each generalized photon carries energy E  and 

momentum P , in order to counterbalance the change in energy and momentum that 

results from the selfvariations of the rest mass of the material particle. If the material 

particle also carries electric charge, then the generalized photon carries electric charge 

as well, in order to counterbalance the variation of the electric charge of the material 

particle due to the selfvariations.  

The rate of evolution of the selfvariations is determined axiomatically with the 

help of the total energy sE
 

and the total momentum sP , which is emitted 

simultaneously and in all directions by the material particle, according to the 

following proposition-axiom: 
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 «The rest mass 0m  and the electric charge q  of every material particle vary 

according to the action of the operators 

s

s

i
E

t

i

∂
→

∂

∇ → P

ℏ

ℏ

     (5.2.2) 

where sE
 
and sP  denote the total energy and total momentum of the generalized 

photons emitted simultaneously by the material particle in all directions, and 
2

h

π
=ℏ ,  

where h  is Planck’s constant » . 

Stated in the form of equations, relations (5.2.2) can be written as  

0
0

0 0

s

s

m i
E m

t

i
m m

∂
= −

∂

∇ = P

ℏ

ℏ

      (5.2.3) 

and  

                                                                                                                      

s

s

q i
E q

t

i
q q

∂
= −

∂

∇ = P

ℏ

ℏ

    (5.2.4) 

                                                                                                                              

In equations (5.2.3) and (5.2.4) we use the same symbol for the energy sE
 
and the 

momentum sP . But these are not the same physical quantities. In equations (5.2.3) the 

energy sE
 

and the momentum sP  counterbalance the consequences of the 

selfvariations of the rest mass. In equations (5.2.4) they counterbalance the 

consequences of the selfvariations of the electric charge. Later, we shall modify 

equation (5.2.4) in order to make this difference transparent. 

The emission of generalized photons by the material particle comes about, 

initially, as a consequence of the principles of conservation of energy, momentum and 

electric charge. The operators given in relations (5.2.2) determine the relation between 

the material particle and the generalized photons, independently from the principles of 

conservation. Equations (5.2.3) and (5.2.4) express in a quantitative manner the law of 

selfvariations.  

According to the law of selfvariations the rest mass 0m  and the electric charge 

q  are functions of time t , as well as of the position of the material particle 

0 0 ( , , , )

( , , , )

p p p

p p p

m m X Y Z t

q q X Y Z t

=

=
     (5.2.5) 

                                                                                                           

The dependence of the rest mass and the electric charge, not only on time, but also on 

the spatial position, is to be expected. Even if in some inertial frame of reference they 

only depend on time, in another inertial frame of reference they will also depend on 

the position, according to the Lorentz-Einstein transformations.  
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From equation (4.5.20), and for 0=u , we take that s =P 0 , so that the second 

equation of the couple of equations (5.2.3) gives 0m∇ = 0 , whereas the first equation 

can be written as  

0
0 0

0 0

dm i
E m

dt

i
m E m

= −

= −

ℏ

ɺ
ℏ

            

0
0

0

m
E i

m
=

ɺ
ℏ                                                                                         (5.2.6)                                                                                                            

Here, we denote the differentiation with respect to time by ( )i , and we set 0sE E=  

(the necessity of denoting 0sE E=  will become apparent later on).  

Furthermore, from the principle of conservation of energy at the instant of emission of 

the generalized photons, we obtain that   
2

0 0( ) 0m c E •+ =         (5.2.7) 

                                                                                                                   Combining 

equations (5.2.6) and (5.2.7) we arrive at equation 

2 0
0

0

0
m

m c i
m

 
+ = 

 

i

ɺ
ℏ       (5.2.8) 

 

Equation (5.2.8) both contains as physical information, and justifies, the whole 

corpus of the current cosmological observational data, as described in chapter 7.  

 

5.3 The “percentage function” Φ  

The law of selfvariations expresses the total interaction of the generalized 

photons, which are emitted simultaneously by the material particle, with its rest mass 

and electric charge. However, in a particular direction 
c

υ
, the material particle emits 

generalized photons of energy E  and momentum P . Therefore, we have to derive 

quantitatively the partial contribution of a single generalized photon of energy E  and 

momentum P  to the law of  selfvariations.  

We have to answer the following question: 

“Which mathematical equation correlates the energy E  and the momentum P  of a 

single generalized photon emitted towards a particular direction 
c

υ
, to the 

selfvariations of the rest mass 0m
 
and the electric charge q  of the material particle?” 

Thus, we are seeking the form of equations (5.2.3) and (5.2.4) that correspond 

to a single generalized photon. 

Based on the law of selfvariations, the answer to this physical problem can 

only be given by the following statement: 

“The partial contribution of a single generalized photon to the selfvariations of the 

rest mass 0m  and the electric charge q  of the material particle is given by any 

mathematical expression which agrees with the operators defined in equations (5.2.2). 

If we sum the contributions of the single generalized photons towards all directions, 

during their simultaneous emission by the material particle, we have to end up with 

the equations given in (5.2.3) and (5.2.4)”. 
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Considering this physical problem from its mathematical aspect, we can 

choose arbitrarily any mathematical expression giving the partial contribution of a 

single generalized photon according to the law of selfvariations, which satisfies the 

operators (5.2.2). Then, we can compare the results obtained by our particular choice 

with physical reality. On the other hand, we can choose the mathematical expression 

taking into account some specific physical criteria beforehand.  

A fundamental case for the partial contribution of a generalized photon 

according to the law of selfvariations arises from the following observation: A single 

generalized photon counterbalances only a percentage of the total energy, momentum 

and electric charge that result from the selfvariations. Therefore, we must examine 

whether the contribution of a single generalized photon to the law of selfvariations is 

correlated with a percentage Φ  of the rest mass 0m
 
and electric charge q . In this 

case, the partial contribution to the law of selfvariations for a single generalized 

photon of energy E  and momentum P  will be given by the set of equations 

0
0

0 0

( )

( )

m i
Em

t

i
m m

∂ Φ
= −

∂

∇ Φ = P

ℏ

ℏ

     (5.3.1) 

                                                                                                                  

( )

( )

q i
Eq

t

i
q q

∂ Φ
= −

∂

∇ Φ = P

ℏ

ℏ

    (5.3.2) 

                                                                                                                        

Summing in all directions of emission of generalized photons in the first 

equation of the set of equations (5.3.1), we obtain relations 

( )

( )

0
0

0 0

0 0

( )m i
Em

t

i
m m E

t

i
m m E

t

∂ Φ
= −

∂
∂

Φ = −
∂
∂

Φ = −
∂

∑ ∑

∑ ∑

∑ ∑

ℏ

ℏ

ℏ

 

Since it holds that sE E=∑  and the total percentage of the contributions is 1, that is 

1Φ =∑ , we get 

0
0 s

m i
m E

t

∂
= −

∂ ℏ
 

This is the first equation of the set of equations  (5.2.3).  

Also, from the second equation of the set of equations (5.3.1) we obtain relations 

( )

( )

0 0

0 0

0 0

( )

( )

i
m m

i
m m

i
m m

∇ Φ =

∇ Φ =

∇ Φ =

∑ ∑

∑ ∑

∑ ∑

P

P

P

ℏ

ℏ

ℏ

 

Since 1Φ =∑  and 
s=∑P P , we see that 
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0 0 s

i
m m∇ = P

ℏ
 

This is the second of the equations given in (5.2.3).  

We can perform the same procedure for equations (5.3.2) as well. Therefore, a 

single generalized photon can contribute to the selfvariation with a percentage Φ  of 

the rest mass or the electric charge, and then this contribution is expressed by 

equations (5.3.1) and (5.3.2). 

From equations (5.3.1) we obtain 

0
0 0

0 0 0

m i
m Em

t t

i
m m m

∂ ∂Φ
Φ + = −

∂ ∂

Φ∇ + ∇Φ = P

ℏ

ℏ

 

From equations (4.3.9) we also obtain  

0
0 0

2

0
0 0

2

1

1

1

1

m i
m Em

w t

c

m i
m m

c w c

c

∂ ∂Φ
Φ + = −

∂ ∂−

∂
−Φ + ∇Φ =

∂−

υu

υ
P

υu

ℏ

ℏ

 

Eliminating from the equations the quantity 0m , we obtain 

0

0
2

0

0
2

1

1

1

1

m i
E

m w t

c

m i

m c w c

c

∂ ∂Φ
+ = −

∂ ∂−

∂
− +∇Φ =

∂−

υu

υ
P

υu

ℏ

ℏ

 

Finally, we arrive at the set of equations  

0

0
2

0

0
2

1

1

mi
E i

m w t

c

mi
i

m c w c

c

∂ ∂Φ
= Φ +

∂ ∂−

∂
= Φ − ∇Φ

∂−

υu

υ
P

υu

ℏ
ℏ

ℏ
ℏ

         (5.3.3) 

                                                                                                                 

The function Φ  can be any mathematical function, defined on the material particle 

and obeying relation  

1Φ =∑         (5.3.4) 

                                                                                                                                   

However, it has to be considered a function depending on the direction in space, since 

this is implied by the summation given in equation (5.3.4).  

According to the operators defined in (5.2.2), the continuous evolution of the 

selfvariations with the passage of time is assured by the condition  

0sE ≠         (5.3.5) 

                                                                                                                                     

This condition is a straightforward consequence of the first proposition-axiom of the 

theory of selfvariations.  
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We are seeking now to derive the relation between the total momentum sP  

and the total energy sE . According to equation (4.5.20) this relation can be written as  

2s s
E

c
=

u
P       (5.3.6) 

                                                                                                                                Here, 

u  denotes the velocity of the material particle at the moment of the emission of the 

generalized photons.  

This relation has to be reconsidered for the following reason: During the proof 

of this relation in paragraph 4.3 of chapter 4, we have taken into consideration 

equation (4.3.8), that is equation  

2
D

c
=

υ
J  

This equation presupposes the validity of the condition  

2
E

c
=

υ
P         (5.3.7) 

                                                                                                                                 

for every single generalized photon emitted towards any direction defined by  
c

υ
 , as 

depicted in figure 3.2.1. However, equations (5.3.3) reveal a more complex, and 

certainly different relation, between the momentum P  and the energy E  of a single 

generalized photon. Therefore, we have to reconsider the validity of equation (5.3.6), 

since we cannot base its proof on equation (5.3.7). As we shall see immediately, 

equation (5.3.6) is of general validity, and is compatible with the set of equations 

(5.3.3). 

We consider a material point particle at rest, as depicted in figure 3.3.1. In 

order for this particle to remain at rest, the total momentum emitted simultaneously 

and towards all directions has to vanish, that is  
'

s
=P 0    (5.3.8) 

                                                                                                                                            

If the case were different, the material particle would undergo an arbitrary 

motion, as a consequence of the principle of conservation of momentum. From 

equation (5.3.8), and from the set of transformations (4.3.3) for the total energy sE
 

and the total momentum sP , we arrive at equation (5.3.6). Thus, we have 

( )' '

' '

2

'

'

s s sx

sx sx s

sy sy

sz sz

E uP

u
P P

c

P P

P P

γ

γ

= Ε +

 = + Ε 
 

=

=

 

Since, according to equation (5.3.8) it holds that ( ) ( )' ' '
, , 0,0,0sx sy szP P P = , we obtain the 

following relations  
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'

'

2
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0

s s

sx s

sy
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E

u
P

c

P

P

γ

γ

= Ε

= Ε

=

=

 

We also have that 0

0

u 
 =  
  

u , thus we obtain 

'

'

2

s s

s s

E

c

γ

γ

= Ε

= Ε
u

P
 

Finally, we have 
'

2

s s

s s

E

E
c

γ= Ε

=
u

P
 

This is equation (5.3.6). Furthermore, we also obtain equation 

' 0
0

2

2
1

s s

E
E E

u

c

γ γ= Ε = =

−

          (5.3.9)                                                                                                

Here, we denote 
'

0s
EΕ =        (5.3.10) 

                                                                                                                                   

A material particle at rest can emit generalized photons of different energies 

for different directions. If the generalized photons emitted in opposite directions have 

opposite momenta, the material particle will remain at rest. But the momentum of a 

generalized photon can also be balanced by two other generalized photons emitted 

towards appropriate directions and with appropriate energies. In reality, there is an 

infinite number of combinations of emmision of generalized photons, with infinite 

combinations of energies and directions of emission. In each of these cases where 

equation (5.3.8) holds, the particle remains at rest. The case of emission of identical 

generalized photons in all directions by a material particle at rest is only one among 

the infinite number of cases satisfying equation (5.3.8).  

Therefore, by rotating the unit vector 
'

c

υ
 around the point particle at rest, as 

depicted in figure 3.3.1, we expect a change in the energy of the generalized photons. 

Exactly this is shown by equations (5.3.3), while at the same time they highlight the 

factors defining the energy and momentum of each single generalized photon. 

 

5.4 The accompanying particle  

In the previous paragraph we proved equations (5.3.6) and (5.3.9): 
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2

0

2

2
1

s s

s

E
c

E
E

u

c

=

=

−

u
P

         (5.4.1) 

                                                                                                                       Equations 

(5.4.1) show that the total energy and momentum emitted simultaneously and in all 

directions by the material particle behaves as a particle moving with velocity u , and 

accompanying the material particle. There is a definite correspondence between 

equations (5.4.1) and equations  

0

2

2
1

m

m
m

u

c

=

=

−

P u

 

which give the momentum P  and the mass m  of the material particle.  

According to equations (5.4.1), the accompanying particle has rest energy 0E . 

This is the rest energy '

s
Ε  from equation (5.3.10). Therefore, the accompanying 

particle has a rest mass given by 0

2

E

c
.  

According to the first proposition-axiom of the theory of selfvariations, the rest mass 

0

2

E

c
 of the accompanying particle changes with the passage of time. Hence, we seek 

the counterparts of equations (5.2.3), which define the rate of change of the rest mass 

0

2

E

c
, or equivalently the rest energy 0E . As such, we obtain the corresponding form of 

equations (5.2.3) 
2

2 20 0
0 0 0 0

2

2

0
0 0 0 0 0

2

2

1

1

E m ci i i
mc E m c E E

t u

c

mi i i
E m E m E E

u

c

γ

γ

∂
= = =

∂
−

∇ = − = − = −

−

u u u

ℏ ℏ ℏ

ℏ ℏ ℏ

             (5.4.2)                                                

Equations (5.2.3) describe the effect of the generalized photons on the rest 

mass of the material particle. In nature, though, effects are always mutual. Hence, just 

as the generalized photons affect the material particle, the material particle in turn 

affects the generalized photons, and these mutual interactions must occur in the 

framework of the same physical law. Therefore, from the οutset the issue arises of the 

existence of a rest mass concealed within the operators (5.2.2), and of a corresponding 

equation symmetrical to (5.2.3). The quest for the partial contribution of a single 

generalized photon to the law of selfvariations revealed the existence of the rest mass 

0

2

E

c   
and equations (5.4.2). The existence of the rest mass 0

2

E

c
 is predicted by the 

initial equations we formulated for the macrocosmic scales, through equation (4.5.20). 

A large part of the predictions of the theory of selfvariations can be made 

without the aid of equations (5.4.2). For example, the justification of the observational 
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cosmological data can be obtained from (5.2.8), which is proven independently 

without resorting to equations (5.4.2). The same holds for equations (5.3.3). However, 

the accompanying particle is a direct consequence of the selfvariations. Indeed, if we 

combine the second of equations (5.4.1) with relation (5.3.5) we see immediately that  

0 0E ≠        (5.4.3) 

                                                                                                                                      

The rest mass 0

2

E

c
 of the accompanying particle cannot vanish. Therefore, in order to 

study the consequences of the selfvariations in their totality, we have to take into 

account the existence and the properties of the accompanying particle. In nature there 

is always the system “material particle-accompanying particle”.  

Let 0M
 

be the rest mass of the system “material particle-accompanying 

particle”, given by   

0
0 0 2

E
M m

c
= +     (5.4.4) 

                                                                                                                           We have 

that  

0 0
0 2

0 0 0

2

M E
m

t t c

M m E

t t c t

∂ ∂  = + ∂ ∂  
∂ ∂ ∂

= +
∂ ∂ ∂

 

Using the first equations of the sets of equations given in  (5.2.3) and (5.2.4), we 

obtain relation 

0
0 0 0s

M i i
E m m E

t
γ

∂
= − +

∂ ℏ ℏ
 

And using equation (5.3.9) we get 

0
0 0 0 0

0 0

M i i
E m m E

t

M

t

γ γ
∂

= − +
∂
∂

=
∂

ℏ ℏ
    (5.4.5) 

 

 Similarly, using the second equations of the sets of equations (5.2.3) and 

(5.4.2) we have that 

0M∇ = 0             (5.4.6) 

                                                                                                                                

From equations (5.4.5) and (5.4.6) we conclude that the rest mass 0M  of the 

system “material particle-accompanying particle” is a physical quantity not affected 

by the process of the selfvariations. Therefore, we can use the rest mass 0M
 
and the 

rest energy 2

0M c
 
as a unit of measurement of mass and energy, respectively.  By this 

approach we circumvent the methodological problems stemming from the principle of 

the “internality of the universe with respect to the measurement procedure”, as stated 

in paragraph 4.9. 

The quantitative mathematical description of physical reality depends on our 

ability to include in our equations the consequences of the internality of the universe 

to the measurement procedure. In the macrocosmic scales there is a very simple way 
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to accomplish this, as described in chapter 7. In the microcosmic scale we use as units 

of measurement of mass and energy the quantities 0M
 
and 2

0M c , respectively.  

We rewrite now equations  (5.2.3) in the form  

0 0

0 0

0 0

0 0

s

s

m mi
E

t M M

m mi

M M

   ∂
= −   ∂    

   
∇ =   
   

P

ℏ

ℏ

       (5.4.7) 

 

  These equations have the exact same physical content as equations (5.2.3). 

They give the rate of change of the rest mass 0m , since the rest mass 0M
 
is not 

affected by the selfvariations, according to equations (5.4.5) and (5.4.6). At the same 

time, these equations highlight the action of the operators (5.2.2) on the complex 

number 0

0

m

M
∈ℂ , since the complex unit i  appears within the expressions of the 

operators. The same procedure can be repeated for the case of equations (5.4.2) as 

well, by introducing the number 0

2

0

E

M c
∈ℂ , and for the whole list of equations we 

have stated.  

The accompanying particle has rest mass of magnitude 0

2

E

c
, which comes 

from the sum of the contributions of the generalized photons emitted simultaneously 

by the material particle. This is the physical content of equations (5.4.1). Therefore, 

the mechanism through which the selfvariations occur plays a fundamental role for 

the determination of the physical properties of the accompanying particle, and 

eventually for the physical properties of the actual system “material particle-

accompanying particle”.  

 

5.5 The symmetrical law for the electric charge 

From the study already conducted in paragraph 4.2 it follows that the 

generalized photons counterbalancing the selfvariation of the electric charge q  carry 

electric charge. Therefore, the physical object resulting from their aggregation carries 

electric charge iq .  

The law of the selfvariations for the electric charge q  is given by equations (5.2.4) 

s

s

q i
E q

t

i
q q

∂
= −

∂

∇ = P

ℏ

ℏ

            (5.5.1) 

                                                                                                                      

In these equations we denote with sE
 
and sP  the total energy and momentum 

emitted by the material particle simultaneously in all directions, and which 

counterbalances the variations in energy resulting from the selfvariation of the electric 

charge. Although we have kept the same notation, these quantites are not the same as 

the ones appearing in equations (5.2.3). 
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In order to repeat the study conducted for the rest mass for the case of the 

electric charge, we have to define the equations symmetrical to (5.2.4). That is, we 

have to formulate the counterparts of equations (5.2.4) for the electric charge iq . 

The law of selfvariations for the electric charge (5.5.1) has to be modified so 

that it will define the interaction of the electric charges q  and iq , exactly as the law 

stated in equation (5.2.3) determines the interaction of the rest masses 0m  and 0

2

E

c
. 

Therefore, the second part of equation (5.5.1) has to be expressed such that the 

electric charge iq  appears. This can only be accomplished by the introduction of an 

electric potential V  through equation  

s iE Vq=      (5.5.2) 

                                                                                                                                     

With this notation, and taking into account equation (5.3.6), equations (5.5.1) can be 

written as  

2

i

i

q i
Vq q

t

i
q Vq q

c

∂
= −

∂

∇ =
u

ℏ

ℏ

            (5.5.3)                                                                                                                    

Equations (5.5.3) and (5.5.1) have the same physical content, if and only if the electric 

potential V  is independent of the selfvariations. 

Starting from equation (5.5.3), we can also deduce all equations inferred in the 

previous paragraphs for the rest mass, except now for the electric charge. The proof 

follows similar paths, and we shall note repeat it here in full. 

Firstly, it can be deduced that the potential V  can be written in the form  

0
0

2

2
1

V
V V

u

c

γ= =

−

   (5.5.4)                                                                                                                    

The potential 0V
 

stays invariant under the action of the Lorentz-Einstein 

transformations, and is independent of the selfvariations. The corresponding 

expressions of equations (5.2.6) and (5.2.8) are 

 

0

0

0

i

q
qV i

q

i q
q

V q

=

 
+ = 

 

i

ɺ
ℏ

ɺℏ
     (5.5.5) 

                                                                                                                       The 

corresponding equations to the ones given in (5.3.3) for the generalized photon, can 

be formulated as  

 

2

2

1

1

i q
E i

q w t

c

i q
i

qc w c

c

∂ ∂Φ
= Φ +

∂ ∂−

∂
= Φ − ∇Φ

∂−

υu

υ
P

υu

ℏ
ℏ

ℏ
ℏ

       (5.5.6) 
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The corresponding equations to the equations (5.4.2), that is, the corresponding form 

of the law expressed in (5.5.3), are  

0

0 2

i
i

i i

q i
V qq

t

i
q V q q

c

γ

γ

∂
=

∂

∇ = −
u

ℏ

ℏ

           (5.5.7) 

 

The corresponding relation to relation (5.4.3) is  

0iq ≠        (5.5.8) 

                                                                                                                                       

The corresponding expression of equation (5.4.4), that is, the electric charge Q  of the 

system “material particle-accompanying particle” is  

iQ q q= +         (5.5.9)                                                                                                                                

The corresponding equations to equations (5.4.5) and (5.4.6) take the form 

0
Q

t

Q

∂
=

∂
∇ = 0

      (5.5.10)                                                                                                                                    

The electric charge Q  is not affected by the selfvariations.  

5.6. Fundamental study of the generalized photon 

In chapter 4 we studied the consequences of the selfvariations in the surrounding 

spacetime of the material particle. In that study we considered the validity of equation 

(4.3.8) 

2
D

c
=

υ
J  

which presupposes the validity of equation  

2
E

c
=

υ
P          (5.6.1) 

for the generalized photon.  

We know by now that the energy E  and the momentum P  of the generalized photon 

are not correlated through the simple relation (5.6.1). For the generalized photon that 

results from the selfvariation of the rest mass, equations (5.3.11) hold 

0

0
2

0

0
2

1

1

mi
E i

m w t

c

mi
i

m c w c

c

∂ ∂Φ
= Φ +

∂ ∂−

∂
= Φ − ∇Φ

∂−

υu

υ
P

υu

ℏ
ℏ

ℏ
ℏ

      (5.6.2) 
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For the generalized photon that results from the selfvariation of the electric charge, 

equations (5.5.6) hold 

2

2

1

1

i q
E i

q w t

c

i q
i

qc w c

c

∂ ∂Φ
= Φ +

∂ ∂−

∂
= Φ − ∇Φ

∂−

υu

υ
P

υu

ℏ
ℏ

ℏ
ℏ

       (5.6.3) 

Equations (5.6.2) and (5.6.3) lead to a completely different relation from (5.6.1), 

between the energy E  and the momentum P  of a generalized photon. 

We will study the generalized photon, as given in equations (5.6.2). The study of 

equations (5.6.3) is exactly the same. 

The percentage-function Φ  depends on the direction 
c

υ
 and can, therefore, be written 

as ( ),δ ωΦ = Φ , and can also depend on the moment, 
r

w t
c

= − , of emission of the 

generalized photon, so that 

( ), ,w δ ωΦ = Φ         (5.6.4) 

From the first of equations (5.6.2) we have 

0

0
2

1

mi
E i

m w t

c

∂ ∂Φ
= Φ +

∂ ∂−
υu

ℏ
ℏ  

and with equation (5.6.4), we get 

0

0
2

1

mi w
E i

m w w t t t

c

δ ω
δ ω

∂ ∂Φ ∂ ∂Φ ∂ ∂Φ ∂ = Φ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ −
υu

ℏ
ℏ  

and with equations (2.2.11), (2.3.9) and (2.3.10) we get 

0

0
2 2

sin
1 1

mi i
E

m w w r r

c c

δ δ ω
∂ ∂Φ ∂Φ ∂Φ = Φ + − − ∂ ∂ ∂ ∂ − −

uβ uγ

υu υu

ℏ ℏ
   (5.6.5) 

From the second of equations (5.6.2), we have  

0

0
2

1

mi
i

m c w c

c

∂
= Φ − ∇Φ

∂−

υ
P

υu

ℏ
ℏ  

and with equation (5.6.4) we get 
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0

0
2

1

mi
i w

m c w c w

c

δ ω
δ ω

∂ ∂Φ ∂Φ ∂Φ = Φ − ∇ + ∇ + ∇ ∂ ∂ ∂ ∂ −

υ
P

υu

ℏ
ℏ  

and with equations (2.2.12), (2.3.19) and (2.3.20), we get 

0

2 2 2

0
2 2 2 2

sin
1 1 1 1

mi i i i

m c w c w c r c r c

c c c c

δ δ ω

   
   ∂ ∂Φ ∂Φ ∂Φ

=Φ + − + − +   
∂ ∂ ∂ ∂   − − − −

   

υ υ uβ υ uγ υ
P β γ

υu υu υu υu

ℏ ℏ ℏ ℏ
  

(5.6.6) 

We now denote 

0

0
2

0

0
2

1

1

i

i
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E

m w

c

mi
P

m c w c

c

∂
= Φ

∂−

∂
= Φ

∂−

υu

υ

υu

ℏ

ℏ
       (5.6.7) 

2 2 2

2 2 2

2 2 2

1 1 1 sin
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1 1 1

i i i
E i

t w
r r

c c c

i i i
i

w c r c r c

c c c

δ ωδ

δ δ ω

Φ

Φ

∂Φ ∂Φ ∂Φ ∂Φ
= = − −

∂ ∂ ∂ ∂   − − −   
   

   
   ∂Φ ∂Φ ∂Φ

= − ∇Φ = − + − +   
∂ ∂ ∂   − − −

   

uβ uγ

υu υu υu

υ uβ υ uγ υ
P β γ

υu υu υu

ℏ ℏ ℏ
ℏ

ℏ ℏ ℏ
ℏ

 (5.6.8) 

With this notation, equations (5.6.5) and (5.6.6) can be written as 

i

i

E E EΦ

Φ

= +

= +P P P
         (5.6.9) 

Combining equations (5.6.5) and (5.6.6), we obtain relation 

2 sin

i i
E

c r rδ δ ω
∂Φ ∂Φ

= − −
∂ ∂

υ
P β γ

ℏ ℏ
      (5.6.10) 

relating the energy E  and momentum P  of the generalized photon. 

The energy-momentum pair ( ),EΦ ΦP  can be decomposed into three partial pairs 
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2
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w c
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∂Φ
=

∂−

∂Φ
=
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υ
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υu

ℏ

ℏ
        (5.6.11) 
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r
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i
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c

δ

δ

δ
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∂Φ
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 

 
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uβ υ
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       (5.6.12) 
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i
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r
c

i
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c

ω

ω

ωδ

δ ω

∂Φ
= −

∂ − 
 

 
 ∂Φ

= − + 
∂  −

 

uγ

υu

uγ υ
P γ

υu

ℏ

ℏ

      (5.6.13) 

w

w

E E E Eδ ω

δ ω

Φ

Φ

= + +

= + +P P P P
        (5.6.14) 

It is easy to prove that, in the case of constant-speed motion with velocity 0

0

u 
 =  
  

u , 

each of the energy-momentum pairs ( ) ( ) ( ) ( ), , , , , , ,i i w wE E E Eδ δ ω ωP P P P  transforms 

autonomously, independently of the rest, according to the Lorentz-Einstein 

transformations. Furthermore, an invariant amount of energy corresponds to each pair. 

We shall calculate the four invariant amounts of energy. In the same way, we can 

prove the independent Lorentz-Einstein transformations of the four energy-

momentum pairs. 

From equation (5.6.8) we have 

2

2 2 2 2 2 2

2i i i iE c E c E
c

 − = −  
 

υ
P  

and since 2 2c=υ , we get 

2 2 2 0i iE c− =P          (5.6.15) 
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From equation (5.6.11) we have 

2

2 2 2 2 2 2

2w w w wE c E c E
c

 − = −  
 

υ
P  

and from 2 2c=υ , we get 

2 2 2 0w wE c− =P          (5.6.16) 

From equation (5.6.12) we have 

( )
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2 2 22 2 2
2 2 2

2 2 2

2
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δ δ δ δ

 
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uβ uβ υ
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and since it is 2 2 20, , 1c⋅ = = =u β υ β , we get 
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υu υu
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2 2 2 c
E c
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δ δ δ
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P

ℏ
       (5.6.17) 

Similarly, from equations (5.6.13) we get 
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2 2 2

sin
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E c

r
ω ω δ ω

∂Φ − =  ∂ 
P

ℏ
       (5.6.18) 

From the transformations (3.4.8) we get 

1 cos

1 cos

c c u

ur c
r

c

γ δ
δ δγ δ

∂Φ ∂Φ  = − ′ ′∂ ∂   − 
 

ℏ ℏ
 

c c

r rδ γ δ
∂Φ ∂Φ

=
′ ′∂ ∂
ℏ ℏ

        (5.6.19) 

Therefore, the second part of equation (5.6.17) remains invariant according to the 

Lorentz-Einstein transformations.  

From transformations (3.4.5) and (3.4.8) we have 



 104 

sinsin
1 cos

1 cos

c c

ur
r

uc

c

δδ ω ωγ δ
γ δ

∂Φ ∂Φ
=

′ ′ ′∂ ∂ −     − 
 

ℏ ℏ
 

sin sin

c c

r rδ ω δ ω
∂Φ ∂Φ

=
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       (5.6.20) 

Therefore, the second part of equation (5.6.18) remains invariant under the Lorentz-

Einstein transformations. 

From equation (5.6.10) we can calculate the total invariant energy of the generalized 

photon  

2

2 2 2 2 2

2
sin

i i
E c E c E

c r rδ δ ω
∂Φ ∂Φ − = − − − ∂ ∂ 

υ
P β γ

ℏ ℏ
 

and taking into consideration that the set of vectors , ,
c

υ
β γ  constitute an orthonormal 

basis, we get 

2 2

2 2 2 2 2
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E c E E

r rδ δ ω
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2 2

2 2 2

sin

c c
E c
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∂Φ ∂Φ   − = +   ∂ ∂   

P
ℏ ℏ

     (5.6.21) 

According to equations (5.6.19) and (5.6.20), the second part of equation (5.6.21) 

remains invariant under the Lorentz-Einstein transformations. 

We will now prove that: 

“In the case of constant-speed motion with velocity 0

0

u 
 =  
  

u , pairs ( ) ( ), , ,i i w wE EP P  

correspond to a flow of energy and momentum into the surrounding spacetime. On the 

contrary, pairs ( ),Eδ δP  and ( ),Eω ωP  correspond to a redistribution of energy and 

momentum in the surrounding spacetime”. 

From equation (3.2.10) together with the second of equations (5.6.11), we get 
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Similarly, from equation (3.2.10) together with the second of equations (5.6.11) we 

get 

w
i

r c w

∂Φ
⋅ =

∂
R

P ℏ         (5.6.23) 

We conclude that both the momentum 
iP , as well as the momentum 

wP , have a 

component along the direction of vector R , as depicted in Figure 3.2.1. 

Combining equation (3.2.10) with the second of equations (5.6.12), we get 
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and since 2 2c=υ  and 0=υβ , we obtain 
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0δ ⋅ =P R          (5.6.24) 

Similarly, from equation (3.2.10) and the second of equations (5.6.13) we get 

0ω ⋅ =P R          (5.6.25) 
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Both the momentum δP , and the momentum ωP , are vertical to the vector R  of 

Figure 3.2.1.  

We will now prove that: 

“The generalized photon carries intrinsic angular momentum S , independent of the 

distance r . The component 
uS
 
of the intrinsic angular momentum S  along the 

direction of the motion of the material particle does not depend upon the velocity u  

of the motion”. 

In Figure 2.2.1, the angular momentum S  of the generalized photon with respect to 

the (constant) point of emission ( ) ( ) ( )( ), , ,p p pE x w y w z w w  is 

= ×S r P  

and with equation (2.2.6) written in the form  

r

c
=r υ  

we get 

( )i w

r r

c c
δ ω= × = × + + +S υ P υ P P P P       (5.6.26) 

Denoting 
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S υ P

         (5.6.27) 

equation (5.6.26) can be written as  

i w δ ω= + + +S S S S S         (5.6.28) 

From the first of equations (5.6.27) we have  

i i

r

c
= ×S υ P  

and with the second of equations (5.6.7) we get 

0i =S           (5.6.29) 
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From the second of equations (5.6.27) we have 

w w

r

c
= ×S υ P  

and with the second of equations (5.6.11) we get 

w =S 0           (5.6.30) 

From the third of equations (5.6.27) we have 

r
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and with the second of equations (5.6.12) we have  
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and since it is 
c
× =

υ
β γ , we get  
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S γℏ          (5.6.31) 

From the third of equations (6.2.27) we have 
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and with the second of equations (5.6.13) we get 
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and since 
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υ
γ β , we get  
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ω δ ω
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∂
S β

ℏ
        (5.6.32) 

Equation (5.6.28) can now be written as 
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sin
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ℏ        (5.6.33) 

We now calculate the component 
uS  of the angular momentum S  along the direction 

of motion of the material particle.  

For 0≠u  we have 

u =
u

S S
u

  

and with equation (5.6.33) we get 

sin
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δ ω δ
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S β γ
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For constant-speed motion with velocity 0

0

u 
 =  
  

u , and taking into consideration 

equations (2.3.3) and (2.3.4), we obtain from equation (5.6.34) 

( )sin
sin
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S δ

δ ω
∂Φ

= −
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uS i
ω
∂Φ

= −
∂
ℏ          (5.6.35) 

In the case of constant-speed motion with velocity 0

0

u 
 =  
  

u , from the transformations 

of equations (3.4.5) ω ω′ = , we conclude that the angular momentum uS  does not 

depend on the inertial reference frame. Furthermore, it does not depend on the angle 

δ , i.e. the angle formed between the direction of emission 
c

υ
 of the generalized 

photon and the velocity u  of the material particle in Figure 3.2.1. 

We will now study the changes in energy and momentum that take place during the 

motion of the generalized photon with velocity υ , after its emission by the material 

particle.  

From the fundamental mathematical theorem, specifically from equation (2.5.7) for 

, ,i wf E f E f Eδ= = =  and f Eω= , we have 
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and with the first of equations (5.6.7), (5.6.11), (5.6.12) and (5.6.13), we get 

0
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E
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t
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       (5.6.36) 

Similarly, after combining equations (2.5.8), (2.5.9), (2.5.10) with the second parts of 

equations (5.6.7), (5.6.11), (5.6.12) and (5.6.13), we get 

( )

( )

( )

( )

i
i

w
w

grad
t

grad
t

c
grad

t r

c
grad

t r

δ
δ δ

ω
ω ω

∂
+ =

∂
∂

+ =
∂
∂

+ = −
∂
∂

+ = −
∂

P
P υ 0

P
P υ 0

P
P υ P

P
P υ P

       (5.6.37) 

From the equations of this paragraph we conclude that there are physical quantities 

that do not depend on the distance r . Such physical quantities are the energy-

momentum pairs ( ),i iE P  and ( ),w wE P , as well as the angular momenta S  and 
uS . 

These quantities are defined for 0r = , that is, on the material particle. On the 

contrary, the energy-momentum pairs ( ),Eδ δP
 
and ( ),Eω ωP , as well as the rest 

energies 
c

r δ
∂Φ
∂
ℏ

 and 
sin

c

r δ ω
∂Φ
∂

ℏ
, are defined only in the surrounding spacetime of the 

material particle, due to the appearance of the factor 
1

r
. Furthermore, they vanish for 

r →+∞ , while they attain large values for small values of r , i.e. close to the material 

particle.  
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5.7 The simplest case of a generalized photon 

The simplest generalized photon arises in the case where the percentage Φ  is 

constant: 

0

0

t

∂Φ
=

∂
∇Φ =

         (5.7.1) 

In this case, equations (5.6.2) and (5.6.3) are rewritten, respectively 

0

0
2

0

0
2

1

1

mi
E

m w

c

mi

m c w c

c

∂
= Φ

∂−

∂
= Φ

∂−

υu

υ
P

υu

ℏ

ℏ
       (5.7.2) 

2

2

1

1

i q
E

q w

c

i q

qc w c

c

∂
= Φ

∂−

∂
= Φ

∂−

υu

υ
P

υu

ℏ

ℏ
        (5.7.3) 

From the second of equations (5.7.1) we obtain 

0∇Φ =  

and from equation (5.6.4) we get 

0w
w

δ ω
δ ω

∂Φ ∂Φ ∂Φ
∇ + ∇ + ∇ =

∂ ∂ ∂
 

and from the linear independence of the vectors , ,w δ ω∇ ∇ ∇  (paragraph 2.5) we get 

0

0

0

w

δ

ω

∂Φ
=

∂
∂Φ

=
∂
∂Φ

=
∂

         (5.7.4) 

Replacing equations (5.7.4) into the equations of the last paragraph causes the energy-

momentum pairs ( ) ( ) ( ), , , , ,w wE E Eδ δ ω ωP P P
 
to become zero, the angular momentum 
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S  becomes zero, and so do the rest energies 
c

r δ
∂Φ
∂
ℏ

 and 
sin

c

r δ ω
∂Φ
∂

ℏ
. The energy-

momentum pair ( ),i iE P , as given by equations (5.7.2), does not become zero. 

Therefore, the generalized photon is defined for 0r = , i.e. on the material particle. 

We shall now prove that the interaction of the material particle with every generalized 

photon is instantaneous during the moment w  of the emission of the generalized 

photon. More specifically, we shall prove that the generalized photon keeps its energy 

E  and moment P  constant, after its emission by the material particle. 

From equation (2.5.7) of the fundamental mathematical theorem, and for f E= , we 

have  

E E
E c

t r

∂ ∂
+ ⋅∇ =

∂ ∂
υ         (5.7.5) 

From the first of equations (5.7.2), and since it holds that ( )0 0m m w= , we get  

0
E

r

∂
=

∂
         (5.7.6) 

and from equation (5.7.5) we see that 

0
E

E
t

∂
+ ⋅∇ =

∂
υ         (5.7.7) 

From equation (5.7.7) we conclude that the energy E  of the generalized photon 

remains constant during its motion with velocity υ , after its emission by the material 

particle. 

Combining equations (5.7.2) we obtain relation 

2
E

c
=

υ
P          (5.7.8) 

between the momentum P  and energy E  of the generalized photon. 

From equation (2.5.8) for
E

f
c

= , we obtain  

2 2

E
E grd E

t c c c r

∂   ∂   + =    ∂ ∂    

υ υ υ
υ  

and with equations (5.7.6) and (5.7.8) we get 

( )grad
t

∂
+ =

∂
P

P υ 0         (5.7.9) 
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From equation (5.7.9) we conclude that the momentum P  of the generalized photon 

remains constant during its motion with velocity υ , after its emission by the material 

particle. 

According to equations (5.7.7) and (5.7.9), the generalized photon does not exchange 

energy and momentum with the material particle after its emission. The interaction 

between the material particle and every generalized photon takes place 

instantaneously at the moment of emission of the generalized photon. Furthermore, 

according to equation (5.7.8), there is a continuous flow of generalized photons 

moving with velocity υ , from the material particle into the surrounding spacetime, on 

the condition, of course, that the percentage Φ  remains constant. 

We can undertake a similar study for the generalized photon resulting from the 

selfvariation of the electric charge. It suffices to replace equations (5.7.2) with 

equations (5.7.3) in the above study. 

 

5.8 The cosmological data “condensed” into a single equation 

In the inertial frame of reference S ′ , where the material particle is at rest, the first of 

equations (6.2.2) can be written as 

0

0

m
E i i

m w t

∂ ∂Φ
′ = Φ +

′ ′∂ ∂
ℏ ℏ        (5.8.1) 

Summing in all directions of emission of generalized photons, and taking into 

consideration that 0E E′ =∑  and 1Φ =∑ , from equation (5.8.1) we obtain 

0
0

0

m
E i

m w

∂
=

′∂
ℏ          (5.8.2) 

During the emission of the generalized photons by the material particle it is 0r′ = , 

and equation (2.2.3) can be written as w t′ ′= , therefore we get 

0 0 0
0

m dm dm
m

w dw dt

∂
= = =

′ ′ ′∂
ɺ , and equation (5.8.2) can be written as 

0
0

0

m
E i

m
=
ɺ
ℏ          (5.8.3) 

which is equation (5.2.6). 

In the inertial reference frame S ′ , where the material particle is at rest, and for 0r′ = , 

hence for w t′ ′= , the first of equations (5.4.2) can be written as 

2

0 0 0

i
E m c E=ɺ

ℏ
         (5.8.4) 

Eliminating the rest energy 0E , we get 
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which is equation (5.2.8). 

In paragraph 5.2 we derived equation (5.2.8) by combining equation (5.8.3) with the 

principle of conservation of energy. In the derivation we conducted in this paragraph 

we combined equation (5.8.3) with the symmetric law (5.4.2). Furthermore, from the 

derivation procedure we have followed, it becomes obvious that the percentage-

function Φ  does not play any role in equation (5.8.5), i.e. in equation (5.2.8). 

If we borrow equation (7.3.15), 
0E i H= ℏ , from chapter 7, and combine it with 

equation (5.8.3), we obtain 
18 10

0

2 10
m

H s
m

− −= ×
ɺ

∼ . In the cosmological data we 

observe the consequences of the real increase of the rest masses of the material 

particles, which takes place at an extremely slow rate. 

In chapter 7 the differential equation (5.8.5) is solved. As we shall see, this equation 

contains as information the totality of the cosmological data. The cosmological data 

are “condensed” within a single equation. 

 

5.9 The generalized particle  

From the previous study it becomes evident that the selfvariations correlate every 

material particle with the surrounding spacetime. Fundamental physical 

characteristics of the material particle, like the rest mass and the electric charge, are 

correlated with spacetime. Furthermore, each material particle contributes to the 

energy content of spacetime in a strictly defined manner. 

The relation between the material particle and the surrounding spacetime is 

determined by two fundamental physical objects predicted by the theory of 

selfvariations: the generalized photon and the accompanying particle. These two 

physical objects are related to each other since the accompanying particle results from 

the aggregation of the generalized photons. All the equations we have stated in the 

preceding paragraphs and preceding chapters, concern the relation of the material 

particle either with the generalized photon, or with the accompanying particle. 

In the surrounding spacetime of the material particle, and for each generalized photon, 

we know exactly what is expressed by equation (5.2.1), 
2 0dS = : the generalized 

photon moves with velocity υ  of magnitude c=υ  in every inertial frame of 
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reference. According to the second statement-axiom we have posed, equation 2 0dS =  

also holds for the accompanying particle, which, as an aggregation of generalized 

photons, is related with the propagation of the selfvariations in the four-dimensional 

spacetime. The question then arises, as to how equation 
2 0dS =  is expressed in the 

part of spacetime where the generalized photons aggregate. 

The accompanying particle has rest energy 0E  and, therefore, rest mass 0

2
0

E

c
≠ . The 

combination 2 0dS =  and 0

2
0

E

c
≠  renders the accompanying particle an intermediate 

state between “matter” and the “photon”. It is a completely new physical object 

predicted by the theory of selfvariations, which introduces us into an unknown 

territory of physical reality. The first question we have to answer is how do the 

relations 
2 0dS =  and 0

2
0

E

c
≠  become compatible with each other.  

About the intermediate state of matter we can give the following interpretation:  

The aggregation of the generalized photons implies the co-incidence of different 

points ( 2 0dS = ) in the part of spacetime where the aggregation takes place. This 

interpretation is in agreement with the strict application of the axioms of the theory of 

selfvariations.  

At this point we are required to make two observations about the relation of the theory 

of selfvariations with the theory of relativity. These observations have to do with the 

relation between the energy content and the properties of spacetime.  

For the derivation of the Lorentz-Einstein transformations we consider two observers 

who exchange signals moving with velocity c . If we consider the exchange of signals 

moving with a different velocity, for example acoustic signals, we end up with 

different transformations. Judging by the result, both on theoretical, and on 

experimental grounds, we know that the transformations derived by the first method 

are correct, whereas the transformations derived by the second method are wrong. 

The theory of selfvariations predicts the generalized photon in the surrounding 

spacetime of the material particles. There is a continuous exchange of generalized 

photons between the material particles, in other words, a continuous exchange of 

signals moving with velocity c . The exchange of signals with velocity c  is not 

simply a hypothesis we can make for the derivation of the Lorentz-Einstein 

transformations, but a continuous physical reality. Therefore, the theory of 

selfvariations strengthens the theoretical background of the special theory of 

relativity.  

The general theory of relativity correlates the properties of spacetime with its energy 

content. The theory of selfvariations gives us the detailed contribution of each 

material particle to the energy content of spacetime. In the part of spacetime where 

the aggregation of generalized photons takes place, the material particle interacts with 

the accompanying particle. This interaction concerns a strictly distinct subset of the 

total energy content of spacetime. While we assume a unified spacetime, whose 

properties are defined by its total energy content, each particle interacts and is 
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correlated with only a subset of the energy content of spacetime. In reality, every 

material particle occupies its “own” spacetime. For every material particle the 

properties of its “own” spacetime are determined by the generalized photons with 

which it interacts. Therefore, the co-incidence of different points of spacetime 

concerns the accompanying particle for every material particle, and does not 

constitute a general property of spacetime. 

The law of selfvariations has been stated based on the accompanying particle. 

Relation (5.2.2), in combination with the symmetric laws (5.4.2) and (5.5.3), 

expresses the continuous interaction of the rest mass 0m  and the electric charge q  of 

the material particle with the energy 0E  of the accompanying particle. Therefore, we 

cannot refer just to the material particle, or just to the accompanying particle. What 

exists in nature is the system of the two particles, which behaves as a “generalized 

particle” that occupies a part of spacetime.  

The co-incidence of different points in the part of spacetime occupied by the 

generalized particle alters the trajectories and velocities of the generalized photons 

compared to the strictly defined trajectories and velocities we studied in the preceding 

chapters. In the case of co-incidence of all points belonging to this part of spacetime, 

the concepts of trajectory and velocity of the generalized photons loose their meaning. 

The trajectory and velocity of the material particle will suffer the same consequences, 

if the material particle belongs to the part of spacetime where the aggregation of the 

generalized photons takes place. 

In Figures 2.2.1 and 3.2.1 imagine that, for the material particle, the points of 

spacetime within the interior of a sphere of centre E  and radius r  coincide. The 

physical object in the interior of the sphere constitutes a generalized particle with a 

specific rest mass. In every point of the spherical surface, the generalized photon 

moves with velocity υ  of magnitude c=υ . None of the axioms of special relativity 

and of the theory of selfvariations are violated. Furthermore, the co-incidence of 

different points of spacetime within the interior of the sphere, concerns the material 

particle, and does not constitute a general property of spacetime.  

The investigation of the internal structure and physical properties of the generalized 

particle is the central issue for the theory of selfvariations. We have to answer specific 

questions regarding the generalized particle, and develop specific methods for the 

study of its physical properties. 

A fundamental question concerns the distribution of the total rest mass 0M  of the 

generalized particle, between the material particle ( 0m ) and the accompanying 

particle 0

2

E

c

 
 
 

. Of equal importance is the size of the portion of spacetime occupied 

by the generalized particle.  

A basic method for the study of the generalized particle is the elimination of the 

velocity, which also represents the trajectory, from the equations of the theory of 

selfvariations. It is not the only method, though. In the following chapter we present 

the basic study for the generalized particle. 
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CHAPTER 6 

 

The quantum phenomena as a consequence of the selfvariations 

 

6.1 Introduction 

The intermediate state between “matter” and “photon” predicted by the theory of 

selfvariations, is responsible for the quantum phenomena. The study of the 

generalized photon leads to the Schrödinger and the Klein-Gordon equations, as well 

as to the wave equation of Maxwell’s theory of electromagnetism.  

The elimination of the kinematic characteristics of the material particle from the 

equations of the selfvariations, emerges as the fundamental method for the study of 

the generalized particle and, eventually, of quantum phenomena. This is what is 

actually done by all the theories developed during the last century in order to interpret 

quantum phenomena. 

The basic method for the study of the generalized particle is complemented by the 

percentage-function Φ . The Φ  function has to do with the generalized photon and, 

by extension, with the generalized particle. Furthermore, it is related with the 

interactions of the material particles. Function Φ  inextricably links the quantum 

phenomena with the interactions of the material particles. The investigation of its 

properties furthers the theory of selfvariations beyond the bounds of the present 

edition. 

 

6.2 The distribution functions of the rest mass  

According to equation (5.4.4)  

0
0 0 2

E
M m

c
= +

         
(6.2.1) 

the rest mass 0M  of the generalized particle is equal to the sum of the rest masses of 

the material particle ( )0m  and the accompanying particle 0

2

E

c

 
 
 

. One way of studying 

the inner structure of the generalized particle is to study how the rest mass 0M  is 

distributed to each of the two particles. Knowing the sum of the rest masses 0m  and 

0

2

E

c
, it suffices to calculate one of the “distribution functions”, that is, one of the 

complex numbers 
2

0 0 0

2

0 0 0

, ,
m E m c

X Z
M M c E

= Ψ = = .

 

 

But it is 
2 2

0 0 0 0

2 2 2

0 0 0

m c E m c E
X

M c M c M c

+
+Ψ = + =  

and with equation (6.2.1) we get 1X +Ψ = . Therefore, it suffices to study either 

function Ψ  

0

2

0

E

M c
Ψ =          (6.2.2) 

or function Z  
2

0

0

m c
Z

E
=

         

(6.2.3) 
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in order to determine the distribution of the rest mass 0M  into 0m  and 0

2

E

c
. 

Initially, we will study the effects of the selfvariations on the function Z . From 

equation (6.2.3) we have  
2 2

0 0 0

2

0 0

1 m c m c EZ

t E t E t

∂ ∂∂
= −

∂ ∂ ∂
 

and with the firsts of equations (5.2.3) and (5.4.2) we get  
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and with equation (5.3.9) we get 
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and with equation (6.2.1) we get 
2

20
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m cZ i
M c

t E
γ

∂
= −
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and with equation (6.2.3)  

2
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Z i
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t
γ

∂
= −
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        (6.2.4) 

From equation (6.2.3) we obtain 
2

2 0
0 02

0 0

1 m c
Z m c E

E E
∇ = ∇ − ∇  

and with the second of equations (5.2.3) and also (5.2.4) we get 
2
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E E
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and with equation (5.3.6) we have  
2

2 0
0 0 02 2

0 0

1
s

m ci i
Z E m c m E

E c E
γ∇ = +

u
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Using equation (5.3.9) we get 
2

2 0
0 0 0 02 2
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2

0 0
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1 m ci i
Z E m c m E

E c E
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Through equation (6.2.1) we get 
2

0
02

0

m ci
Z M

E
γ∇ = u

ℏ
 

and with equation (6.2.3) we get 

0

i
Z M Zγ∇ = u
ℏ

        (6.2.5) 

The differential equations (6.2.4) and (6.2.5) offer the advantage that the rest mass 

0M  that appears on their second part, does not depend on the selfvariations. On the 
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other hand, they also have a disadvantage. We do not know the additional conditions 

we have to introduce for the rest mass 0M  in order to solve the system of differential 

equations (6.2.4) and (6.25). These additional conditions are related to a more general 

investigation of the equations of the theory of selfvariations, which is not included in 

the present edition. 

We shall now study how the selfvariations affect function Ψ . From equation (6.2.2) 

we have  

0

2

0

E

t t M c

 ∂Ψ ∂
=  ∂ ∂  

 

and with equation (5.4.5) we obtain 
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1 E

t M c t
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and with the first of equations (5.4.2) we get 
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0 02
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m c E

t M c
γ
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and from equation (6.2.2) we get 
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0

i
m c

t
γ

∂Ψ
= Ψ

∂ ℏ
        (6.2.6) 

From equation (6.2.2) we have 

0
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 
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and with equation (5.4.6) we obtain 

( )02

0

1
E

M c
∇Ψ = ∇  

and using the second of equations (5.4.2) we get 

0 02

0

1 i
m E

M c
γ ∇Ψ = − 

 
u

ℏ
 

and with equation (6.2.2) we arrive at 

0

i
mγ∇Ψ = − Ψu

ℏ
        (6.2.7) 

The differential equations (6.2.6) and (6.2.7) have the advantage that the rest mass 0m  

of the material particle appears in their second part. This fact allows us to introduce 

additional conditions in order to solve the system of differential equations (6.2.6) and 

(6.2.7). We present this study in the following two paragraphs.  

The distribution functions determine the distribution of the rest mass of the 

generalized particle between the material particle and the accompanying particle. For 

every point ( ), , ,A x y z t  in the part of spacetime where the generalized particle can 

reside, these distribution functions acquire specific values. These values, in turn, 

define the values of the rest masses 0m  and 0

2

E

c
. 

The behavior of the generalized particle can be influenced by any cause that interacts 

with the generalized particle in the part of spacetime it occupies. An external cause 

can redistribute the rest mass of the generalized particle, directing it either to the 

material particle, or to the accompanying particle. In the first case, the generalized 

particle will behave as a material particle with a well-defined trajectory, energy, etc. 



 120 

In the second case, the generalized particle will spread out in spacetime, while the 

consequences resulting from the aggregation of the generalized photons will be 

strengthened and intensified. We observe such a case in the double-slit experiment for 

the electron and for material particles in general (we assume that the reader is familiar 

with the double-slit experiment).  

The study of the distribution functions is a fundamental goal in order to understand 

the behavior of the generalized particle.  

 

6.3 The Schrödinger equation 

From equation (6.2.6) we have  
2

2 2 0
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γ γ
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and with equation (6.2.6) and the first of equations (5.2.3), we get  
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and with equation (5.3.9) we get  
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From equation (6.2.7) we have 
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and with equation (6.2.7) together with the second of equations (5.2.3), we get  
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and with equation (5.3.9) we get 
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2 2
2 0 0
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m u E
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c

γ  ∇ Ψ = − − Ψ 
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      (6.3.2) 

We now consider the case where the rest mass 0M  is mainly distributed to the 

material particle. This happens when 0

2

0

1
E

m c
<<  or when 0 0E → . Under these 

conditions equation (6.3.2) can be written as 

0

2 2 2

2

2

m uγ
∇ Ψ = − Ψ

ℏ
        (6.3.3) 
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We will now eliminate the velocity u  from equation (6.3.3), within the framework of 

the analysis we performed in paragraph 5.9 for the generalized particle. For small 

velocities u , it is 1γ ∼ , and equation (6.3.3) can be written as 

0

2 2

2

2

m u
∇ Ψ = − Ψ

ℏ
        (6.3.4) 

Furthermore, denoting by ε  the constant sum of the kinetic energy 2

0

1

2
m u  and the 

potential energy ( ), ,U U x y z=  of the material particle, we have  

( )
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0

2
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m

ε
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+ =

−
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Replacing factor 
2u  into equation (6.3.4) we obtain 

( )02

2

2m Uε −
∇ Ψ = − Ψ

ℏ
       (6.3.5) 

which is the time-independent Schrödinger wave-function. 

From the initial conditions, 0

2

0

1
E

m c
<<  or 0 0E → , we set, and from equation (6.2.1) 

we obtain 0 0m M→ , therefore equation (6.3.5) can be written in the form 

( )02

2

2M Uε −
∇ Ψ = − Ψ

ℏ
       (6.3.6) 

From the derivation process we have followed it becomes obvious that the 

Schrödinger equation only approximately describes the internal structure of the 

generalized particle. 

 

6.4 The Klein-Gordon equation 

The way in which we chose to eliminate the velocity from equation (6.3.3) had as a 

consequence the appearance of the potential energy U  in Schrödinger’s equation 

(6.3.5). We will now eliminate the velocity u  from function Ψ in a different manner. 

Combining equations (6.3.1) and (6.3.2), we obtain 
2 4 2 2 22
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and since 
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−

 , we get  
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In the case where 0

2

0

1
E

m c
<<  or 0 0E → , equation (6.4.1) can be written as 

42
2 2 0
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m c
c

t

∂ Ψ
− ∇ Ψ + Ψ =

∂ ℏ
       (6.4.2) 

which is the Klein-Gordon equation. With the conditions we posed, it follows that 

0 0m M→  in equation (6.4.2). 

Of particular interest is the case 0 0m = , where from equation (6.4.1) we obtain 

2
2 2

2
0c

t

∂ Ψ
− ∇ Ψ =

∂
 

2
2

2 2
0

c t

∂ Ψ
∇ Ψ − =

∂
        (6.4.3) 

From equation (6.2.1) for 0 0m =  we get 2

0 0E M c= . Therefore, all of the rest energy 

of the generalized particle has shifted to the accompanying particle. Furthermore, we 

get 0

2

0

1
E

M c
Ψ = = . In every case we solve the differential equation (6.4.3), we 

should modify the final solution such that the wave-like behavior of a scalar quantity 

Ψ  appears, for which we demand that 1Ψ = . 

 

6.5 The central role of the percentage function Φ  in the internal structure and 

the physical properties of the generalized particle.  

According to equations (5.6.5) και (5.6.6) the energy E  and the momentum P  of a 

single generalized photon depends on the percentage function Φ . Furthermore, 

according to equation (5.6.33), the intrinsic angular momentum S  of a single 

generalized particle depends exclusively on the percentage function Φ . The 

generalized particle emerges in the part of spacetime where the aggregation of the 

generalized photons takes place. Therefore, the percentage function Φ  plays a 

fundamental role, both for the internal structure, as well as for the physical properties 

of the generalized particle.  

Function Φ  allows the comprehension of the extent of the portion of spacetime 

occupied by the generalized particle. In paragraph 5.6 we determined the physical 

quantities that can only be defined in the surrounding spacetime of the material 

particle. These physical quantities are inversely proportional to the distance r . 

Therefore, the space occupied by the generalized photon can extend to infinity, with 

the consequences, of course, predicted by the corresponding equations for its energy, 

momentum, and angular momentum. Since each generalized photon can extend to 

infinity, the same also holds for the part of space where the aggregation of the 

generalized photons takes place. Therefore, the generalized particle can extend to 

infinity.  

In the case of the simplest generalized photon, as we studied it in paragraph 5.7, there 

results an instantaneous interaction of the material particle with the accompanying 

particle. This interaction takes place at the instant of emission of the generalized 

photon, exactly at the point where the material point particle resides. Therefore, in this 

case the generalized particle is a point particle. 

In conclusion, we can say that the generalized particle can extend from a point of 

spacetime up to an infinite distance from the material particle. Furthermore, in each 



 123 

case, the extent of the part of spacetime in which the generalized particle extends, is 

determined by the percentage function Φ . 

For the derivation of the Schrödinger and the Klein-Gordon equations, we based our 

investigation on equation (6.2.1), 0
0 0 2

E
M m

c
= + . A fundamental piece of information, 

related with the function Φ , is missing from this equation. The generalized photon 

carries rest energy, according to equations (5.6.17) and (5.6.18), which depends on the 

function Φ  and the distance r . In other words, right from the start, the generalized 

photon, and therefore the generalized particle, are correlated with a rest energy in the 

surrounding spacetime of the material particle. The rest mass corresponding to this 

rest energy does not appear in equation (6.2.1). For the same reason, the angular 

momentum does not appear in the Schrödinger and the Klein-Gordon equations, since 

the internal angular momentum of the generalized photon depends exclusively on 

function Φ , according to equation (5.6.33). 

Function Φ  expresses the potential of a material particle to emit generalized photons 

of different energies for different directions. Theoretically, we cannot predict exactly 

how function Φ  depends on the internal structure of the material particle. Quite likely 

we can do this by performing some measurements. But we can predict theoretically an 

important factor on which function Φ  depends, that results from the continuous 

exchange of generalized photons between material particles. This exchange of 

generalized photons is equivalent to a variation of function Φ . According to 

equations (5.6.5), (5.6.6) and (5.6.33), the energy, momentum and intrinsic angular 

momentum of the generalized photon are exactly correlated with the variation of 

function Φ . We, therefore, come to the conclusion that the quantum phenomena are 

interrelated with the interactions of the material particles, the connecting link being 

function Φ . Function Φ  is related with the interactions between material particles, 

but also with the energy of the generalized photons and, by extension, with the 

generalized particle.  

In paragraph 5.9 we referred to the fundamental method for studying the generalized 

particle. We analyzed the reasons for which we have to expunge the velocity from the 

equations of the theory of selfvariations in order to study the internal structure and the 

physical properties of the generalized particle. Of equal importance is the inclusion of 

function Φ  in the study of the generalized particle.  

Observing the Schrödinger operators, as used in quantum mechanics, we realize that 

the first consequence of their use is the elimination of the kinematic characteristics of 

the material particle from the resulting differential equations. Function Φ  does not 

appear in the final equations, since it does not exist as a concept within the physical 

theories of the last century. It is represented, though, by the physical quantities related 

with the interactions in which the material particle participates, by the potential 

energy or the generalized momentum of the material particle. Analogous is the 

procedure followed by Dirac for the derivation of his eponymous equation.  

One of the questions about the generalized particle, to which we deliberately did not 

refer in paragraph 5.9, is the probability of finding the material particle at a specific 

moment, in a specific position in the part of spacetime occupied by the generalized 

particle. There are many physical quantities related with the Schrödinger operators. 

Judging by the success of quantum mechanics, one way to study the generalized 

particle is through statistical interpretation. We must not forget, though, that a single 

cause suffices in order to shift the rest energy of the generalized particle, either 

towards the material particle, or towards the accompanying particle. One and only 
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cause is sufficient for the corpuscular or wave-like behavior of the generalized 

particle to emerge. 

By investigating the properties of function Φ  or by making concrete hypotheses 

regarding function Φ , we can extend our study of quantum phenomena and the 

interactions of particles. On the contrary, in paragraph 5.8 we showed that equation 

(5.8.5) does not depend on function Φ . This allows us to solve it and investigate it 

completely. We present that study in the next chapter. 
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CHAPTER 7 

 

The cosmological data as a consequence of the selfvariations 

 

7.1 Introduction 

The origin of matter is already recorded in the cosmological observational data. We 

just lacked a fundamental piece of information in order to decode it: the law of 

selfvariations.  

The redshift of distant astronomical objects, the cosmic microwave background 

radiation and the information obtained by the analysis of this radiation, the increased 

luminosity distances of supernovae, the large-scale, as well as small-scale, structure of 

matter in the universe, the large-scale isotropy and flatness of the universe, the slight 

variation of the fine structure constant, and the arrow of time, all share the law of 

selfvariations as a common cause. 

The law of selfvariations contains as information the entire corpus of the 

cosmological observational data, as we observe and record them since the time of 

Hubble. Behind the barrage of interventions made in order to bring the Standard 

Cosmological Model in agreement with the cosmological observational data, lies our 

ignorance about the fundamental law of selfvariations. The physical theories of the 

past century do not possess the necessary completeness in order to explain the 

cosmological observational data.  

The improved scientific observation instruments we possess record persistently, and 

with ever increasing detail, the consequences of the law of selfvariations.  

7.2 The fundamental equations 

The cosmological data concern the observation of the Universe at long distances, that 

is, in the past. At a distant astronomical object, located at a distance r  from Earth, the 

rest mass ( )0m r  of a material particle in the past is smaller, compared to the 

laboratory rest mass 0m  of the same material particle we measure “now” on Earth. 

The electric charge ( )q r  also differs from the laboratory value q  of the electric 

charge as measured “now” on Earth. We calculate the quantity ( )0m r  as a function of 

0m , and ( )q r  as a function of q . In this manner, we incorporate into our equations 

the consequences resulting from the internality of the Universe to the process of 

measurement.  

In the following, and using the known physical laws, we determine the consequences 

of the selfvariations for distant astronomical objects. Furthermore, we can determine 

the consequences of the selfvariations in the electromagnetic spectra of the 

astronomical objects we receive “now” on Earth. We shall prove that equation (5.2.8) 

2 0
0

0

0
m

m c i
m

 
+ = 

 

i

ɺ
ℏ                                                                                 (7.2.1) 

which holds for every material particle contains as information the entirety of the 

cosmological data.  

We will solve equation (7.2.1) for a material particle in the case of a flat and static 

universe. This equation contains as information the redshift of distant astronomical 

objects. Furthermore, it predicts that the gravitational interaction cannot play the role 

attributed to it by the Standard Cosmological Model. It informs us that the 

gravitational interaction cannot lead the Universe either to collapse or to expansion. 
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Consequently, there is no point of solving equation (7.2.1) within an expanding 

Universe.  

Equation (7.2.1) contains as information the fact that the total energy of the Universe 

is zero. Therefore, after solving the equation, it can be verified a posteriori that the 

Universe is flat. 

From equation (7.2.1) we have that 
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                                                                                     (7.2.2) 

Here, k  is the constant of integration. From equation (7.2.2) we see that  

0 2
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1 kt

ik
m

c e µ+= −
−

ℏ
                                                                                 (7.2.3) 

Here, µ  is the constant of integration.  

Let us suppose that we observe “now” on Earth, the electromagnetic spectrum of an 

astronomical object located at a distance r  away from Earth. The emission of the 

electromagnetic spectrum from the astronomical object took place before a time 

interval 
r

t
c

∆ = . According to equation (7.2.3) the rest mass 0 ( )m r  of the material 

particle at the moment of the emission of the corresponding electromagnetic spectrum 

was 
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Combining equations (7.2.3) and (7.2.4) we have that 
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Setting 
ktA e µ+=                                                                                                (7.2.5) 

we obtain  
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                                                                               (7.2.6) 

Equation (7.2.6) expresses the rest mass 0( )m r  of the material particle in the distant 

astronomical object and before a time interval 
r

t
c

∆ = , compared with the laboratory 

value of the rest mass 0m  of the same material particle. In this way we include in the 

equations we state the consequences of the internality of the Universe with respect to 

the measurement process, as set forth in paragraph 4.9. 

 If we remove the imaginary unit i  from equation (7.2.1), or replace it by any 

arbitrary constant 0b ≠ , we will again end up with equations (7.2.5) and (7.2.6). The 

problems caused by the internality of the Universe with respect to the measurement 
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procedure can only be evaded through equation (7.2.6). Only after comparing the rest 

masses 0( )m r  and 0m  can we measure the consequences of the selfvariations. 

From equation (7.2.5) we obtain for the parameter A  

dA
A kA

dt
= =ɺ                                                                                          (7.2.7) 

From equation (7.2.3) we also obtain 
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Through equation (7.2.5) we see that 
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−
ɺ                                                                                         (7.2.8) 

Combining equations (5.2.6) and (7.2.8) we obtain 

0
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kA
E i

A
=

−
ℏ                                                                                          (7.2.9) 

In the case of the electric charge the corresponding equation to equation (7.2.1) is the 

second of equations (5.5.5) 
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This gives us the corresponding solution 
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1 1k t
B e
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1

dB
B k B

dt
= =ɺ                                                                                       (7.2.13) 

Here, 1k  and 1µ  are the constants of integration. 

The corresponding equation to equation (7.2.8) is equation 

1

1

k B
q q

B
=

−
ɺ                                                                                           (7.2.14) 

Combining the first of equations (5.5.5) with equation (7.2.14) we obtain 

1
0

1
i

k B
qV i

B
=

−
ℏ                                                                                       (7.2.15) 

This equation is the corresponding equation to equation (7.2.9). 

If we remove from equation (7.2.10) the imaginary unit i , or if we replace it by any 

arbitrary constant 0b ≠ , we will still arrive at equations (7.2.11) and (7.2.12). The 

problems caused by the internality of the Universe with respect to the measurement 

procedure can only be evaded through equation (7.2.11). We can only measure the 

consequences of the selfvariations by comparing the electric charges ( )q r  and q . 

7.3 The redshift of the far distant astronomical objects 

The wavelength λ  of the linear spectrum of an atom is inversely proportional to the 

factor 4

0m q , where 0m  is the rest mass and q  the electric charge of the electron. We 

denote by λ  the wavelength of the linear spectrum we observe “now” on Earth, and 

which originates from the atoms of an astronomical object located at distance r . With 

0λ  
we denote the wavelength of the same kind of atom as measured in the laboratory 

“now” on Earth.  
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We have that 

( )

4

0

4

0 0 ( )

m q

m r q r

λ
λ

=  

Using equations  (7.2.6) and (7.2.11) we obtain 
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For the redshift z  of the astronomical object we obtain  
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Using equation (7.3.1) we see that 
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This equation constitutes the full mathematical expression for the redshift z  of the 

linear spectrum of distant astronomical objects. 

We shall now perform an approximation. From the cosmological data we know that 

the fine structure constant  
2

04

e

c
α

πε
=

ℏ
 

remains constant for observations we make at very large distances from Earth. 

Therefore, the value of the electric charge ( )q r  differs minimally from the laboratory 

value q  in the region of the Universe we observe. Therefore, we can write equation 

(7.3.2) in a simpler form, that is 
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                                                                                     (7.3.3) 

Here, we used the approximation ( )q r q= . 

Equation (7.3.3) holds for the regions of the Universe that can be surveyed by the 

scientific observation instruments we currently have at our disposal. We shall return 

to the issue of the fine structure constant in another paragraph. 

 From equation  (7.2.5) we see that 

0A >                                                                                                    (7.3.4) 

According to equation (7.3.3), and since the value of the redshift z  increases with the 

distance r , it holds that 

0k >                                                                                                    (7.3.5) 

From equation  (7.3.3), and for r →+∞  , we obtain 
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We have that max 0, 0z A> > , as given in relation (7.3.4), thus we get 
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1 0A− >  

1A <                                                                                                     (7.3.7) 

Now, it holds that  
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Using equation  (7.3.6) we obtain 
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Due to relation  (7.3.7) we obtain 
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Through relation (7.3.7) we finally arrive at  
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+
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This inequality holds for every redshift z , and allows us to estimate the range of 

values the parameter A  acquires. 

From equation (7.3.3), and for 0r = , we obtain 0z = , thus 
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For 0r =  we get  
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We expand equation (7.3.3) giving ( )z z r=  into a Taylor series, and only to first 

order terms 
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Comparing with Hubble’s law cz Hr=  , we obtain 
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−
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where H  is the Hubble parameter. 

From equation (7.3.9) we obtain 
1 A

k H
A

−
= . The range of values of parameter A , as 

determined from inequality (7.3.8), allows us to estimate the extremely small value of 

the constant k . Now, according to equation (7.2.7), the parameter A  increases at an 

extremely slow rate, and remains practically constant in the measurements we 

conduct.  

For the energy E , which results during nuclear fission, nuclear fusion, and more 

generally, every case where the conversion of rest mass into energy takes place, we 

obtain  
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For the photons which result from the conversion of mass into energy we have  
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Using equation  (7.3.10) we obtain 
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Equations (7.3.11) and (7.3.3) are identical. However, beyond the limits reached by 

our current observations, the redshift z  of the linear spectrum is given in general by 

equation (7.3.2). 

From equation  (7.3.3) we obtain 
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Combining equations (7.2.6) and (7.3.12) we have that 
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Combining equations (7.3.10) and (7.3.12) we see that 
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Combining equations (7.2.9) and (7.3.9) we obtain 

0E i H= ℏ                                                                                             (7.3.15) 

for the laboratory value of the energy 0E . 

 

7.4 The graphs of the functions ( )r r z=  and ( )R R z=  

From equation (7.3.3) we have that 
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Solving for r  we obtain 
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This equation gives the distance r  of the astronomical object as a function of the 

redshift z . 

From equation (7.3.9) we obtain 
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= , and after replacing the constant k  into 

equation (7.4.1), we get 
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1 1

c A A
r

H A A z A

 
=   − − − 

                                                                   (7.4.2) 

This equation is more convenient than equation (7.4.1), since we know the value of 

the Hubble parameter H , as well as the range of values of the parameter A  from 

inequality (7.3.8), that is 

1
1

z
A

z
< <

+  

 
Diagram 7.4.1 The graph of distance r  of a distant astronomical object as a function 

of the redshift z . As we increase the value of the parameter A  from 0.900 to 0.999, 
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the curve ( )r r z=  approaches a straight line. The graph has been made with 

60
km

H
sMpc

=  as the value of Hubble’s constant.  

 

In Figure 7.4.1 we present the graph of the curve ( )r r z=  for 60
km

H
sMpc

= , and for 

the values of 0.900, 0.950, 0.990, 0.999A A A A= = = =  up to 5z = . We observe that 

as the value of the parameter A  increases, the curve tends to be a straight line.  

 

We shall now prove that for 1A −→  the equivalent equations (7.3.3) and (7.4.2) tend 

to Hubble’s law 

cz Hr=                                                                                                 (7.4.3) 

From equation (7.3.9) we have 
1 A

k H
A

−
= , and after substituting into equation 

(7.3.3), we obtain 
1

1
1

1

A H
r

A cAe
z

A

−
−

−
= −

−
 

We denote by 
1 A

x
A

−
= , therefore 0x +→  for 1A −→ , and 

1

1
A

x
=

+
, so we have 

( ) ( )
0

0

1 0 0 0

1
1

11 1 1
1

1
1

1
1 1 1lim lim lim lim

Hr
x Hr

c x
c

Hr
x

Hrc x
c

A x x x

e
x exz

x

x

x e Hr Hr
z z e

x c c− + + +

−
−

−
−

→ → → →

− + −+= − = −
−

+

 
 + − = = − = + − =     

 

 

Equation (7.4.2) gives the distance r  of the astronomical object, when we know the 

value of its redshift z . On the other hand, if we measure the distance based on the 

luminosity of the astronomical object, we shall always find it to be larger than the one 

given by equation (7.4.2). The reason is simple: The energy feeding the radiation of 

the astronomical objects originates from nuclear fusion, and more generally, from the 

conversion of rest mass into energy. According to equation (7.3.10), this energy ( )E r  

is less than the expected energy E . Therefore, the luminosity of the astronomical 

object is itself lower than the standard luminosity we use. 

The luminosity distance R  of an astronomical object is defined by equation  

2

1

4

dE
J

R dtπ
=                                                                                         (7.4.4) 

In this equation, J  denotes the power per unit surface we receive from the 

astronomical object, whereas the power 
dE

dt
 refers to the “standard candle” we are 

using. 

If the real distance of the astronomical object is r , then we obtain for the power per 

unit surface J  
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( )
2

1

4

dE r
J

r dtπ
=                                                                                    (7.4.5) 

From equations  (7.4.4) and (7.4.5) we get 

( )
2 2

1 1 dE rdE

R dt r dt
=  

Using equation (7.3.14) we have that 

2 2

1 1 1

1

dE dE

R dt r z dt
=

+
 

( )2 2 1R r z= +  

1R r z= +                                                                                            (7.4.6) 

Combining equations (7.4.6) and  (7.4.2) we see that 

( )
1 ln

1 1

c A A
R z

H A A z A

 
= +   − − − 

                                                         (7.4.7) 

The measurements conducted for the determination of Hubble’s constant H , have not 

taken into account the consequences of equation (7.4.6).  Even for the case of small 

values of the redshift z  it holds that R r> . The measurement of Hubble’s parameter 

H  with the use of the luminosity distances of astronomical objects is correct only for 

very small values of z , where it holds that R r∼ . Such measurements result in a 

value of 60
km

H
sMpc

= . Measurements performed have included astronomical objects 

with large values of the redshift z , thus increasing the value of the parameter H  to 

values ranging between 72 and 74
km

sMpc
. 

Today, we perform measurements with high accuracy. Taking into consideration the 

consequences of equation (7.4.6) we expect the parameter H  to be measured close to 

60
km

sMpc
, independently of the redshift z  of the astronomical object. We, of course, 

refer to measurements of the parameter H , on the basis of the luminosity distances of 

astronomical objects. 

Equally well to equation (7.4.7) we can also use the equation which results after 

combining equations (7.4.6) and (7.4.3), that is 

1
c

R z z
H

= +                                                                                        (7.4.8) 

For  60
km

H
sMpc

=   and  53 10
km

c
s

= ×  this can be written as 

5000 1R z z= +                                                                                     (7.4.9) 

The luminosity distance R  is given in Mpc . In the graph 7.4.2 we present the graph 

of the function ( )R R z= , as given in equation (7.4.9) and up to values of the redshift 

1.5z = . 
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Diagram 7.4.2 The graph of the luminosity distance R  of astronomical objects as a 

function of the redshift z . The measurement of the luminosity distances of type Ia 

supernova confirms the theoretical prediction of the law of selfvariations. 

 

Type Ιa supernova are cosmological objects for which we can measure their 

luminosity distance R . Furthermore, this measurement can be conducted at large 

distances, where the consequences of equation (7.3.14) are measurable. 

At the end of the last century this kind of measurements were conducted by 

independent scientific groups. The graph thet results from these measurements exactly 

matches graph 7.4.2 which is predicted theoretically by the theory of selfvariations. In 

order to explain the inconsistency of the Standard Cosmological Model with graph 

7.4.2, the existence of dark energy was invented and introduced.  

  

 

7.5 Gravity cannot play the role attributed to it by the Standard Cosmological 

Model 

From equation (7.3.9) we obtain 
1 A

k H
A

−
= , and  

1k A H

c A c

−
=                                                                                           (7.5.1) 

For 60
km

H
sMpc

= , 0.999A = , 53 10
km

c
s

= ×  we have that  

7 1
2 10

k

c Mpc

−= ×                                                                                    (7.5.2) 
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We replace this value of  
k

c
 into equation (7.2.6) and obtain 

( ) 70 0 2 10

0.001

1 0.999 r
m r m

e
−− ×

=
−

                                                                    (7.5.3) 

Here, the distance r  is measured in Mpc . 

For values of r  of the order of magnitude of kpc , equation (7.5.3) gives that 

( )0 0m r m= . Therefore, the strength of the gravitational interaction is not affected in 

the scale of galactic distances. For example, for distance 100r kpc= , equation (7.5.3) 

gives ( )0 00.99999m r m= . Therefore, the selfvariations do not affect the stability of 

the solar system, galaxies, and galaxy clusters. 

 On the contrary, for distances of order of magnitude of Mpc , equation (7.5.3) 

predicts a clearly smaller value of 0( )m r , compared to 0m . For example, for 

100r Mpc=  equation (7.5.3) gives 0 0( ) 0.98m r m= . The strength of the gravitational 

interaction exerted on our galaxy by a galaxy from a distance of 100Mpc  is 98%  of 

the expected. For 
3

2 10r Mpc= ×  equation (7.5.3) gives 0 0( ) 0.7145m r m= . The 

strength of the gravitational interaction exerted by a galaxy, which is located at a 

distance of 2000Mpc , on our galaxy is only 71.45%  of the expected. 

Therefore, we conclude that due to the selfvariations the gravitational interaction is 

weakened at cosmological distances and cannot play the role attributed to it by the 

Standard Cosmological Model. The gravitational interaction dominates and rules at a 

local level, at scales of a few hundreds or thousands of kpc . 

We note that if we chose a different value for the parameter A , from the values 

permitted by inequality (7.3.8), all the arithmetic values appearing in equation (7.5.3) 

shall be altered. However, the same conclusions will be drawn about the relation 

between rest masses 0 ( )m r  and 0m . 

The rest mass is given as a function of the redshift z  from equation (7.3.13) 

0
0
( )

1

m
m z

z
=

+
 

For 0.1z =  we get 0 0( ) 0.9091m z m= , for 1z =  we have 0 0( ) 0.5m z m= , and for 9z =  

we see that 0 0( ) 0.1m z m= . The strength of the gravitational interaction exerted by an 

astronomical object with redshift 9z =  on our galaxy is only 10%  of the expected. 

For even greater distances the gravitational interaction practically vanishes.  

 

7.6 The very early Universe 

All the equations we have stated in this chapter are compatible with the condition 

r →∞ . The equations are stated in such a way that the condition r →∞  offers us 

information about the very early Universe. 

For  r →∞  equation (7.2.6) gives 

( ) ( )0 0 1m r m A→∞ → −                                                                          (7.6.1) 

The inequality (7.3.8) 

1
1

z
A

z
< <

+
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holds for every value of the redshift z , hence 1A→ . Therefore, from relation (7.6.1) 

we conclude that the initial form of the Universe only slightly differs from the 

vacuum.  

Similarly, from equation (7.2.11) we have that 

( ) ( )1q r q B→∞ → −                                                                              (7.6.2) 

This relation does not lead to the same consequences as relation (7.6.1). We know that 

the electric charge exists in opposite physical quantities in the Universe. Because of 

this, the total electric charge of the Universe is zero. Relation (7.6.1) informs as that 

the energy content of the very early Universe also tends to zero. The very early 

Universe only slightly differs from the vacuum. It possesses, though, a very important 

property which determines its evolution. It is temporally variable due to the 

selfvariations. 

The increase of the rest masses and the electric charges destroys the initial 

homogeneity and state of rest, induces the first minute motions of the particles, and 

shifts the system to a temperature slightly above 0K  (temperature reflects the kinetic 

state of the particles in the system). The evolution of the selfvariations with the 

passage of time leads the Universe to the form in which we observe it today.  

In general, this is the prediction for the begining and evolution of the Universe from 

the equations we have stated. This prediction is also verified from the calculations 

presented in the following paragraphs.  

 

7.7 Τhe Universe is flat 

From the principle of conservation of energy we conclude that the total energy 

content of the Universe is constant, and remains the same at every moment. Relation 

(7.6.1) informs us that the energy content of the very early Universe tends to zero. 

Therefore, the same holds today as we observe the Universe. Because of this, the 

Universe is flat.  

The difference between the current state of the Universe and its initial state is the 

following: The rest masses of particles have increased, but this increase is 

counterbalanced by the generalized photons that flood spacetime, and by the 

strengthening of all kinds of negative potential energies that result as a consequence. 

The observations conducted by the COBE and WMAP satellites confirm that the 

Universe is flat. Other observational data lead us to the same conclusion.  

 

7.8 The origin of the cosmic microwave background radiation 

The laboratory value for the Thomson scattering coefficient is  
4

2 2

0

8

3

q

m c
τ

π
σ =                                                                                        (7.8.1) 

Here, q  and 0m  are the electric charge and the rest mass of the electron, respectively. 

At a distant astronomical object the Thomson coefficient is  

( ) ( )
( )

4

2 2

0

8

3

q r
r

m r c
τ

π
σ =                                                                             (7.8.2) 

Combining these equations we get that  

( ) ( )
42

0

0 ( )

r q rm

m r q

τ

τ

σ
σ

  
=   
   

                                                                     (7.8.3) 
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From the observations we have made on the variation of the fine structure constant we 

know that, for large distances r , it holds that ( )q r q= . Therefore, at a very good 

approximation, equation (7.8.3) can be written as 

( ) 2

0

0 ( )

r m

m r

τ

τ

σ
σ

 
=  
 

 

Using equation  (7.2.6) we obtain that 

( )
2

1

1

kr

cr Ae

A

τ

τ

σ
σ

− 
− =  − 

 

                                                                             (7.8.4) 

For very large distances ( )r →∞  very close to the initial state of the Universe, and at 

a temperature of about 0K , equation (7.8.4) gives 

( ) 2
1

1

r

A

τ

τ

σ
σ
→∞  =  − 

                                                                            (7.8.5) 

But according to inequality (7.3.8), 1A→ . Therefore, in the very distant past, and for 

a temperature of the Universe just slightly above 0K , the Thomson scattering 

coefficient acquires enormous values, rendering the Universe opaque. The cosmic 

microwave background radiation we observe today, originates in this phase of the 

evolution of the Universe. The conditions we described refer to the whole expanse of 

the Universe. That is why the cosmic microwave background radiation seems to 

originate “from everywhere”. 

Equation (7.8.4) gives the value of the scattering coefficient at distant astronomical 

objects. Combining this equation with equation (7.3.3) gives  

( ) ( )2
1

z
z

τ

τ

σ
σ

= +  

( ) ( )2
1z zτ τσ σ= +                                                                                  (7.8.6) 

This equation is easier to use, since it expresses the Thomson scattering coefficient as 

a function of the redshift z  of the distant astronomical object. We can also write 

equation (7.8.6) in the form 

( ) ( )
4

2

2 2

8
1

3 e

e
z z

m c
τ

π
σ = +                                                                         (7.8.7) 

where  e  and em  denote the electric charge and the mass of the electron, respectively.   

The Thomson coefficient concerns the scattering of photons of low energy E . For 

high energy photons it is replaced by the Klein-Nishina coefficient, given in the 

laboratory by  
2

0

2

0

3 2 1
ln

8 2

m c E

E m c
τσ σ

  
= +  

  
                                                                 (7.8.8) 

and by relation 

( ) ( ) ( )
( )

( )
( )

2

0

2

0

23 1
ln

8 2

m z c E z
z z

E z m z c
τσ σ

  
= +      

                                             (7.8.9) 

for the distant astronomical object.  

From equations (7.3.13) and (7.3.14) we obtain 
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( )
( )

2 2
0 0

m z c m c

E z E
=   

Therefore, equation  (7.8.9) can be written as 

( ) ( )
2

0

2

0

3 2 1
ln

8 2

m c E
z z

E m c
τσ σ

  
= +  

  
 

Using equation  (7.8.8) we have 

( ) ( )z z

τ

τ

σσ
σ σ

=  

Using equation (7.8.6) we take that 

( ) ( )2
1z zσ σ= +                                                                                  (7.8.10) 

The two scattering coefficients depend in the same way upon the redshift z , and the 

distance r . 

 

7.9 The decrease of the atomic ionization energies at distant astronomical objects 

The ionization and excitation energy nX  of the atoms is proportional to the factor 
4

0m q , where 0m  is the rest mass of the electron and q  is its electric charge. Thus, we 

have  

( ) ( ) ( )
4

0

0

n

n

X r m r q r

X m q

 
=  

 
 

After applying the familiar approximation ( )q r q=  we obtain  

( ) ( )0

0

n

n

X r m r

X m
=  

Using equation (7.2.6) we have 

( ) 1

1

n

kr

n c

X r A

X
Ae

−

−
=

−

                                                                                 (7.9.1) 

Through equation (7.3.3) we see that 

( )
1

n
n

X
X z

z
=

+
                                                                                        (7.9.2) 

According to this equation the redshift z  affects the rate of ionization of the atoms in 

distant astronomical objects. Boltzmann’s equation  

1 1

nX

n n KT
N g

e
N g

−
=                                                                                         (7.9.3) 

expresses the number of the ionized atoms nN  occupying the energy level n  in a 

stellar surface which is at thermodynamic equilibrium.  With nX  we denote the 

excitation energy from the energy level 1 to the level n , T  stands for the temperature 

of the stellar surface in K , 231.38 10
J

K
K

−= ×  is Boltzmann’s constant, and ng  is the 

degree of degeneracy multiplicity of level n , that is, the number of energy levels into 

which level n  splits in the presence of a magnetic field.  

Combining equations (7.9.2) and (7.9.3), we obtain for the distant astronomical object 

relation 
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( )1

1 1

nX

KT zn n
N g

e
N g

−
+=                                                                                     (7.9.4) 

In the case of the hydrogen atom, for 
19

2 1 22, 10.15 16.24 10 , 2, 8n X eV J g g−= = = × = =  and for a solar surface temperature 

6000T K∼ , equation (7.9.3) shows that only one atom out of 
810  occupies the 2n =  

state. At the same temperature, equation (7.9.4) gives that for a redshift value of 1z =  

we have 42

1

2.2 10
N

N

−= × , for 2z =  we have 32

1

5.8 10
N

N

−= × , and for 5z =  we have 

2

1

0.15
N

N
= . 

The conclusions drawn from the current and the previous paragraph demand a 

reexamination of the conclusions we have drawn from the observation of the 

electromagnetic spectrum of distant astronomical objects. 

 For very large distances, that is, in the very distant past, equation (7.9.1) gives 

( ) ( )1n nX r X A→∞ = −                                                                          (7.9.5) 

This equation informs us that the very early Universe was ionized at some stage. The 

ionization energies of the atoms had very small values. We can reach the same 

conclusion if we substitute into equation (7.9.2) very large values of the variable z , 

or if in equation (7.9.3) we replace the energy nX  with ( )1nX A− . 

7.10 On the fine structure constant 
In the preceding chapters we saw that due to the manifestation of the selfvariations, 

energy, momentum, angular momentum and electric charge flow from the material 

particles to the surrounding spacetime. The first consequence of the selfvariations is 

the potential to transfer energy, momentum, angular momentum and electric charge 

from one material particle to another, i.e. the interaction between the material 

particles. The gravitational and electromagnetic interactions determine the starting 

point for the quantitative determination of the selfvariations. Because of this, we 

supposed that the rest masses and the electric charges, and not any other physical 

quantity, vary with the passage of time. We offer this remark since, at cosmological 

scales, equation (7.2.1) justifies all of the cosmological observational data we possess, 

and it could be supposed that the electric charge remains constant. Such an 

assumption cannot hold within the framework of the theory of selfvariations, where 

the selfvariations of the electric charge are responsible for the electromagnetic field.  

By analyzing the electromagnetic spectra reaching Earth from distant quasars from 

distances up to 
9

6 10 ly× , the value of the fine structure constant α  remains constant. 

More precisely, there are indications of a very slight variation of the parameter α . 

The parameter α  depends on the electron charge q , as given in 
2

04

q

c
α

πε
=

ℏ
                                                                                         (7.10.1) 

Therefore, this parameter is not constant. We have   

( ) ( ) 2

r q r

q

α
α

 
=  
 

 

Using equation (7.2.11) we also have 
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( ) ( )
1

2
2

1

1

k r

c

r q r B

q
Be

α
α −

   − = =     − 

                                                             (7.10.2) 

From this equation it can be inferred that the parameter ( )rα  (essentially the electric 

charge ( )q r ), remains constant for large distances r  when the constant 1k  or the 

parameter B  acquire extremely small values. According to relation  (7.6.2) we have 

that 

( ) ( )1q r q B→∞ → −  

This relation can be written as  

( ) ( )2
1r Bα α→∞ → −   

Therefore, the value of the electric charge and of the parameter α  in the very early 

Universe are only determined by the value of the parameter B . Hence, the parameter 

B  has a very small value, independently of the value of constant 1k . 

For very small values of the parameter B  we see that 

( ) ( )1q r q B q→∞ → − →  

This prediction does not cause any problems at the initial state of the Universe, since 

the electric charge exists in couples of opposite physical quantities. Such a relation 

cannot hold for the case of the rest mass, and indeed we know that  

( ) ( )0 0

1
1

1 0

z
A

z

m r m A

< <
+

→∞ → − →
 

From equation (7.2.12) we obtain 0B > . Thus, we arrive at the conclusion that the 

parameter B  acquires extremely small positive values.  

The extremely small value of the parameter B  assures the stability of the value of the 

parameter α  for large distances r . Hence, we turn our attention not to the arithmetic 

value (which is likely to be extremely small, as is the case for the constant 

1 A
k H

A

−
= ), but to the sign of the constant 1k . 

For  1 0k >  we obtain successively that 

( )
1

1

1

1 1

1

1

1

0

0

1 , 0

1 1 , 1 0

1
1

1
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k r
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k r

c

k r k r

c c

k r

c

k

k r

c

e B

Be B

Be B

Be B Be

B

Be

−

−

−

− −

−

>

− <

< >

<

− > −

 
− > − − > 
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−

<

−

  

From equation (7.10.2) we have that 
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( ) ( )
2

1
1, 0

r q r
k

q

α
α

 
= < > 
 

 

Therefore, for 1 0k >  we will measure a slight decrease of the parameter α  at large 

distances. Similarly, it turns out that for 1 0k <  we will measure a slight increase of 

the parameter α  at large distances.  

( ) ( ) 2

11, 0
r q r

k
q

α
α

 
= > < 
 

 

Based on the observational data we currently have, measurements of the variation of 

the parameter α  have to be conducted for distances greater than 
9

6 10 ly× . The 

extremely small value of the (positive) parameter B  renders these measurements 

difficult, in both cases. 

7.11 The large structures in the Universe 

The increase of the rest masses with the passage of time strengthens the gravitational 

interaction and accumulates matter towards various directions. The consequences of 

the accumulation of matter depend upon the quantity of the accumulated matter, as 

well as on the volume it occupies. In all cases, the total initial energy of the 

accumulated matter is zero, according to relation (7.6.1). 

At large scales, at distances of order of magnitude 
9

10 ly , the distribution of matter 

must have been determined by a large-scale destruction of the absolute homogeneity 

of the vacuum in the very early Universe. This explains the colossal webs of matter 

through vast expances of empty space that we observe with the modern observational 

instruments.   

At smaller scales, within the dimensions of a galaxy, the accumulation of matter 

increases the temperature, as a result of the conversion of the gravitational potential 

energy into heat. A percentage of the particles of matter accumulates in a first central 

core of high temperature, while the remaining percentage remains distributed in the 

surrounding space during the period of accumulation. The slow rate at which the 

selfvariations occur, strengthens, also at a slow rate, the magnitude of the 

gravitational interaction, and allows a considerable percentage of the particles to 

remain in the surrounding space.  

A further accumulation of the first core will lead to the formation of a second, more 

centralized core, until the temperature reaches the point where nuclear fusion starts. 

The initiation of nuclear fusion prevents the further accumulation of matter.  

We separated the process of the accumulation into two phases, and we mentioned two 

cores for the following reason: The initial percentage of matter which remained 

outside the initial central core concerns the initial phase of the accumulation and is at 

a low temperature, slightly above 0K . However, the percentage of matter which stays 

outside the second, and real central core, already has a high temperature. If we take 

into account the very high value of the Reynolds coefficient in this region, turbulent 

vortices will be generated. Therefore, the formation of stars should occur in this 

region. In the final central core, the density of matter should be larger than in the rest 

of the galaxy. Clusters of galaxies are formed through similar processes.  

Rough calculations give an equation correlating the mass and the volume of a galaxy. 

This relation is consistent with the data we possess about galaxies (and galaxy 

clusters). But in reality, the process of accumulation is not separated into phases, but 

evolves in a continuous manner, from its beginning up to the formation of a galaxy. 
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Therefore, we can only reach safe conclusions on the issue through computer 

simulations.  

 

7.12 The origin of matter and the arrow of time 

The equations of the theory of selfvariations predict at the limit, in the very distant 

past, that the beginning of the Universe was the vacuum. Therefore, we cannot 

consider a point to be the beginning of the universe, as proposed by the Standard 

Cosmological Model. All the points within the Universe are equivalent. The Universe 

originates “ from everywhere”, exactly as the cosmic microwave background 

radiation does (paragraph 7.8). Which physical mechanism can lead to such a result?  

The theory of selfvariations predicts that the generalized particle can behave in such a 

way. The correlation of the vacuum with the condition 
2

0dS =  leads to such an 

interpretation, as we analyzed it in paragraph 5.9 and in chapter 6. 

What happens at the microcosm is a repetition at a local level, in a region of 

spacetime, of the condition that dominated throughout the spacetime occupied by the 

Universe during its emergence from the vacuum. That is how the slight perturbations 

of enormous spatial dimensions emerged within the initial homogeneity of the 

vacuum.  

These perturbations were recorded on the cosmic microwave background radiation 

that followed ( 2.74K ) and which also originates from the whole Universe, as 

discussed in paragraph 7.8. Moreover, these perturbations are responsible for the 

large-scale distribution of matter in the Universe (paragraph 7.11).  

The theory of selfvariations solves a fundamental problem of physical reality, which 

the physical theories of the last century are unable to solve. The equations of the 

theory of selfvariations include the arrow of time. The Universe originates from the 

vacuum and evolves towards a particular direction, which is determined by the 

selfvariations. The selfvariations continuously “distance” the Universe from the state 

of vacuum, but the Universe remains consistent with its origin:  

The origin of matter from the vacuum, combined with the principles of conservation, 

has as a consequence that the energy content of the Universe is zero. 

In the laboratory, the internality of the Universe to the process of measurement 

apparently “freezes” the time evolution of the selfvariations. On the contrary, the 

consequences of the selfvariations are directly imprinted on the observations we 

conduct at large distances. The Universe we observe today, and the complex 

processes taking place in Nature, are the results of the evolution of the selfvariations 

with the passage of time.  

7.13 The future evolution of the Universe 

The range of values parameter A  takes is given by inequality (7.3.8) 

1
1

z
A

z
< <

+
 

Furthermore, equation (7.2.7) informs us that the parameter A  approaches unity at an 

exceptionally slow rate, due to the extremely small value of the constant 
1 A

k H
A

−
= . 

The parameter A  appears in all of the equations we have stated. Because of this, the 

evolution of this parameter through time also determines the future evolution of the 

Universe, at least in the observations we will conduct in the far future. 

From equation (7.3.9) we have that 
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( )2
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−

ɺ ɺ
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Using equation  (7.2.7) we obtain 

( )2

2

2

1

1

1

1

kA
H k

A

kA
H

A A

H H
A

=
−

 =  − 

=

ɺ

ɺ

ɺ

 

For  18 11, 60 2 10
km

A H s
sMpc

− −= = ×∼  

36 24 10H s− −= ×ɺ  

The Hubble parameter varies at an extremely slow rate. 

We shall now see how the redshift z  varies with the passage of time. From equation  

(7.3.3) we get 

1
1

1

1
1

kr

c

kr

c

Ae
z

A

A
z e

A

−

−

−
= −

−
 

= − 
−  

                                                                               (7.13.1) 

For the same distance r  we have that 

( )2
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Using equation (7.2.7) we see that 

( )2
1

1

kr

c
kA

z e
A

− 
= − 

−  
ɺ  

Considering equation  (7.13.1) we obtain 

1

1

1

k
z z

A

kA
z z

A A

=
−

=
−

ɺ
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Through equation (7.3.9) we arrive at 

H
z z

A
=ɺ                                                                                               (7.13.2) 

For 
18 1 11 12 10 6.3 10H s year− − − −= × = ×   and 1A ∼  we obtain 

11 1
6.3 10z z year

− −= ⋅ ×ɺ                                                                           (7.13.3) 

The rate of increase of the redshift z  is a measure with which to evaluate the future 

evolution of the Universe. 
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Appendix 

 

The Topographic Theorem 

 

For a material point particle, the velocity υ  of the selfvariations is defined by 

equation (2.2.6) 

c

r
=υ r           (1) 

This equation refers solely to the material point particle. On the contrary, equation 

(2.3.1)  

cos

sin cos

sin sin
c

δ
δ ω
δ ω

 
 =  
  

υυυυ
         (2) 

has more general validity. The velocity in equation (2) satisfies the relation c=υ , 

without necessarily having the form (1). Therefore, we have to study the properties of 

the velocity υ , as they follow from equation (2). The differentiation between the two 

equations occurs in equations (2.3.11) and (2.3.12). 

1

2

K L
c

M N
c

δ λ

ω λ

∇ = + +

∇ = + +

υυυυ
β γβ γβ γβ γ

υυυυ
β γβ γβ γβ γ

  

which take the form 

K L
c t c

M N
c t c

δ
δ

ω
ω

∂
∇ = − + +

∂
∂

∇ = − + +
∂

υυυυ
β γβ γβ γβ γ

υυυυ
β γβ γβ γβ γ

        (3) 

We will mention the general properties of the velocity υ , without citing the relevant 

proofs.  

The coefficients , , , , ,K L M N
c t c t

δ ω∂ ∂
∂ ∂

 are not independent from each other, but are 

constrained by the following compatibility equations: 
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υ

   (4) 

These equations are valid in every inertial frame of reference.  

For the inertial reference frames S  and S ′ , as we defined them in chapter 3, the 

following Lorentz-Einstein transformations hold 

sin
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 
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     

(5) 

We define the vector 
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( )

1 2 3sin

sin sin sin sin

sin sin

t t t
c

KN LM N L
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K M
c t c t
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ω δ
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υ
t β γ
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   (6) 

The topography of the generalized photon is defined by the following theorem:  

The Topographic Theorem  

«For every inertial frame of reference and for every generalized photon, the following 

hold:  

a. If it is ( ) ( )1 2 3, , 0,0,0t t t ≠ , then the generalized photon is of one spatial 

dimension. The material points of the generalized photon are arranged on a 

curve. At each point of the curve the vector t  is tangent on the curve.  

b. The generalized photon can have two spatial dimensions, with its material 

points arranged on a surface. Then at each point of the surface, the vector n , 

vertical to the surface, is given by 
δ ω
δ ω

∇ ∇
= =
∇ ∇

n . 

c. If the material points of the generalized photon are arranged in the three-

dimensional space, then it is sin sin sin 0K L M N
c t c t

δ ω
δ δ δ

∂ ∂
= = = = = =

∂ ∂
» 

For the material point particle and for the velocity vector (1), we obtain from 

equations (2.3.19) and (2.3.2) 

2
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Thus, we get  

1 2

1
sin sin 0t KN LM

r
δ δ= − = ≠  



 148 

and, therefore, it is ( )0,0,0≠t . Consequently, in the case of equation (1) the 

generalized photon is of one spatial dimension. Therefore, the trajectory 

representation theorem emerges, as we saw in paragraph 2.4 of chapter 2.  

The topographic theorem permits the study of the selfvariations for non-point material 

particles.  
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