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Abstract

The science of physics possesses today an adequate amount of knowledge that allows
us to search for the first principles that govern physical reality. It is in the spirit of this
search that we performed the study presented in this edition. The physical theories of
the last century did not have the necessary completeness in order to justify the
quantum phenomena and the cosmological data. There is a fundamental physical law
that prevails from the microcosm to the observations we perform billions of light
years away.
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Introduction

The study we present in the current edition is based on two assumptions that are taken
as axioms. The first assumption is that the rest masses m, and electric charges g of

material particles increase with the passage of time (selfvariations). The second
assumption is that the consequences of the selfvariations propagate through four-

dimensional spacetime with a zero arc length: dS®=0. The set of consequences
arising from these two assumptions constitutes the “theory of selfvariations”.

An immediate consequence of the statements-axioms we have introduced, is the
concept of the generalized photon: a particle carrying energy E, linear momentum P,

and moving with velocity v, of magnitude ||1J||:c, in every inertial frame of

reference. The generalized photon correlates the material particle with its surrounding
spacetime. In its simplest version, the generalized photon is emitted by the material
particle into its surrounding spacetime. When the material particle is electrically
charged, the generalized photon, apart from energy and momentum, also carries
electric charge.

The following figure represents the arbitrary motion of a material point particle
moving with velocity u in an inertial frame of reference O(x, y,z,t) .
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Figure 1 : A material point particle moving arbitrarily. As the material particle moves
from point E(x,(w),y,(w),z,(w),w) to point P(x,(¢),y,(t),z,(1),t), the generalized

photon moves from point E(x,(w),y,(w),z,(w),w) to point A(x,y,z,1).

A generalized photon is emitted by the material particle at time w=¢——, from point
c

E(x,(w),y,(w),z,(w),w), and arrives at time ¢ at point A(x,y,z,t). The velocity of

the generalized photon in Figure 1, is

v . . :
where 7 = ||r|| . We express the vector — in the trigonometric form
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Furthermore, we define the following two vectors
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The vectors —,B,y constitute a right-handed, orthonormal vector basis that
c
accompanies the generalized photon in its motion. The consequences of the

.. . r
selfvariations are expressed as functions of the parameters w=¢——,r,0,®.
c

The basic study of the selfvariations leads to two fundamental theorems: the
“Fundamental Mathematical Theorem”, and the ‘“Trajectory Representation
Theorem”. The first theorem allows us to correlate any change in energy manifested

on the material particle at point E(x,(w),y,(w),z,(w),w) with a corresponding



change in energy at point A(x, y,z,¢) of Figure 1. The second theorem represents the

tangent vector, the curvature and the torsion of the trajectory of the material particle
onto the geometric characteristics of the generalized photon in the surrounding
spacetime. The two theorems allow us to express quantitatively the consequences of
the selfvariations on the surrounding spacetime of the material particle. As a
consequence of the selfvariations, in the surrounding spacetime of the material
particle there is energy of density D
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and momentum of density J
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where y = ,and u :u(w).
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If the material particle is electrically charged, then in the surrounding spacetime there
is also electric charge of density p
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and electric current of density j
J=pv

The Lienard-Wiechert potentials

V= q
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c
A= q u
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are not compatible with the theory of selfvariations. Therefore, they are replaced by
the potentials of the selfvariations




where a =a(w) is the acceleration of the material particle.

The potentials of the selfvariations are separated into two individual pairs
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The (V,,4,) pair gives the electromagnetic field (g,,B,) that accompanies the
electrically charged material particle
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The (V,,4,) pair gives the electromagnetic radiation
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The pair (Va,Aa) of the electromagnetic radiation potentials does not depend on the

distance r . For each couple (&,B) the following relation holds

v
B=—x¢

c
The energy-momentum tensor for the generalized photon that results from the
selfvariation of the rest mass m, of the material particle is given by the matrix @’
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The energy-momentum tensor for the generalized photon that results from the
selfvariation of the electric charge ¢ of the material particle is given by the matrix

[0)) ij

where (Sx, S,.S, ) =S =¢,6xB is the Poynting vector, W = %50 (82 + csz) and

O =& (—gagﬂ - czBaBﬁ + Wﬁaﬁ)



|Lifa=p
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(&.6,,6)= (5x,gy,gz):£

(B,.B,.B,)=(B,.B,.B.)=B
a,f=1,2,3

The energy-momentum tensors ® give us important information about the energy
content of the surrounding spacetime of the material particle. Furthermore, they are
related with the gravitational and the electromagnetic interaction. As we progress in
our study however, it becomes evident that there is information about the energy

content and the properties of spacetime, that is not contained within the ®” tensors.

The study we presented up to this point has been conducted without a quantitative
determination of the selfvariations. We made the assumption of the selfvariations in
order to undertake the relevant calculations, but we have not determined

oq

"™ and X In order to study

ow
the consequences of the selfvariations, we have to quantitatively determine these
rates.

quantitatively the rate at which they evolve, i.e. the

The quantitative determination of the selfvariations is made on the basis of the total
energy £, and the total momentum P_emitted simultaneously in all directions, by the

material particle. The rest mass m, and the electric charge ¢ of the material particle
vary according to the operators

g_)_iES

ot h
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where / is Planck’s constant, and h=2—. The law of selfvariations expresses a
T

continuous interaction between the material particle and the generalized photons.

The partial contribution of an individual generalized photon to the law of
selfvariations is determined by the percentage-function ©. Due to this, function ®
has a fundamental role in the energy content of the generalized photon.

The energy E and momentum P of the generalized photon that is related to the
selfvariation of the rest mass m, of the material particle, are given by the equations
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The equations that give the energy and momentum of the generalized photon that is
related to the selfvariation of the electric charge of the material particle, are of similar
form.

The energy E and the momentum P of the generalized photon do not obey the
simple relation

v
P=F—
o2

That relation is a special case of the general relation

p-pl 100y h 0P,
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The generalized photon determines the relation of the material particle with the
surrounding spacetime. Furthermore, it is related with the energy content of spacetime
and, hence, with the very properties of spacetime. Because of this, a large part of the
study we present in the present edition concerns the generalized photon and its
properties. The resulting equations contain an exceptionally large body of data and
information. Thus, we shall confine ourselves to a brief report for the structure and the
properties of the generalized photon.

The generalized photon carries four energy-momentum pairs, each of which
transforms autonomously, independently of the rest, according to Lorentz-Einstein.
Two of these pairs do not possess rest energy, do not depend on the distance » from
the material particle, are defined both on the material particle and on the surrounding
spacetime, while they do not possess intrinsic angular momentum (spin). The other
two energy-momentum pairs have, respectively, rest energy

Lo
r 00
L ch oo

"~ rsind ow

Their energy and momentum are inversely proportional to the distance » from the
material particle, they are not defined on the material particle but only on the
surrounding spacetime, while they possess intrinsic angular momentum (spin), given
respectively by

11



The total intrinsic angular momentum S of the generalized photon is given by
relation

ih 00 ., 0D
=———B-ih—v
sino dw 00

The intrinsic angular momentum of the generalized photon exhibits some remarkable
properties. The first is that it does not depend on the distance » from the material
particle, while it is also defined on the material particle itself. Furthermore, the
component

s —inl®
ow

in the direction of the velocity of the material particle, remains invariant under the
action of the Lorentz-Einstein transformations and is, therefore, constant in all inertial
reference frames. Another property of the intrinsic angular momentum of the
generalized photon is that it does not vanish even if we consider that the material
particle is motionless. In other words, the generalized photon carries intrinsic angular
momentum even in the inertial reference frame in which the material particle is at
rest. In that sense, we can characterize the intrinsic angular momentum of the
generalized photon as “rest angular momentum”. One final property, which is not
included in the present edition is the following: during the interaction of the
generalized photon with a material particle, the variation AS of the angular
momentum of the generalized photon manifests a component along the direction of

)
the vector —.
c

Of particular interest is the fact that the generalized photon, in its general version,
implies the existence of rest energy in the surrounding spacetime of the material
particle. The existence of this energy results as a general consequence of the equations
of the theory of selfvariations.

We remind that the law of the selfvariations has been stated on the basis of the total
energy E. and the total momentum P of the generalized photons emitted

simultaneously and in all directions by the material particle. We can easily prove that
between the energy E, and the momentum P, the following relation holds

u
P=E—
K Scz

where u = u(w) is the velocity of the material particle at the moment of emission of

the generalized photons. The energy E. is always correlated with a rest energy
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E, #0 through equation E = yE,, where y = ;2 Therefore, in the energy E_,
[, u
1-——
cZ

which results from the aggregation of the generalized photons, a rest mass of —># 0
c

is implicit. The law of selfvariations expresses exactly the interaction between the rest

: . E
mass m, of the material particle, and the rest mass — that results from the

c
aggregation of the generalized photons.

The physical object that results from the aggregation of the generalized photons,
always accompanies the material particle. Because of this, we named it

“accompanying particle”. The accompanying particle has rest mass —-, while in the
c

part of spacetime it occupies it holds that dS*=0. The combination Ef;«to and
c

dS* =0, leads to the conclusion that the accompanying particle corresponds to an
intermediate state between “matter” (—-#0) and the “photon” (dS*=0). This
c

intermediate state of matter is the cause of quantum phenomena, and its prediction
constitutes one of the most important results of the theory of selfvariations.

In Nature, the system material particle-accompanying particle exists and behaves as a
“generalized particle” which extends in a part of spacetime. The part of space
occupied by the generalized particle can be the point where the material particle is
located, or it can extend up to an infinite distance away from the material particle. In
the part of spacetime where the generalized particle extends, the trajectories and
velocities of the generalized photons are altered with respect to the strictly defined
trajectories and velocities presented in Figure 1. There is an extreme case where the
concepts of trajectory and velocity of the generalized photon become meaningless;
they are not defined. The same is true for the trajectory and velocity of the material
particle in case it is located in the part of spacetime occupied by the generalized
particle. This prediction provides us with the basic idea about the method we have to
develop in order to study the generalized particle.

One way in which to study the internal structure and physical properties of the
generalized particle, is to eliminate the velocity, which also represents the trajectory,
from the equations of the theory of selfvariations. This elimination of the velocity can
be accomplished in several ways. One is to introduce into the equations of the theory
of selfvariations the potential energy U of the material particle. The resulting
equation is the time-independent wave equation of Schrodinger

_2m0(8—U)\P

VY = -

The differential equations of the theory of selfvariations are of first order. When we
convert them to second order equations, we can eliminate the velocity without having
to introduce potential energy, or any other physical quantity, into the equations. The

13



elimination of velocity leads to the Klein-Gordon equation. As a special case of the
Klein-Gordon for m, =0, we get the wave equation

2
vz‘{f—%zo
c ot

which appears in Maxwell’s theory of electromagnetism.

Observing the way in which we use Schrodinger’s operators in quantum mechanics,
we realize that, what we are primarily doing, is to eliminate the kinematic
characteristics of the material particle from the resulting differential equations. Dirac
does the same thing in the method he develops, in combination, of course, with his
additional assumptions, in order to derive his eponymous equation.

In order to study the internal structure of the generalized particle we have to answer
specific questions. These questions, and more generally all the issues concerning the
generalized particle, are completely different from the ones we usually have to answer
when we study physical reality.

The material particle can be located at any position in the part of spacetime it
occupies. Judging by the success of quantum mechanics and by the high accuracy
calculations it permits, we conclude that statistical interpretation is one way of
studying the internal structure of the generalized particle. However, the theory of
selfvariations poses a question, the answer to which, leads us to an unknown territory
of physical reality.

In order to study the internal structure of the generalized particle we have to answer
the question, how is the total rest mass of the generalized particle distributed between

the material particle (m,) and the accompanying particle (ig). During the
c

quantitative determination of this particular distribution, the Schrodinger and Klein-
Gordon equations show up, together with the wave equation of Maxwell’s
electromagnetic theory. In the part of spacetime occupied by the generalized particle,
an external cause suffices to shift the rest mass towards either the material particle or
the accompanying particle. In the first case, the generalized particle behaves as a
material particle, which moves on a defined trajectory, with defined velocity, energy,
etc. In the second case, the generalized particle spreads in spacetime, while the
consequences of the aggregation of the generalized photons are intensified. This is the
phenomenon we observe in the double-slit experiment.

The law of selfvariations results in the differential equation

(moc2 + ihﬂj =0
mO

the only unknown being the rest mass m, of the material particles. This simple

equation contains as information and rationalizes, the totality of the cosmological data
within a Universe that is flat and static, with the exception of a very slight variation of

14



the fine structure constant predicted by the equations of the theory of selfvariations
for observations at distances greater than 6x10°Iy.

The redshift z of a distant astronomical object located at distance » is given by
equation

_kr
_1-Ade 3

1-4
where k is a constant and A is a scalar parameter that obeys the inequality

z

<A<l

1+z

for every value of the redshift z. Therefore, the value of parameter A is close to 1,
with 4<1.

The distance r = r(z) of a distant astronomical object as a function of the redshift z,

is given by equation

i)

In Diagram 1 we present the plot of the function r:r(z) for

A=0.900,4=0.950,4=0.990,4=0.999 up to z=5. We observe that, as we
increase the value of parameter A4, the curve tends to become a straight line. This
result is not accidental. It is proven that, for 4 — 1", function r:r(z) gives

Hubble’s law.
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Diagram 1: The plot » = r(z) of the distance of an astronomical object as a function
of redshift z, for 4=0.900,4=0.950,4=0.990,4=0.999. As the value of the

parameter A is increased, the curve r = r(z) tends to a straight line.

The energy E (z) which fuels the radiance of astronomical objects, and which

originates from the process of fusion, and generally from the conversion of mass into
energy, is smaller than the corresponding energy E in our galaxy, according to
equation

Therefore, the intrinsic luminosity of the astronomical object is lower than the
standard luminosity we use. As a consequence, the luminosity distance R we measure
is in fact greater than the real distance » of distant astronomical objects. The relevant
calculations lead to equation

R=rVl+z

Consideration the arithmetic values of the parameters that factor into function
R =R(z), we obtain equation

16



R=5000zv1+z

where the luminosity distance R is given in Mpc. In Diagram 2 we present the plot
of function R = R(z) upto z=1.5.
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Diagram 2.: The plot of the luminosity distance R of astronomical objects as a
function of the redshift z. The measurement of the luminosity distances of type I,
supernova, confirms the theoretical prediction of the law of selfvariations.

Type I, supernovae are cosmological objects for which we can measure the

luminosity distance at great distances. At the end of the last century, these
measurements were performed by the independent scientific groups of Adam J. Riess
and Saul Perlmutter. The graph that results from those measurements, exactly matches
Diagram 2, which is theoretically predicted by the law of selfvariations. The concept
of dark energy was invented in order to justify the inconsistency between the Standard
Cosmological Model and Diagram 2.

At cosmological scales, the rest mass m, () with which an astronomical object exerts

gravitational action at distance r from itself, is given by equation

0.001
My —2x107"
1-0.999¢

my (1) =
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where m, is the laboratory value of the rest mass. The distance » is measured in
Mpc.

For values of r of the order of kpc, it turns out that m, =m, (r). For r=100kpc we

get m, (r) =0.99999m, . Consequently, the strength of the gravitational interaction is

not affected on the scale of galactic distances. The selfvariations do not affect the
stability of the solar system and of galaxies.

On the contrary, at distances of the order of magnitude of Mpc, a clearly smaller

value of mass m, (r) compared to m,, is predicted. For r=100Mpc we get

my(r)

m,

my (r)=0.98m,. For even larger distances, the ratio becomes even smaller.

For an astronomical object located at a distance corresponding to redshift z=9, it is
my ()

m,

=0.1. The strength of the gravitational interaction exerted by an astronomical
object with z=9 on our galaxy is just 10% of the expected. For still greater
distances, the gravitational interaction practically vanishes. This is why gravity cannot

play the role attributed to it by the Standard Cosmological Model.

The Thomson scattering coefficient

8z q'

;22
3 myc

as well as the Klein-Nishina scattering coefficient

3 myc’ 2F 1
o=—0, In =~ |+ =
8 E m,c 2

obtain different values, namely

o.(r) :8?”1%;4((:))3
and

3 m, (r)c2 2E(r) 1
O'(r)—go;(r) E(r) {ln[mo(r)cz}LE}

respectively, at distant astronomical objects. The mathematical calculations give

e )?

o o 1-4
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At very large distances (7 — o), and equivalently for the very early Universe, we get

af(r%w)_a(r%w):( ! j

o - o 1-4

T

Because of the inequality %<A<1 we see that 4—1" and, therefore, the
+z

Thomson and Klein-Nishina scattering coefficients obtain enormous values in the
very early Universe. Consequently, in its very early stages, the Universe went through
a phase during which it was opaque to electromagnetic radiation. The cosmic
microwave background radiation originates from that period. The theory of
selfvariations predicts that, in that phase, the temperature of the Universe was slightly
above 0K . Furthermore, it predicts that the cosmic microwave background radiation
originates from the whole extent of the space occupied by the Universe.

The ionization and excitation energy X, (r)=X,(z) of the atoms of distant

astronomical objects differs from the laboratory value X, according to equation

X, (Z) B 1+nz

This equation has consequences regarding the degree of ionization of distant
astronomical objects. In other words, the redshift z affects the degree of ionization of
atoms in distant astronomical objects. Boltzmann’s formula

XH
No_ & i
N, g

gives the number of excited atoms N, , that occupy the energy level n on a stellar
surface which is in thermodynamic equilibrium. With X, we denote the excitation
energy from the ground energy level 1 to the energy level n, T denotes the

temperature of the stellar surface in Kelvins K :1.38><1023% is Boltzmann’s

constant, and g, is the degree of degeneracy of energy level n (that is, the number of

energy levels in which the energy level n splits in a magnetic field). At distant
astronomical objects Boltzmann’s formula becomes

X,

n

& :&e_KT(H—z)
N, g

From this equation it follows that the degree of ionization at distant astronomical
objects is greater than expected. The mathematical calculations lead to the conclusion
that the Universe went through a phase of ionization. The dependence of the degree of
ionization, as well as of the Thomson and Klein-Nishina scattering coefficients, on the
redshift z, demands an overall re-evaluation of the electromagnetic spectra we
receive from distant astronomical objects.
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The law of selfvariations correctly predicts the structures in the Universe. It predicts
the monstrous webs of matter in between vast expanses of empty space which we
observe with current observational instruments. At smaller scales, it predicts galaxies
and galactic clusters.

The theory of selfvariations also solves a fundamental problem concerning physical
reality, which the physical theories of the last century were unable to solve: the arrow
of time is included within the equations of the theory of selfvariations. The Universe
comes from the vacuum and evolves towards a particular direction defined by the
selfvariations. As mentioned earlier, at cosmological scales, all the equations resulting
from the law of selfvariations give at the limit, for » — oo, that the initial form of the
Universe only slightly differs from the vacuum at a temperature of 0K . The origin of
matter from the vacuum, in combination with the principles of conservation, with
which the law of selfvariations agrees, necessitate that the energy content of the
Universe remains zero. The selfvariations continually “remove” the Universe from the
state of the vacuum, while at the same time the Universe remains consistent with its
origin.

In contrast to what happens at the macrocosm, the equations predict that in the
laboratory the arrow of time does not exist. This prediction definitively solves the
problem with the arrow of time.

A measure of the future evolution of the Universe is the rate of increase of the redshift
z predicted by the law of selfvariations. Substituting the arithmetic values of the
parameters into the corresponding equation, we get

1

2=2-6.3x10" year"

It is very characteristic the fact that one simple differential equation, having as a
unique unknown the rest mass, contains as information, and at the same time justifies,
the totality of the cosmological data, as we observe and record them, from the time of
Hubble up to the present. Generally, the equations of the theory of Selfvariations
contain an extremely large amount of data and information.
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CHAPTER 2
The study of the selfvariations for an arbitrarily moving point particle
2.1 Introduction

In this chapter we present the fundamental study for the mathematical background of
the theory of selfvariations. We prove a set of equations which permits us the
following: We can represent in the surrounding spacetime of a material particle any
kinematic characteristic which concerns the material particle. At every point of
spacetime, the velocity, the acceleration, the tangent vector, the curvature and the
torsion of the trajectory of the material particle can be mapped in a one-to-one
correspondence. This mapping allows us to take the next step: we exactly determine
the contribution of the material particle to the energy content of the surrounding
spacetime. What emerges is a continuous interaction of every material particle with
the surrounding spacetime.

The equations are proven for a material point particle in arbitrary motion. We present
a more general statement of the equations in the Appendix at the end of the book.

2.2 Arbitrarily moving material point particle

The theory of selfvariations is based upon two hypotheses which are taken as axioms.
a) The rest mass and the electric charge of the material particles increase slightly

with the passage of time. We shall call this increase “selfvariations”.
b) The consequences of the selfvariations propagate within the four-dimensional
spacetime with a vanishing four-dimensional arc length:

ds*=0

In an inertial frame of reference S(0,x, y,z,¢), according to the second postulate, the
velocity of propagation of the selfvariations v remains constant as a vector
v

X

v=|v, |= constant (2.2.1)
v

z

This vector has magnitude

”U” = Jul+ Uf, +vl =c (2.2.2)

The selfvariations cause energy changes to every material particle and, as a
consequence, energy, linear momentum and angular momentum propagate into the
surrounding spacetime.

We shall later call the carrier of this energy, “gemneralized photon”. Initially, we will
refer to the generalized photon as a signal emitted by the material particle, moving
with velocity v and, as our study advances, its properties as a real physical object

will be revealed.
We consider an inertial frame of reference S(0,x, y,z,¢) and a material point particle

moving with velocity u as depicted in figure 2.2.1.
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Figure 2.2.1 Material point particle in arbitrary motion. As the material particle
moves from point E(x,(w),y,(w),z,(w),w) to point P(x,(t),y,(t),z,(t),t),a

generalized photon moves from point E(x,(w), y,(w),z,(w),w) to point A(x, y,z,t).

At moment ¢, when the particle is located at point P(x,(¢),y,(t),z,(t),t), the rest
mass m, and the electric charge ¢ of the particle act at point A(x,y,z,t) with the

r . .
M:—, when the material particle was located at

value they had at time Af= !
c c

E(x,(t-5),y,(=5),z, (t=2),0=5).
C C C C

During the time interval A¢ =— the material particle moved from point E to point P,
c

while the generalized photon moved from point E to point A4 .
We now denote
r

W=t- ; (2.2.3)
Hence, the coordinates of E are
E(x,(w),(y,(w),(z,(w),w) (2.2.4)
The vector r = EA of figure 2.2.1 is given by
x—x,(w)
r=EA=|y-y,(w) (2.2.5)
z-z,(w)

The velocity of propagation of the selfvariations v is given by

x—=x,(w)
v="r={y-y,w (2.2.6)
r r
z—zp(w)
Here,
r= I = (x=x,00) +(y=3,00) +(z=2,00) 2.2.7)
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The velocity u=u(w) of the material particle at point £, where it emitted the
generalized photon, is
dx,(w)
aw
dy (w
u = u(wy =| Lo 2.2.8)
dw
dz,(w)
From equation (2.2.7) we have

o1 d, () dw [y, aw
5_5{2((%%(@)(_ dw &D”((“V yp(w))[ dw 6tD

+2((z - z,,(W))(‘ dz;(vW) %Vm

Taking into account equations (2.2.5) and (2.2.6) we have

or 1 ow
—=——(r-u)—
ot r( )6t

And with equation (2.2.3) we get

or 1 or
(. -
ot r(r u)( c@tj

Taking into consideration that r.t , as deduced by equation (2.6.6) we obtain

roc
@__M(, ﬁj
ot c cot
and finally
o____vu (2.2.9)

ot c[]_v-zuj
C

where u=u(w) and v-u=uu +uu, +uu_.
Similarly, starting from equation (2.2.7) and differentiating with respect to x,y,z we
get

or
Ox
vpo| oL v (2.2.10)
| (_buc
ol <
L Oz |
From equation (2.2.3) we obtain initially
w__1 (2.2.11)
o q_bu

2
c
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Similarly, from equation (2.2.3) we have Vw=V (t —zj = . Vr and, in combination
c c

with equation (2.2.10), we get
1

v-u v
Al1-= j

From equation (2.2.7) and after differentiating with respect to x, we get

o 1 ,(w) yp<> oz, (w)
- Zr[(xxm)( axj( y,(0) =2 == (2-2,00) =2 = }

Equivalently,

or 1 dx,(w)ow) _dy, (W) ow
2 e o)1 S22y ) - 220220

dz,(w) 0
_(Z —Zp(W))(l —Wa—‘:j}

Vw=— (2.2.12)

and also,
o x-x,(W) 1 dx, (w) dy, (W)
R oo e[ 57)

dz,(w) |0
+(z—zp(w))( ” Ha—i}

Taking into account equations (2.2.8) and (2.2.6) we arrive at
or _v, v-uow

=-_x _ __

8x c c Ox
v

X

o Ow
and substituting — = —

Oox u\
c* (1_1) 2”]
c

as inferred from equation (2.2.12), we finally obtain

o____1 (2.2.13)

ox c( U-uj ¥
C2
Following the same procedure differentiating with respect to y and z, we finally
have
Vi = ;2 (2.2.14)

-7

Differentiating with respect to time ¢, we obtain from equation (2.2.5)

[ ox,(w)] [ dx,(w)ow]
o dw o
or | y,w) | | dy,(w)ow
o | ot | | aw ot
0z ,(w) dz,(w) ow

a || aw o
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or ow . o .
Taking into consideration equation (2.2.8) —:—ua—, and in combination with
t

ot
equation (2.2.11), we finally get
8r 1

— - u

2
C

From equation (2.2.6) we successively obtain
v="r
r
ov cor cor
—_ __2_’/' +__
ot r-ot rot
av 10or cor

=———U+—— (2.2.15)
at r Ot r ot

(2.2.14)

taking into account r=v. Substituting into equation (2.2.15) the quantity % , from
r

equation (2.2.9), and % , from (2.2.14), we finally obtain relation
t

ov__ ¢ j{(“‘”)v_u} (2.2.16)

ot (vu 2

C
==
C

Starting from equation (2.2.6) we get v, zg(x—xp(w)), and differentiating with
r

respect to x we get

ov, z—ig(x . (W))+_(1_8xp(W)]
r

Ox r- ox Ox
d.
00 €O (o () 1- Ll O
Ox r-ox r dw 0Ox
. dx,(w) . .
Since c[l— =u_, as arises from equation (2.2.8), we have that
W
ov c or ow
L= ———(x—x, (W l-u —
ox r* Ox ( p )) r( 8xj
and considering that o = ! v, from equation (2.2.13), and that
ox v-u
1- 2
ow 1 .
— =—-————0, from equation (2.2.12), we get
ox 2(1 U-uj
T2
¢
a 2
v, v; c VU,
o u e v-u
c c
and finally

25



v, ¢ v (u,-v,) (2.2.17)

=—+4 x
ox r ( U-uj
cr| 1——;
c
Working similarly, we finally obtain
c L N\U. — V.
r v-u
5 cr[l— 2)
) ¢
9 _ (2.2.18)
Ox, v, (u,-v,) o
—_— = for i#j
v-u
cr|l1——;

where, 7,7 =123 (x,%,%)=(x,,2).
Equations (2.2.18) can be summarized in equation

grado=51+— P @(u-v) (2.2.19)
r vu)c
r(l— 5 j
c
where,
[6v, ov, ouv, ]
ox oy Oz
ov, Jdv, 0v,
gradv = - -
ox oy Oz
ov, 0v, Ov,
| ox oy Oz |
1 00
I=|{0 1 0
0 0 1
[ab, ab  ab,
(2.2.20)

a®b=|ab, ab, ab,

Lab,  aby,  asb,

This holds for any two arbitrary vectors
al ] bl

a=|a, | and b=|b,

a; | b
ov. Ov, oJv )
We now have V.v=—="+—-+—= and from equations (2.2.18) we get
ox Oy Oz
v (u, —v )+v (u, —v, )+v, (u —o,
A A A e e
r v-u
cr(l— 2)
c
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2 2 2
v.v_£+uxux+uyuy+uzuz—ux +u, +0,

2
C

. 2 2 2_ 2 _
and since U, +v, +v; =c¢” and vu, +vu, +vu, =v-u, we see that

2
V.opolC, vu=c
r v-u
cr(l— 5 )
c

Finally, we arrive at relation

V-vo= 2
-
Now, we consider the curl of vector v
v, %%
ox Oz
Vxv =curlv= ou, _oy,
0z Ox
al)y _%
| Ox Oy |
Taking into account equations (2.2.18) we obtain
V xv = curlv =;(ux u)
v-u
cr [1 - )
c

where,
VU, —VU,

vXu=|vu —vu,

LU, —DU,
We now consider the acceleration vector
[ du,(w) ]
dw
d du (w
a=a(w)= u(w) _| 2, (%)
dw dw
du_(w)
of the material particle at the moment w, located at point E of figure 2.2.1. We have
that
du, _ou,(w) _du(w)ow _ _ ow
ot ot dw ot ot
and since, from equation (2.2.11), it is ow = ! , we get Ou, =
o _vu ot
CZ
S . . . Ou ou
Working similarly for the differentials 8tx and —=, we get
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(2.2.23)
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ou_ 1
ot |- v -zu
c
For the differentiation of the velocity u = u(w) with respect to x, y,z we initially get

ou, _ou,(w) _du,(w)ow _ _ ow

(2.2.25)

Ox Ox dw ox  “ox
Similarly, from equation (2.2.12) we have that
ow u, ou, v,

=——2* — hence —* =

a 2 v-u ox B 2 u ’
¢l 1-— ¢l 1-—
C C

Working similarly we finally obtain

ou. v.a,
o ___ Ti% i,j=1,273 (2.2.26)

Here we use the notation (xl,xz,x3) = (x, y,z)
From equation (2.2.26) we obtain

L Ye, (2.2.27)
v-u)c
-4
C
We now consider the vector
b= b(w) = 22
w

Working as we did in order to prove equations (2.2.16), (2.2.25) and (2.2.26), we
arrive at relations

gradu = —

(2.2.28)

da_ 1, (2.2.29)
ot v-u
1- 2
C
. v.b
0o ____ Y% i j=12,3 (2.2.30)

ﬁxj cz[l_l)‘;lj
C

where (x,,x,,x;)=(x,»,z), and

b v

c(l v -zuj c
c

The equations of this paragraph express the fact that in every inertial reference frame

the velocity v of the selfvariations remains constant as a vector with magnitude

grada = — b (2.2.31)

”U” =c. It can easily be proven that all the equations are consistent with the Lorentz-

Einstein transformations, as we pass from one inertial reference frame to another. The
equations we have proven are fundamental for the theory of selfvariations. As we
advance our study, we will find that they allow us to correlate any physical quantity
defined on the material particle, with any physical quantity defined on the
surrounding spacetime. Using the concept of information, we can correlate any
information concerning the material particle with any information concerning the
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surrounding spacetime. Part of this information are the potential fields, while the
quantum phenomena arise spontaneously.

2.3 The trigonometric form of the velocity of selfvariations

L

Starting from equation (2.2.2) we get ‘:1 for every inertial reference frame. We
c

. v . . .
express the unit vector — into the trigonometric form

c
]
¢ cos o

|| sinScosw 23.1)
Ifz sin d sin @
<

where 0 =8(x, y,z,t) and w = w(x, y,z,t) are functions of the coordinates x, y,z,¢ in
an inertial frame of reference S(0,x, y,z,¢).
From equation (2.3.1) we see that

&=c0s5=2e1 (a)
c c
v, . v
— =sindcosw=—e, (b) (2.3.2)
c c
&:sin5sina):2e3 ()
¢ c
1 0 0
where e, =x=|0|,e,=y=|1|,e,=2=|0].
0 0 1
We now consider the vectors
—sinod
P =| cosocosw (2.3.3)
cososin @
and
0
y=|—-sinw (2.3.4)
COS @

It is easily proven that the set of vectors {2, B,y } form a right-handed orthonormal
c

vector basis which is defined at every point A of figure 2.2.1. Furthermore, the
following relations hold:
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p_ v

a6 ¢ (2.3.5)
op

—— =08 o

ow 4

7 _,

00

ﬁ:—siné'g—cosé'ﬂ
ow c

. L v . . .
Differentiating the vectors —, #,y with respect to x,y,z,f we obtain the following
c

equations:
V-(Ej=ﬂ-V5+sin§7-Va) (a)

C
o(v 00 0w
12 1=2L8+sinc 2 b 2.3.6
8t(cj a? o’ ®) (23.6)
VxZ =VSxBrsindVo®y ()

C
2ad2 =V5® f+sinVo®y (d)

C
V-ﬂ=—2V5+cos5y-Va) (a)

C
op oo v ow
—— =———+c08S0— b 2.3.7
o ot c o’ ®) (23.7)
Vxﬂ:ng§—cos5yxVa) (c)
C
gradf=-V5®L rcosVo®y ()
C
V-7=—sin52Va)—cos5ﬂ-Va) (a)
C
Xy - —sins 228 _ 0552 (b) 2.3.8)
ot ot ¢ ot
VX}/=Sin§2XV0)+COS§ﬂXV0) (©)
C

grad;/=—sinéVa)®2—coséVa)®ﬂ (d)
C

We prove indicatively equation (2.3.6)(a). The rest of the equations are proven along
similar lines. Taking into account equation (2.3.1) we get
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V-(Bj :a—ax(cosé‘)+%(sinﬁcosa))+§(sin Ssinw) =

—sinﬁﬁ+0055@cosa}+cos§@sina)

ox oy oz
+0—sin d'sin a)a—w+ sin J cos a)a—a)
oy Oz
and considering equations (2.3.3) and (2.3.4), as well as relations
_@_ _8_(0_
ox ox
Vo= 9 , Vo= o
oy oy
as )
L Oz | | 0z |

we finally obtain

V~(Bj=ﬂ~V6+sin5y~a).

C

We now expand the vector of velocity uzu(w) with respect to the vector basis
v
{z,ﬂ,}’} as

u=u(w)=u12+u2ﬂ+u3}/=(u'2j2+(u'ﬂ)ﬂ+(u'y)y
c c)c

and combining with equations (2.2.16) we get

D
g(gj-mwwwm

Considering equations (2.3.6)(b) we get
00 ow 1
~Brsins =y r(l-“'"j[(u B)B+(u-7)r]

2

C
and finally
0 ___uwp (2.3.9)
ot v-u
-7
C
singl2____wr (2.3.10)

. (1 v -zu )
C
because of the linear independence of the vectors B and y .

. . o v
We now write vectors VO and Vo as a linear combination of vectors —, A,y .
c
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Vo=A2+KB+Ly (2.3.11)
C

Vo=1,2+MB+Ny (2.3.12)
C

We combine equations (2.2.16) and (2.2.19), and get relation

%(%)Jr(grad%ju = r(llv'”j |:(Uc'2ujl)—u:|+ %1 +Wg®(uu) v=

r(llu.uj{[vc-zuju—u}%mm(%@(u—u)jv

c c
Using the identity
(a®B)c=(a-c)B (2.3.13)

which holds for every set of vectors a, B,c¢, we see that

%(%j—i—(grad%)u = r[llu'z") {(UC'ZL’)U”}+%U+F(1—IU‘”)(U”) =

C

r[llu.zuj(uc?uju%ur(11"j‘ju_r(1zw:){(uézu)+(lUc'z"jl}“—"

c C

That is,

£(2j+(gmd2ju =0 (2.3.14)
o\ c c

Into equation (2.3.13) we replace %(Bj from equation (2.3.6)(b), and grad Y from
c c

equation (2.3.6)(d), and obtain

00 . 0w .

E,B+smé’57+(v5®ﬂ+sméVa)®y)v:0

Using the identity (2.3.13) we get

%ﬂJrsinéz—cj}ur(u~V§)ﬂ+sin5(v'Va))y -0

and due to the linear independence of the vectors # and y we see that

%_H).vg:o (2.3.15)

%—‘;’w.w:o (2.3.16)
Combining equations (2.3.15) and (2.3.11) we obtain
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00
—+4,=0
Ot A

00
A=
Through equation (2.3.9) we have that
u-p

¢ [1_—0)
C2
and replacing into equation (2.3.11) we get

va:i%uwwy (2.3.17)

r(l_z)-zu)c
C

Performing the corresponding combinations, we arrive at equation

Vo= uy LyMB+Ny (2.3.18)
. v-ulc
sin 5r(1 -— )
¢
We shall now prove that K =l ,L=0, M=0, N=— 5 hence equations (2.3.17)
r rsin
and (2.3.18) obtain their final form
v5=i%+lﬂ (2.3.19)
vu\c r
=)
c
Vo= uy 2y LI (2.3.20)
. v-ulc rsind
sin 5r(1— 5 j
c
We will prove that K = 1 , L=0. In a similar manner we can also calculate the
r
factors M, N . From equation (2.3.2)(a) we successively obtain
cosd = 2=
c
—-sinéVo =V (&j
c
We calculate V ij from equations (2.2.18), hence we have
sinovS—te LTl P 2.3.21)
r v-ulc
-]
c
1
where ¢, =| 0 |.
0
We take the inner product of equation (2.3.21) with vector S and obtain
1

—sinoff-Vo=—e, -
r
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From equation (2.3.17) we have -V = K, hence we have
—sin oK = le1 B
r
From equation (2.3.3) we obtain
e -f=-sino

Therefore,

—sinokK = l(—sin§)
r
Finally, we obtain

k=1
’

We take the inner product of equation (2.3.21) with vector y and obtain
—sindy-Vo =le1 -y
From equation 22.3. 17) it holds that -V = L, hence
—sindL =le1 -y
r

From equation (2.3.4) we see that e, -y =0, therefore —sindL =0, and finally L=0.

The equations of this paragraph promote the theory of selfvariations considerably, and
their fundamental character will become obvious as our study continues. One first
fundamental conclusion emerges from equations (2.3.15) and (2.3.16). The functions

0=0 (x, y,z,t) and a)=a)(x, y,z,t) remain invariable on the trajectory of the
generalized photon. Through equations (2.3.1), (2.3.3) and (2.3.4) we conclude that

.V . . . ..
the vector basis {—, B, } accompanies without change, that is remaining constant,
c

the motion of the generalized photon. We can, of course, straightforwardly prove that

ﬁ(ngr(gradgju =0
ot\ ¢ c

L 1 (gradp)® =0 (23.22)

74 v_
P +(grady)c =0

by combining equations (2.3.6), (2.3.7) and (2.3.8) with equations (2.3.19) and
(2.3.20).

2.4 The generalized photon as a geometric object. Representation of the
trajectory of a material point particle
In the present paragraph we shall look for points 4 in the neighborhood of point

A(x, y,z,t) of figure 2.2.1, for which the velocity of the generalized photon is the

same with the velocity at point A(x, y,z,t) at the same moment #. We use the

notation
A4 =dR (2.4.1)

and we search for points 4, i.e. vector dR, such that
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V(R+dR,1)=v(R,1) (24.2)
According to equations (2.3.1), equation (2.4.2) is equivalent to the relations

S(R+dR,1)=5(R,t) (2.4.3)
and
o(R+dR,t)=w(R,t) (2.4.4)

After expanding the functions o (R,t) and a)(R,t) in Taylor series up to the first
order terms, we obtain

S5(R+dR,t)=6(R,t)+dR-VS

o(R+dR,t)=w(R,t)+dR-Vo

Through equations (2.4.3) and (2.4.4) we have that

dR-VS=0 (2.4.5)
dR-Vo=0 (2.4.6)
Combining equations (2.3.19) and (2.3.20) we obtain
t =V xsindw =
up xy+Lﬂx2+%ﬂxy
rz(l_uu)c rz(l_uuj c r
2 2
C C
u-f u-y 1

taking into account that the set of the vectors {2,,8,7} form a right-handed
c

orthonormal vector basis. We now have

2
c

p—— j3—(”;")3—(u-ﬂ)ﬂ—(u-7)7}

]/'2 [1 _ v-u
and from equation (2.3.9) we get
! Blj 20 (2.4.7)

rz(l_—v-uj[c c

c

t=

According to equations (2.4.5) and (2.4.6) the vector dR is parallel to the vector
t # 0, hence we finally arrive at relation

dR || (H—EJ (2.4.8)

c ¢

Thus, we conclude that points 4 and 4, at which the generalized photon moves with

: v u . .
the same velocity v, are arranged parallel to the vector ———. This conclusion is the
C C
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result of a more general theorem, which we present in the Appendix. For the case of a
material point particle the theorem gives relation (2.4.8).

. . r . r
In figure 2.2.1 and for the time interval from ¢—— to ¢, i.e. for t——<w<t, the
c c

generalized photons emitted by the material point particle reside within a sphere with
center E(xp (t—%j,yp (t —Ej,zp (t—gj,t—gj and radius r = ||r|| . During the same
time interval the material particle moved from point E to point
P(x, (1.2, (0,2, (1))

We now consider a point £; in the neighborhood of point £ and on the trajectory C,
of the material particle as it moves from point £ to point P, from which point £,

was emitted the generalized photon which at moment 7 is located at point 4, as
depicted in figure 2.4.1.
uf :_I

Figure 2.4.1 A material point particle moves from point £ to point P on the curved

. . o r .
trajectory C, in the time interval from w=¢—— to ¢. The generalized photons
c

emitted by the material particle with the same velocity v, in the time interval

r
At =t—w=—,are on curve C at moment 7.
c

. ) r' r' r' r'
Point E, has coordinates Ei(xp(t—— V| t—— |z, | t—— |,;t—— |, where
c c c

c c ,
LV=—Fr=—T.
r r

The points E, P, A appear in figure 2.2.1 as well as in figure 2.4.1, while the points
E; and 4 are shown in figure 2.4.1.

For the vector A4; =dr we have, according to figure 2.4.1
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dr=—r+EE, +r

’

ror
dr=—r+ul ——— |+r'

c c

d,:_(r_rf)(z_zj (2.4.9)
For the time interval dw, during which the material particle moved from point £ to
point E,, it is dw=(t—1j—(t—1j=£—r—, therefore from equation (2.4.9) we
c c) ¢ c

obtain
A4 =dr = —cdw(ﬂ—ﬂj (2.4.10)

c c
In figure (2.4.1) we consider curve C which includes all the generalized photons

. . . . o r
emitted by the material particle during the time interval from w=¢—— to ¢ towards a
c

. N 2 L .
particular direction —, that is, with the same velocity v .

C
We now consider the tangent vector ¢ of the curve C at point 4
uw_ v
dr c ¢ u—-v
t= = = (2.4.11)
Jar] | _o] fu-o]
c c

as follows from equation (2.4.10). For the three-dimensional arc length dS of curve
C atpoint 4 we obtain from equation (2.4.10)

dS =|dr| = dw||u—0v|| (2.4.12)
Now, we calculate the curvature & and the torsion 7 of curve C at point 4 . First, we
calculate the curvature vector k .

dt dt 1 d| u-v
k=—= = - 24.1
&5~ dwlu—u] ||,,_U||dw[||,,_v|J @41

Taking into account that @zo, ﬂ=o: and ||u—v||=\/c2+u2—2(v-u), we
w dw

calculate the vector

ko (u—v)x[ax(u—v)]
[l 0] (u - 0)xa]

Combining equations (2.4.11) and (2.4.14), we calculate vector b =¢xn appearing in

the Frenet formulas:

_(u-v)xa

(u-v)xa

We remind that the Frenet equations

(2.4.14)

n

b (2.4.15)
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—=kn

ds

ﬂz—kt+rb (2.4.16)
ds

db

—=—Tn

ds

uniquely determine the curve C. Having calculated vectors ¢,n,b we now determine

the curvature k and the torsion 7 of curve C from equations (2.4.16). After the
necessary calculations, we obtain

o Aol [ ()] a1

3
Joe =]

et
e Ju-of ~[(u-v)-a]

We repeat the same procedure deriving vectors ¢,,k, kot b, at point £ of the curve

su—of’ (2.4.18)

C, of the material particle. For ||u|| #0 itis

u
= (2.4.19)
"

while the three-dimensional arc length is
ds, =|ul dw (2.4.20)

The curvature vector k, is given by

k_ﬂ:Ld(uj o (ua)

_ S22,
*odS, |u|dw\|u|) u  |uf’
and finally,
kp _ M (2.4.21)
Jul

From equation (2.4.21) we get for vector n,

k ux(axu)

n =—t-=——0—~ (2.4.22)
"] o<l
From equations (2.4.19) and (2.4.22) we get vector b, =¢,xn,
uxa (2.4.23)

" fuxal
From the Frenet formulas (2.4.16) for curve C,, we get for the curvature k, and the

torsion 7 i

2 2 2
At ~(u-2) @424
I
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a-| ux—

S dw
p 2 2 2
ez (- )
Comparing equations (2.4.11), (2.4.14), (2.4.15), (2.4.17) and (2.4.18) for curve C,
with equations (2.4.19), (2.4.22), (2.4.23), (2.4.24) and (2.4.25) for curve C, we

arrive at the following theorem:
Trajectory representation theorem

[ (2.4.25)

“For every direction  the following hold:
c

a) The map f:u— u—v maps the trajectory C, of the material particle to the

curve C of the generalized photons moving with velocity o
:f:(tp,np,bp,kp,fp)—>(t,n,b,k,7)

b) The map f':u—v-—>u maps the curve C of the generalized photons

moving with velocity v to the curve C, of the material particle:

! :(t,n,b,k,r)—>(tp,np,bp,kp,rp) ”

According to the “trajectory representation” theorem, if we know the position
P(x, y,z,l‘) of the material particle at moment ¢ and the trajectory C, at some past

time, we can determine the distribution of the generalized photons the material
particle has emitted in this specific past time. We know exactly how each kinematic
characteristic of the material particle maps to its surrounding spacetime.

2.5 The fundamental mathematical theorem
The interaction of the material point particle with the surrounding spacetime depends
on the following four parameters:

r o . .
e The moment w=¢—— of emission of the generalized photon by the material
c

particle. All the physical quantities, such as the rest mass, the electric charge,
the velocity u = u(w) and the acceleration a = a(w) of the material particle
depend upon the moment w of the emission of the generalized photon.

e The distance r =||r|| of the arbitrary point A(x, y,z,t), as depicted in figure
2.2.1, from the point of emission E(xp (w),yp(w),zp(w),w) of the

generalized photon.

e The direction in space, i.e. the functions 6 = §(x, y,z,t) and o= a)(x, y,z,t)

In this paragraph we will prove the fundamental equations concerning these four
parameters.

Initially we prove that the vectors Vw, V& kot Ve are linearly independent. Let us
suppose that AVw+ AL, Vw+A4,Vw=0, 4,4,,4 €R

Taking into account equations (2.2.12), (2.3.19) and (2.3.20), we obtain
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1 v u-f 2+l,8 A u-y v, 1 0
v r

J— —_+ [ A—
A v-u)c % u)c . v-u)c rsinﬁy
c|1-—; ril-— sinor|1—
c c

2
. . v
From the linear independence of the vectors —, f#,7 we see that

C
c

i+/12u'ﬂ+ﬂ3 i A
r rsind

L9
5 o

rsinéd

Finally, we have 4, =4, =4, =0.

Therefore the vectors Vw,V 5,V are linearly independent.

We now focus our attention on the variation of the quantities w,5,® and r on the

trajectory of the material particle and on the trajectory of the generalized photon. The
following two theorems hold:

Theorem I
a—WJru'Vw=1 (a)
ot
9 o uvS=0 (®) @2.5.1)
ot
a—w+u-Vco:0 (©)
ot
g+uVr:0 (d)
ot
Theorem II
a—W+u~Vw=0 (a)
ot
@+U~V§=0 (b)
ot
99 V=0 © 2.5.2)
ot
o LYy (d)
cot ¢
From equations (2.2.11) and (2.2.12) we have
o
. 2
%v+u-Vw: tl)u_ ow__ UC”—I
: v-u .
1- 2 02[1_ czj 1= 2
2
O e o,
Gl‘ 1 v-u 2 v-u
- o2 (1_ 2

40



From equations (2.3.9) and (2.3.19) we have

@+uv5=— up (u-4) %-i-—ﬂ
0 r(l_u-ujc r

2
C

since ||z)||2 =c’and v-f=0.

Similarly, starting from equations (2.3.10) and (2.3.20) we arrive at equations
(2.5.1)(c) and (2.5.2)(c).
From equations (2.2.9) and (2.2.10) we get

o ug, __vouw w1 v,
cot ¢ 2( v~uj cl_vuc
| 1-—; 3
c c
O Oy, ow v 1 v
cot ¢ 2(1 D-uJ c 1_U‘uc
= -
c c
v-u 1
) 1_v-u -
1 v-u
1_“‘”(1_ ¢’ jZI
c2

With the aid of the above theorems we can prove the following fundamental theorem:

The Fundamental Mathematical Theorem
For every function f' = f (W, 0, a),r) the following hold:
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A)

%W.vfzg_f; (2.5.3)
%(f%j+(grad(fﬂ))uzgs—{v (2.5.4)
%(fﬂ)Jr(grad(fﬂ))u:,BS—{v (2.5.5)
Z(fr)+(grad(r7))u=rL (2.5.6)
B)

Lrvvf=cZ (25.7)
2 f%jJ{gmd( f%j)zJ:u% 258)
£(18)+(srad (1 ))o =L (2.5.9)
(1r)+{grad(17)o=-rL (2.5.10)

We prove equations (2.5.3), (2.5.4) and (2.5.7). The rest of the equations of the
fundamental mathematical theorem are proven similarly. For the proof of equation
(2.5.3) we have

g+u.Vf:ia_W+ia_6+ia_a)+1@
ot owot 00 ot Ow Ot oOr ot

+u-(iVW+iV5+iVa}+erj
ow 00 ow or

—1(@+ uVWj+i(@+u~v5j
00\ ot

“owl o
+i a—a)+u-Va) +1 @+u-Vr
ow\ ot or \ ot
L . .o of S
and taking into account equations (2.5.1) we obtain a—+u~Vf =a—, which is
t w

equation (2.5.3).
In order to prove equation (2.5.4) we use the identity

grad(fa)=Vf ®a+ fgrada (2.5.11)
which holds for every vector @ and scalar function f . We can now prove equation
(2.5.4) as:

al 2ol

13+f3(2j+(fgmd9+w®3ju
C C

ot ¢ ot\ ¢
Using identity (2.3.13) (@ ®b)c=(a-c)b we obtain
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0
a—/;ngfa(vj (fgrad'cjju+(u'Vf)%=

(g+u'ij2+f(g(2j+(grad2juj=
ot c o\ ¢ c
g

ow ¢

o

since 6_+ u-Vf = 9 , according to equation (2.5.3) and furthermore
t w

ez

E,B+sin5aa—6:y+(V§®ﬂ+sinéVa)®y)u

according to equations (2.3.6)(b), (d). Hence we obtain

el

aa—ﬂ+siné‘%—a)y+(u'V5)B+sin§(u~Va))y=

00 ow
—+u-Vo |f+sind| —+u-V 0
((% u- jﬂ sin (at u- a)jy

according to equations (2.5.1)(b), (c).
The proof of equation (2.5.7) goes as follows:

gﬂ)-Vf af aw+af 06 af aa)+af or
ot ow ot 00 ot aa) ot Or ot
+v(wa+fV5+fV +8f j

ow 0o w

0 or
1( +0-Vw ) 1(—+ Véj
ow\ ot 00\ ot
af( +v-V j g(@+u-Vrj
ow\ Ot or\ ot
of of

Taking into consideration equations (2.5.2) we get a—+u'Vf :ca—, which is
t r

equation (2.5.7).
An immediate consequence of the fundamental theorem is the following lemma:

For every vector function F = F(w,8,®,r) the following relations hold:

OF OF
—+(gradF ) -u=— 2.5.12
o HlgradF)u="" (2.5.12)
OF OF

% (gradF)v=cL 2.5.13
o HlgradF)o=c=0 (25.13)

The proof is done by writing the vector function F in the form
F=F (w,&,a),r)ngF2 (w,8,0,r) B+F,(w,8,0,r)y
c

and applying the theorem.
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The fundamental mathematical theorem determines the variation of any scalar,
vectorial and tensorial physical quantity, both as defined on the material particle, as
well as on the surrounding spacetime. Of special interest are the applications of this
theorem for the variations of the rest mass, the electric charge, the energy, the linear
momentum, the angular momentum, and any other conserved physical quantity, for
the system “material particle-generalized photon”. The fundamental theorem allows
us to correlate the variations that take place on the material particle with the
corresponding variations that take place in the surrounding spacetime.

2.6 The properties of the vector basis {B,B,y}
c

The properties of the right-handed orthonormal vector basis {B,B,y} are given by
c

equations (2.3.6), (2.3.7) and (2.3.8). In these equations we already know their second
parts from the study conducted in the preceding paragraphs. Thus, we can express
them in a simpler form.

The first of equations (2.3.6), (2.3.7) and (2.3.8) can be written as:

v.(Ejzz- 2.6.1)
C r
v.po_— b coso (2.6.2)
vu) rsind
cr(l—zj
C
Voy=— (2.6.3)

vu
cr| 1——-
(-2)

Equation (2.6.1) results directly from equation (2.2.21). But we can also prove it in a
different way, starting from the first of equations (2.3.6)

V-(Bj:B-V5+sin§y-Va)
c

With the help of equations (2.3.19) and (2.3.20) we obtain

v.(Ej:Lrl:E
c) r r r

taking into account that the set of the vectors {B,B,y} form a right-handed,
c

orthonormal vector basis.
From the first of equations (2.3.7) we obtain

V-B:—BV5+cosé'y-Va)
c

Through equations (2.3.19) and (2.3.20) we get
V.= up coso

+
( vuj rsind
cr| 1——

2
C

From the first of equations (2.3.8) we have that
V.y= —sin&BVa)—coséli'Va)
c

Using equation (2.3.20) we see that
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u-y

vu
cr| 1——-

Accordingly we can write in a simpler form the rest of the equations (2.3.6), (2.3.7)
and (2.3.8), whenever it is demanded by the mathematical calculations performed.

2.7 List of auxiliary equations
We prove the following auxiliary equations:

2 2.2
6(1) u): v-a +(U u) c’u @.7.1)
o v, ( u-uj
> cr|l-——
c c
v-a c u—(vu)v
V(v-u)= v+—u+ — (2.7.2)
o, vu r vu)c
C C
a2
ova) wvb (vu)(va)-c(va) 273)
ot _ou ( ) uj
> cri1-—
C C
V(v-a)= LA DL L AL (2.7.4)
cz(l—u'zu r cr[l—vlzuj
C C
where a =a(w)= du(w) and b=b(w)= da(w) and u® =|ul’
dw dw

Indeed, it holds that
o(v-u) ov ou

ot B Ot ot
o(v-u)  ov  ou ow
U—+0——
ot Ot ow ot
Through equations (2.2.24) and (2.2.11) we obtain

8(u-u)= 6_u+ v-a
o o | v
2

C

With the help of equation (2.2.16) we get

dvu)_ ¢ {(v-u)z_uz}_ va
j 1

. 2
ot r(l—v u

C
2
C

and performing the necessary algebraic transformations we obtain equation (2.7.1).
In order to prove equation (2.7.2) we start from the identity

V(v-u) =(gradTU)u+(gradTu)u

2
C

where grad’v and grad”u are the transpose matrices of gradv and gradu .
From equations (2.2.19) and (2.2.27) we obtain
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- a7
1 1 !
V(v-u)= EI+—2®(u—u) u-— (—@aj v
r vu)c vullc
B C | C
- a7
V(v-u)= EI+—1 (u—u)®2 u——1 (a@gju
r vu c v-u ¢
r(l— 5 j c(l— 2 j
C

Using iden‘;ity (2.3.13) we get

V(u.u):£u+ u(u-v) v U':

r v-u) c ‘u
r(l_ . j c(l— . j
which is equation (2.7.2). We can similarly prove equations (2.7.3) and (2.7.4). In
order to prove the last equation we use equation (2.2.31), in exactly the same manner
we used equation (2.2.27). In the same way, we can prove corresponding equations

for all of the inner products such as v-b, u-a etc., that appear in the equations of the
theory of selfvariations.
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CHAPTER 3

The study of the selfvariations for a material point particle moving with constant
speed

3.1. Introduction

In this chapter we present the study of the selfvariations for a material point particle
moving with constant speed. This study was regarded as necessary for two reasons.
The first is that constant-speed motion is the simplest possible and, therefore, we are
studying the consequences of the selfvariations in their simplest version. The second
reason is that arbitrary motion can be considered as a multitude of successive
constant-speed motions.

By studying the constant-speed motion of a material particle we can derive the
Lorentz-Einstein transformations for the physical quantities w,d,®,r that appear in
the equations of the theory of selfvariations. Of special interest is the transformation
of the volume of the generalized photon, which differs from the volume
transformation of material particles as we know it within the framework of Special
Relativity. After having studied both the arbitrary motion, as well as the constant-
speed motion of the material particle, we have the knowledge necessary for advancing
our study in the forthcoming chapters.

3.2 The case of a material point particle moving with constant speed
We consider a material point particle with rest mass m, and electric charge ¢, which

u

moves with velocity #=|0| in the inertial frame of reference S (O,x, y,z,t), as
0
depicted in figure 3.2.1

A(xy.zt)

R

J C]

0 (0,001 E P(ut0,0,) x

Figure 3.2.1 Material point particle moving with constant speed along the x axis of
the inertial reference frame S (O,x, y,z,t). As the material particle moves from point

. . S r .
E topoint P, during the time interval Af =—, a generalized photon moves from
c

point E to point 4.
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At moment ¢ when the material particle is at point P (ut,0,0,t) , the rest mass m, and

the electric charge ¢ of the material particle act at point A(x, V, Z,t) through the

generalized photon that was emitted from point E and arrived at point 4 moving
with velocity c¢. Therefore, the coordinates of point E are

E(w—ﬁr,o,o,t—fj (3.2.1)
C C

where r=||r||=”2?71” Due to the selfvariations, the rest mass m, and the electric

charge ¢ of the material particle act at point A(x, y,z,t) with the value they had at
time

w=t-L (3.2.2)
C

. u r . .
at point E(ut ——r,0, O,t——j , and not with the value they have at point P(ut,O, O,t)
c c
at time ¢ . For the vector » we have

u
X—ut+—r
c

r=FA= y (3.2.3)

z

The magnitude of ||r|| =r can be derived from equations (3.2.3) as

[l =7 = L (x—ut) + oy (x—ut) + 3" + 22 (3.2.4)
C
1

where y =
=

2
C

Combining equations (3.2.3) and (3.2.4) we obtain

20, u 20 N2, 2
7 (x uz)+cy/\/7/ (x—ut) +y*+z
r= y (3.2.5)

4

The velocity v of the selfvariations has magnitude ||U||=c, and is parallel to the

vector r, thus we have

}/2 (x—ut)+£}/\/}/2 (x—ut)2 +y2 +z°
c
Uz_,zf y (3.2.6)

The position vector R of point A(x, y,z,t) with respect to point P(ut,0,0,t) , where
the material particle is located, is
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xX—ut
R=PA=| y (3.2.7)
zZ

From equation (3.2.7) we obtain

|R|= R =(x—ut) +5" +2 (3.2.8)
From figure 3.2.1 we see that
r=EA+R
r="u+R
¢
Finally, we obtain
v=u+<R (3.2.9)
r
R:rfg—ﬁj (3.2.10)
c c
Combining equations (3.2.1) and (3.2.2) we have for the coordinates of point £
E(uw,0,0,w) 3.2.11)

The relations between the scalar, vectorial and tensorial quantities of this paragraph
can be derived by the corresponding relations proven in the second chapter,

considering that the acceleration of the material body vanishes, that is a = a(w) =0,

u(w)| [u
and that the velocity of the material particle is u = u(w) =0 =0].
0 0

3.3 The case of a material point particle at rest
We consider an inertial reference frame S'(O',x’, y',z',t') moving with velocity

u
u=|0| with respect to the inertial reference frame S (O,x, y,z,t) of the previous
0

paragraph. We also suppose that for t =¢"=0 the origins of the axes of coordinates 0
kot 0" of these two frames coincide. In the way we have chosen these two inertial
frames, the material particle is at rest in frame S’ or, equivalently, frame S’
accompanies the material particle during its motion. Figure 3.3.1 is the one
corresponding to figure 3.2.1 for reference frame S’.
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AX Ly ,z'.t)

0(0001) X
E(0,0,0,t-£)
P(0.0,0,t)

Figure 3.3.1 A material point particle remains at rest at the origin O’(0,0,0, O,t') of

the inertial reference frame S(0',x',)",z',¢'). A generalized photon moves from point

r' . . . .
E (O, 0,0,0,¢' ——j and arrives at point A(x,)",z',¢"), during the time interval
c

r!

At'=—.
C

At moment ¢', when the material particle is located at point P(O, 0, O,t') , the mass m,

and the electric charge ¢ of the material particle act at point A(x’, y’,z’,t') through

the generalized photon that was emitted from point £ (0,0, O,t’—r—j and arrived at
c

point A(x',)’,z',t") moving with velocity c. Therefore, the coordinates of point E
are

E(o,o,o,t'—ij (3.3.1)

C

where 7’ =||r'||=”ﬂ” Due to the selfvariations, the rest mass m, and the electric

charge ¢ of the material particle act at point A(x',)’,z’,¢') with the value they had at

time
! ! r'
w=t-—— (3.3.2)
c

and not with the value they have at P(O, 0,0, t') )
For the vector r' it holds that

!

X
r=EA=|y (3.3.3)

!

z

while its magnitude ||r'| =r" is given by (3.3.4)

=I"’= [xr2+yr2+Z/2 (334)
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The velocity of the selfvariations ¢’ has magnitude ||U'|| =c, and is parallel to the
vector r', therefore it is

!

X

v =Sr=S]y (3.3.5)
r r ,
z

The position vector R’ of point A(x’, y',z’,t’) with respect to P(O, 0, O,t') , where the

material particle is located, is given by

!

X
R =PA=|y |=F (3.3.6)

!

z

From equation (3.3.6) we get

|R| =R =|r|=r =y +y*+2" 3.3.7)

Combining equations (3.3.1) and (3.3.2) we obtain for the coordinates of point £
E(0,0,0,w’) (3.3.8)

The relations between the scalar, vectorial and tensorial quantities of this paragraph
can be derived from the corresponding relations we proved in the second chapter,
considering that the acceleration and the velocity of the material particle vanish, that

is aza[w]zO Kol uzu[w]z().

3.4 Lorentz-Einstein transformations of the quantities w,o,w,r

In this paragraph we shall study the way in which the fundamental physical quantities
appearing in the equations of the theory of selfvariations transform under the action of
the Lorentz-Einstein transformations.

In the way we have chosen the inertial reference frames S and S', the
transformations of the coordinates in the four-dimensional spacetime are given by the
set of equations

x=y(x' +ut) x'=y(x—ut)
y=y Y=y
o R (3.4.1)
’ u ’ ’ u
t:}/[t +—2.XTj t :}/[l‘——ZXJ
c c
1
where y = .
e
CZ

The coordinates of point E are given by relation (3.2.11), and are E (uw, 0,0,W) for

inertial frame S, and by relation (3.3.8), and are E (0, 0,0, w') for inertial frame S’ .

Applying transformations (3.4.1) we obtain
w=yw (3.4.2)

Indeed, based on the fourth equation of the first column of transformations (3.4.1) for
the coordinates of point E , we get

51



w=y(w+u-0)
w=yw
We now consider the trigonometric form of the velocity v, as defined in paragraph

2.2 of the second chapter. From equations (2.3.2) we get for reference frames S and
S’ respectively

cosd = 2=
c
. v
sindcosw=—= (3.4.2)

c

. . v
sindsinw =—*%

c
’
v
coso' =—=+
c
U,
sind’cosw' =—= (3.4.3)
c
’
. . v
sind'sin@’ =—+
c
From the Lorentz-Einstein transformations for the velocity we have
U_U;+u o Dl
x / x
14 1o, L
2 2
c c
v, : v,
v, =———— Vv, =——— (3.4.4)

y ( uu;j
y| 1+ 5
c

!
v, = ! 2

z MU! z = uU!
1+—= 1-——=

From transformation (3.4.4) and from equations (3.4.2) and (3.4.3) the following

transformations are derived for the functions 6 =0 (x, y,z,t) Kol @ = a)(x, y,z,t) :

coss -2 coss' + 2
coso' = ¢ cosd = ¢
u u '
1——coso 1+—coso
c c
sing'=— SN0 sing=—Sn0 (3.4.5)
7(1—ucos5j 7(1+ucos5’j
c c
0'=w =0

We shall prove the first equation. The rest are proven similarly.
From the first equation of the second column of transformations (3.4.4) we obtain
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uv
1_ X
CZ
b, _u
v, __c _c
c q_ub
cc
Through equations (3.4.3) and (3.4.2) we get
coss -4
cosd' = €
1-"coss
c
From equation (3.3.7) and transformations (3.4.1) we see that
r =y (x—ut) +y7 +2 (3.4.6)

Combining equations (3.2.4) and (3.4.6) we get

r= yz%(x—ut)+;/r’

and since
y(x—ut)=x'
from transformations (3.4.1) we obtain
r= }/E)C'-i- yr' (3.4.7)
c

From equation (3.3.5) we see that

! c !
Uv = —'X

N

A
x'=r—=

c

Substituting into equation (3.4.7) we get

!

uv
= 7/—c2’“ r'+yr

(. uv!
r=yr (1+ 2*)
c

From equation (3.4.3) we obtain

r= }/r'(1+zcos§'j

C

and with the help of transformations (3.4.5) we get
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r=yr'| 1+— <
€1-Zcosd
c
2
==
r=yr ¢
1-—coso
c
r!
y=—-—
y(l—ucoséj
c
= yr(1_ﬁcos5j :}/r(l— “'2”) (3.4.8)
c c

From transformations (3.4.5) we obtain
sin o

sing' =——
7(1—ucos5j
c
, cos5(1—ucos5J—sin5usin5
c c
cosd'— =
do ( u jz
y| l——coso
c
u
' Cosd ——
cosﬁ'ﬁ:—c 5
do ( u j
7| 1——coso
c
coso — 2 ds' coss—2
c 40 _ c
u ds 2
1—;0055 7(1_“0055j
c
a0’ 1
o 7(1—“0055
c
ds=-— 1 us (3.4.9)

y(l—ucosé'j
c

Repeating the same procedure we also arrive at relation
0 u 0
—=y|1l-—cosd |— 3.4.10
a5 ( c jaa (:410)
0 0
among the operators — and —.
0o’ 00

From equation (3.2.10) we get
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uz vu

R=r|l+—-2—>
C2 02

2
R:r\/1+”—2—2ﬁcos5 (3.4.11)
C C

From equation (3.4.11) we are able, whenever it is necessary, to derive the Lorentz-
Einstein transformation of the quantity R through the use of transformations (3.4.5)
and (3.4.8).

We consider now the angle & between the vectors R and u, as depicted in figure
3.2.1. From the law of sines for the triangle EAP we have that

sing sino

r R

sin 9 :Lsin§
R

Using equation (3.4.11) we obtain
sin o

sin 9 = (3.4.12)
uw ou
\/1++2—20055
c c
From the familiar identity sin” ¢+ cos* $ =1 we have that
coss -2
cosd= - < (3.4.13)
\/1++L12—2ucos§
c ¢

From transformations (3.4.5) we can, after applying equations (3.4.12) and (3.4.13),
derive the Lorentz-Einstein transformations for the quantities sin$ and cos9.
Furthermore, in the inertial reference frame S’ it is @' =¢0', as can be seen from
figure 3.3.1.

3.5 The Lorentz-Einstein transformation of the volume of the generalized photon
The generalized photon moves with velocity v of magnitude ”U” =c in any inertial
reference frame. This has as a consequence that the following transformation does not
hold:

dV'=ydV

This transformation holds for the volume dV of a material particle that is at rest in
the inertial reference frame S'. We shall prove that the volume of the generalized
photon transforms according to relation

avi-— &V (3.5.1)

7/[1—”cos5j 7/(1— U~2uj
c c
for our chosen inertial reference frames S and S".

In the region of point 4(x",)’,z',t') of figure 3.3.1 we consider the elementary area
dA'=r"sins'dS'do’

of a sphere with center O" and radius r'. Furthermore, we consider a point 4, close

to point 4 on line OA, as depicted in figure 3.5.1
Figure 3.5.1
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The elementary volume of the generalized photon in the inertial reference frame S’ is
dv' = dA’HE — 2 sin5'dS'da H‘ (3.5.2)

assuming that 4 — 4.

In figure (3.5.2) we present the volume dV occupied by the generalized photon in the
inertial frame of reference S .

0(0,00,t) X
P(0,0,0t)

Figure 3.5.1 The infinitesimal volume of the generalized photon in the vicinity of
point A of the inertial reference frame S (0',x', V', z',t') . The material point particle is

at position P(0,0,0,t’). The infinitesimal surface of area dA4’ is vertical to the vectors

F' = PA and r'=PA: . The points P, A and A, are collinear.

The elementary area d4 in S is
dA=r’sinédédw
while the elementary volume dV is

dv = dAHH—Al = r* sin 8dd || HA|| (3.5.3)

since 4, —> A.
From the Lorentz-Einstein transformations it directly follows that points P, 4,4,

which are collinear in reference frame S’ are also collinear in reference frame S. The
conclusions of paragraph 2.4 about the representation of the trajectory of the material
particle in the surrounding spacetime, also lead to figure 3.5.2. Here, the trajectory of
the material particle is on the x axis. We now use the following notation, as depicted
in figure 3.5.2
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(3 u
0(0,0,0,t) E E P(ut,0,0,t) X

Figure 3.5.2 Figure 3.5.1 as modulated in the inertial reference frame S (0, X, V, z,t) ,

in which the material particle moves with constant speed. The points P, 4 and 4,
remain collinear, as results from the Lorentz-Einstein transformations.

= || (3.5.4)
= B4 (3.5.5)

according to the notation we have established. Similarly, in figure 3.5.1 we use the
notation

Mo m” (3.5.6)
i =074 (3.5.7)
ang ﬁguﬁ.SQ - we haviglat

|.4] =[]+ |R7 ]+ [4]

and with equations (3.5.4) and (3.5.5) we get

= [ER]+ |74

- -r-[] 559
From the triangle E,KE of figure 3.5.2 we see that

EK
Coso =

EE
HEI—KH = HE cosd (3.5.9)
Similarly, we have that
|EE| = u =" = uaw (3.5.10)
since in the time interval Ar=-"—"gw the point particle moved from point £, to

c

point E . Combining equations (3.5.9) and (3.5.10) we obtain
HEI—KH = udwcosd (3.5.11)
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Combining equations (3.5.8) and (3.5.11) we also get
[ a1 cos2 |
C

since #, —r =cdw.
Combining equations (3.5.3) and (3.5.12) we get
dV =r’sin é'dé'da)cdw(l ~ Y cos 5}

c
From figure 3.5.1 we have that
|44 = |04 -|0"]
and with equations (3.5.6) and (3.5.7) we get
HTAIH =r'—r' =cdw
Combining equations (3.5.3) and (3.5.14) we also get
dV'=r"sind'ds'dw'caw’
Combining equations (3.5.13) and (3.5.15) we get
dv’ ¥ sin8'dS'd w'cdw’

V2 in 5d5da)cdw(1 L 5)
C

and with transformations (3.4.8), (3.4.5), (3.4.9) and (3.4.2) we get

, 2
d_V:yz(l_zcosgj L1
av ¢ 7,2(1_”0055) Y1-%coss

c c
av' 1
av y(l—ucosé'j
c
a4
u
7/[1—cos5)
c
u

This is equation (3.5.1). Given that # =| 0 | we arrive at relation
0

v-u uv, U
S~ =——"=—c0s0
c cc ¢

. . . v
since, according to equation (3.4.2), cosd = —*.
c

Combining equations (3.5.16) and (3.5.17) we have

e dv __ar

y[l_”cosé'j ]/El_u-zuj
c c

This is the final form of equation (3.5.1).
In the form
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(3.5.12)

(3.5.13)

(3.5.14)

(3.5.15)

(3.5.16)

(3.5.17)



avi=— (3.5.18)

v-u
=)
c
transformation (3.5.1) also holds in the case of a material particle in arbitrary motion.
In figure 2.4.1 the length of the three-dimensional arc EE; equals HE—EIH at first

approximation, that is, for an infinitesimal displacement of the material particle from
point E to point E;. Thus, we have exactly the situation we describe in figure 3.5.2.

On the other hand, for a finite, but not infinitesimal, displacement E—El of the material

particle, the curvature £, (w) and the torsion 7, (w) of curve C, of figure 2.4.1 enter

the transformation of the volume.
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CHAPTER 4
The study of selfvariations at macroscopic scales

4.1 Introduction

In the present chapter we study the consequences of the selfvariations at macroscopic
scales. The main conclusion we derive is the existence of energy, momentum, electric
charge and electric current in the surrounding spacetime of the material particle as a
direct consequence of the selfvariations. We calculate the density of energy,
momentum, electric charge and electric current in the surrounding spacetime of an
arbitrarily moving material point particle.

We present the four-dimensional electromagnetic potential which is compatible with
the selfvariations. An important element that emerges is the splitting of the
electromagnetic potential into two individual potentials, where the first one gives the
electromagnetic field that accompanies the material particle in its motion, while the
second one gives the electromagnetic radiation.

We prove that the selfvariations are compatible with the principles of conservation of
electric charge, energy, and momentum. This is accomplished through either direct
calculation, based on the continuity equation, and also through the energy-momentum
tensor of the generalized photon. These different approaches help the reader
comprehend the physical reality that prevails in the surrounding spacetime of material
particles.

In the preceding chapters we studied the generalized photon as a geometric object. In
this chapter we shall see for the first time that the generalized photon is a carrier of
energy, momentum, and electric charge. The density of electric charge and electric
current in the surrounding spacetime of the material particle is correlated with the
electromagnetic field that accompanies the material particle in its motion. The
electromagnetic radiation does not contribute to the density of electric charge and
electric current.

We calculate the energy-momentum tensor for the electromagnetic field and for the
generalized photon. The energy-momentum tensor describes the energy content of
spacetime, but only in macroscopic scales. In microscopic scales, the energy-
momentum tensor, as defined by the theory of Special Relativity, cannot describe the
energy content of spacetime.

4.2 The density of electric charge and electric current in the surrounding
spacetime of an electrically charged point particle
In figure 3.2.1 the electric charge ¢ acts at point A(x, y,z,¢) with the value it had at

point £ . Thus, we have ¢ = ¢(w). Hence, it follows that

o _og ow
ot ow ot

oq
Vg=—Vw

ow
and with equations (2.2.11) and (2.2.12) we have that
% = o 1 4.2.1)
ot ow b

R
c
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_O¢ 1 v (4.2.2)

Vg =
1 caw1 v-uc
)

c
According to Special Relativity and the symbols we use in figure 3.2.1, the intensity
¢ of the electric field at point A4 is

e=—21_R (4.2.3)
dre,r
where R is given by equation (3.2.7), r' by equation (3.3.7), and y = =. From
u
1-=—
cZ
Gauss’s law we obtain for the electric charge density p at point A4 :
p=&V-&
4
=g,V R
p=b (47[501”’3 J
p=Ty [RV,_ 7 gy, (4.2.4)
4r ) 4re,R”
We can easily prove that
R
V- (r_“j =0 (4.2.5)

We can avoid the calculation, if we take into account that, ignoring the selfvariations,
for constant electric charge ¢, classical Electromagnetism predicts that p =0 at point
A . This is equivalent with equation (4.2.5).

Combining equations (4.2.4) and (4.2.5) we get

4
= R-V
P drr” 7
Using equation (4.2.2) we get
- ‘Zq /4 Y r
c w4ﬂr,3(1_v-2u) c
c

After applying equation (3.2.10) we have that
__0 " g(z_zj
cow A (I_U-uj cle ¢

2

c
:_8q yr 1 (l_u-uj
cow 4rr" (1 _v-u) c?
c2
Oq _yr_
T cow 4"
Using transformation (3.4.8) we get
oq 1

P (4.2.6)

cow N
Ary’r’ [1— Uczuj
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We can derive the same equation in a different way. We will develop the second
method in the next paragraph for the calculation of the density of energy D due to the
selfvariations of the rest mass of the material particle, where we will not be able to
use Gauss’s law. The reader can easily apply the method of the next paragraph to the
electric charge, and still come up with equation (4.2.6).
The generalized photon moves with velocity v, therefore the current density j is
given by equation
Jj=pv (4.2.7)
where the charge density p is given by equation (4.2.6). Equation (4.2.7) can also be
easily inferred from Ampere’s law

. O
VxB=pu,j+ Py (4.2.8)
The intensity of the magnetic field B at point A of figure 3.2.1 is given initially by
the Biot-Savart law:

u
B=—xe (4.2.9)

Combining equations (4.2.3) and (3.2.10) we get

1%
8:%{_1)
dre,r c c

and from equation (3.4.8) we have

6= q 3(2_1j (4.2.10)
dre,y’r’ (1 _v 'zuj ¢
c

From equation (4.2.10) we get

u v

—2)< E=—X¢E

c c
and from equation (4.2.9) we get

v
B:c—2x£ 4.2.11)

In equation (4.2.11) the velocity v of the generalized photon refers to point 4 of
figure 3.2.1. This has as a consequence that all physical quantities B, v, & appearing
in equation (4.2.11) refer to the same point in spacetime. On the contrary, in equation
(4.2.9) the velocity u of the material particle does not refer to point 4, where the
electromagnetic field is manifested. Equation (4.2.11) also holds for the case where
the material particle is in arbitrary motion, as we shall see in a later paragraph.

4.3 The density of energy and momentum in the surrounding spacetime of a
material point particle.

In the case of the rest mass we cannot apply Gauss’s law in order to calculate the
energy density D in the surrounding spacetime of the material particle. Because of
this we will develop a completely different proving procedure. We initially calculate
the energy density D' in the inertial reference frame S’ in which the material particle
is at rest. At point 4 of figure 3.3.1 the energy density D’ due to the selfvariations is

(, r'j (, r'+dr'j
my|t —— |—my| t —
D=¢ ¢ ¢ (4.3.1)

c
drr'dr’'
From equation (3.3.2) and for a specific time ¢’ we have that
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aw' = ——
c
and equation (4.3.1) becomes
dm, dm,
D=c2d___ dw 432
Azr” drr” ( )

We now consider the Lorentz-Einstein transformations for the energy E and the
momentum P of the generalized photon:

E=y(E'+uP)) E'=y(E-uP)
u u
P=y|P+SFE P =y|P-—E
' 7()‘ ¢ j ' 7(X c? j (4.3.3)
B =K F=P
P =F P=P

Defining as dV' the infinitesimal volume occupied by the generalized photon at point
A of figure 3.2.1 we have
podE
dv
Applying the transformations (4.3.3) and (3.5.18) we get
7 (dE'+udP)

y(l—”’z")dV'
c

dE' +u’s dE'
D= ¢

(1—“'2”}11/'
C

/

1420
¢ dE'

D=

D=—ZX_pD (4.3.4)

From transformations (3.4.4) for the velocity we get

’
uv u v —u
Lf=]+——= =

1+ =
cz c2 uv
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DL S S (4.3.6)

2 .
c }/2 (1 _ 1% Zuj
c
Combining equations (4.3.5) and (4.3.6) we have

p-—— 1 p

vuY

, .

1—

and with (4.3.2) we get
dm,

D=-c 1 2 dw:z
5 v-u)\ 4rr
A7)
c
Applying transformations (3.4.2) and (3.4.8) we obtain
om, 1

D=—c 5 Z (4.3.7)

W .

Aryr (1 v j
c
The generalized photon moves with velocity v, so we have
J=p2 (4.3.8)
c

for the momentum density J at point A of figure 3.2.1.
Factor 0 , which appears in the equations of this paragraph, corresponds to factor

2_6] in the equations of the previous paragraph. In figure 3.2.1, the rest mass m, of
W

the point particle acts on point A(x, y,x,t) with the value it had at point £, namely
my = m,(w). Therefore, we have

Om, _ om, ow

ot ow ot
Vm, = om, Vw
ow

and with equations (2.2.11) and (2.2.12), we get
om, Om, 1
o  ow,_vdu

2

5 cl (4.3.9)
Vm, =— i L
cow Ve
2
c

These equations are analogous to equations (4.2.1) and (4.2.2) for the electric charge.

4.4 The selfvariations are in accordance with the principle of conservation of the
electric charge

64



In figure 3.2.1 and for the time interval from w=t¢ Lo t, the generalized photons
c

emitted by the material particle are contained within a sphere with centre E and
radius r . In order for the conservation of the electric charge to hold, we have to prove
the validity of equation:

,
q(t—zqu(t)+1pdV=q(t)+qi 4.4.1)
Vv
where V' is the volume of the sphere with centre £ and radius », and
g,= [ pav (4.4.2)
Vv

is the electric charge, due to the selfvariations, contained within the sphere. From
equation (3.5.13), we get for the infinitesimal volume dV

dv =b? (1 ¥ cos 5) sin 5dSd wedW
C

0<o<rx
0<w<2rx (4.4.3)
0<b<r

r
t——<w<t
c

Combining equations (4.2.6) and (3.4.10) we get
oq 1

aw 3
¢ Ary*r’ (1 ~ ¥ cos 5)

p=- (4.4.4)

C
Combining equations (4.4.2) and (4.4.4) we also get

[ oq 1 _p? (1—3cosajsin5d5dmcdw
0 J

w ¢
= Ay’ (1 ~"coss
c

[ % SN0 ysdwedw
0t " Ay’ [1—“0055)

_dSdw (4.4.5)

We now denote

A=1-Ycoss (4.4.6)
C

Thus, we have

Cdi=sinsds (4.4.7)

u

1-Y<i<14 (4.4.8)
C C
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So we have

1+g£ il
sind “ud/l c[17%
J ~d6 = —=-Z|=| "=
0 . A ul A v
1-—coso 1= ¢
c
u
cl 11 c 2. 2 .
N T A
I+— 1-— 1-= 1-—
c c c c
and equation (4.4.5) becomes
t
oq
=—| —dw
=]

"
q(t)+q, =q(t—;j
which is equation (4.4.1).
We can also prove the conservation of the electric charge through the equation of
continuity

op ;
Fiv-i=0 4.49
or J ( )

Indeed, taking into account equation (4.2.7) we have

a—p+V-j:a—p+V-(pv)

Ot Ot
op . Op
—+V.j=—+0v-Vp+pV-v
Ot / Ot pep
and with equation (2.2.21) we get
op . Op 2¢
—+V.j=—+0v-Vp+—
o T TP
Applying equation (2.5.7) of the fundamental mathematical theorem, for /' = p, we
get
op . Op 2c
—4+V.j=c—+— 4.4.10
ot J or r P ( )
From equation (4.4.4) we have
p__2 (4.4.11)
or r
Combining equations (4.4.10) and (4.4.11) we finally get
ot

4.5 The selfvariations are in accordance with the conservation principles of
energy and momentum
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In figure 3.2.1, for the time interval from w=t—_ to t, the generalized photons
c

emitted by the material particle due to the selfvariation of the rest mass are contained
within the sphere with centre £ and radius r . In order for the conservation of energy
to hold, it is enough to prove the validity of the following equation:

c’ym, (t—zjzczymo (t)+J.DaVV=czm0 (t)+E, (4.5.1)
¢ Vv

where V' is the volume of the sphere with centre £ and radius », and
E = j Ddv (4.5.2)
Vv

is the energy due to the selfvariation of the rest mass, which is contained within the
sphere. Combining equations (4.3.7) and (3.4.10) we get
om, 1
8W 4

Ary’r’ (l—ucos 5)

c

Combining equations (4.5.2) and (4.5.3), and following the notation of equation
(4.4.3), we get

T2r t 1

D=—c (4.5.3)

b (1 ~Zecos 5) sin 5d5d wedw
j c

W
OOt Amyh? (1—ucos6

¢
2 ml2m t .
(1] aa’"o SN0 gsdewdw
Sk - v [1—ucos6j
c
2 Tt a .
E, =—2"3 [ a’”o sind —dSdw (4.5.4)
4 0t v (1—“0055]
¢
Using the notation of equations (4.4.6), (4.4.7), and (4.4.8) we have
1+2
[ SN0 s | Sda=
u A
0(1—cos5j -
¢
_L[LTZ__L I B
ul At ]« 2u 2
T
c c
u
e
c c 2 4

Now (4.5.4) becomes
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© om
E ==ty | —dw
==y j —

—
c

E, ==c'y[my]

E =—c’ymy(t)+c’ym, (t —i)
c

cym, (t —Kj =c’ym, (t) +E,
c

which is equation (4.5.1).
The conservation of energy can also be proven using the continuity equation
oD
+V-7=0 4.5.5
c*ot J ( )
Indeed, if we take into account equation (4.3.8) we obtain

D g.j-D +V-(Dij

c’ot c’ot c’
oD oD v D
+V.j= +—=VD+—=V-v
c’ot J c’ot ¢ c’
and with equation (2.2.21) we have
Dy j=P Lyp, Py
c ot cot ¢ c r
Using equation (2.5.7) of the fundamental mathematical theorem for ' = D, we get
oD oD D 2c
+V-j=c +—_— 456
c’ot URRPEP R (45.6)
From equation (4.5.3) we have
a _.2D (4.5.7)
or r
Combining equations (4.5.6) and (4.5.7) we get
oD
+V-j=0
c’ot /

In order to prove the conservation of momentum, it suffices to prove the
corresponding of equation (4.5.1), that is, it is enough to prove equation

ymo(t—zju:ymo(t)u+JJdV =ym, (t)u+P, (4.5.8)

c v

where

P =IJdV (4.5.9)
V

is the momentum due to the selfvariation of the rest mass, contained within the sphere
of centre £ and radius ». Combining equations (4.5.9) and (4.3.8) we obtain

P=[DZav (4.5.10)
1% C

We first work on the x-axis:

P, =ID%dV
14
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Using equation (3.4.2) we get

P, :JDcosng
> c
and with equations (4.5.3) and (4.4.3) we get
m2r t
P=—[]] am, cosd b (1—3cos5jsin§d§dwcdw
00 T OW 372 u ¢
— 4my°b™| 1——coso
c
m2r t :
P, :_J-J- J- om, cosdsind _dSdocdw
“ 00 S OW 372 u
— 4my°b™| 1——coso
c
n2m t .
Pix:_4c 3J-J- J- aamo c05551n53d§da)dw
Sk = v (l—ucosé'
c
Po=-5~]] ‘2’"0 COSOSINO et 4.5.11)
4 Ot v [1—ucos5
c

Using the notation appearing in equations (4.4.6), (4.4.7), and (4.4.8) we have
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T cosdsind 5zlj‘c_zﬂ

3 2 3
O(l—ucosé'j ot A
C c

uY uY
5 I+— | —|1-— 2=
c 1 c c c
—_ + =
u'l 2 2 Y u’
=) e
u
Sl e |
uz 2 2\2 uz -
c c
2c 1 R
u u? ? u |
I
c c
2c 2u
u u’ o u
uz 2(1_1+C_2 = cz 2 74;
u u
c c
and equation (4.5.1) becomes
' om, i
P =—uy | —2dw=—uy|m,| -
g 7Ir — 7lm].-
P, =uym, (r—fj—uymo (1) (4.5.12)
c

Similarly for the y -axis we get

T ¢ om, sin&
p=-[]] +0,dSdwdw
, ow u g
00t [l—coséj

c

and with equation (3.4.2)

— =sindcosw
c

we get
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T2r t

.2
P :_J-I J- Om, csin 5cosa§d5da)dw (4.5.13)
00 T OW u
= (l—cos5J

¢
C

The presence of factor cos@ causes integral (4.5.13) to vanish, and we have

P,=0 (4.5.14)
We can similarly prove that
P =0 (4.5.15)
Given that

u
u=0

0

equations (4.5.12), (4.5.14) and (4.5.15) can be written as
P =uym, (t —Ej —uym, (1)
c

which is equation (4.5.8).
From equation (4.5.1) we get

E, =£DdV =c2}/(m0(t—£j—m0(t)j (4.5.16)

From equation (4.5.8) we also have

P :deV:uy(mo (r—f)—mo(t)j (4.5.17)
c
v
Combining equations (4.5.16) and (4.5.17) we get

u
P=E— (4.5.18)
and
[Jav == [ pav (4.5.19)
V ¢ V

Equations (4.5.18) and (4.5.19) hold for every volume V', i.e. for every radius r of
the sphere with centre £ and radius » of figure 3.2.1. Therefore, they also hold for

r =0, that is, on the material particle at time w. Hence, the total energy E  and the

total momentum P emitted by the material particle at time w in all directions, are
connected through the relation

P=-E~= (4.5.20)
C

where uzu(w). This equation has fundamental consequences for the material

particle, and we shall encounter them as our study continues.

4.6 The electromagnetic field in the macrocosm. The electromagnetic potential of
the selfvariations

Using the symbols at point A(x, y,z,t) of figure 2.2.1, the scalar potential ¥ and the
vector potential A of the selfvariations are given by the following equations:
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l/l2
)
V= >+ 5 (4.6.1)
47[501/(1 - u‘zu) dre,c’ (1 - zu)
c
A= V% (4.6.2)

c
The intensity & of the electric field, and the intensity B of the magnetic field arising
from these two potentials, are given by

u2
Q(I‘CJ

(2
e (2_2}, q ¢ (Blj—a (4.6.3)
5 v-u e ¢ v-u : 1 v-u\c c
drgyr” | 1—— drgyr| 1—— T2
¢ ¢
u’ v
q 1_07 —a
B LAV q ¢ (ﬂxﬂj—ﬁxa (4.6.4)

3

v.u) ¢ ¢ v-u v-u\c c c

47[807'2 1—72 4”‘907' 1- 2 1- 2
c c ¢

where u=u(w) is the velocity, and aza(w) is the acceleration of the material

particle. Furthermore, the density of electric charge at point 4 is

2 I
p=—-L

3
o Ary’r? (1 b ~2u)
c
exactly as given by equation (4.2.6).
In equations (4.6.3) and (4.6.4) we recognize the electromagnetic field as we know it
experimentally, but also as predicted by the Lienard-Wiechert potentials. However,
the electromagnetic potentials of the selfvariations have a fundamental characteristic

that is not shared by the Lienard-Wiechert potentials. Namely, they split into two
individual couples of potentials

u2
Q(l‘cz]

(4.6.5)

u 2
4ﬂgor(1_“'2”j (4.6.6)
c
A=V,
c
and
v, = 4(v-a) .
3 U
dre,c (1— ° j (4.6.7)
v
A=V —
a o cZ

The (4.6.6) potentials express the electromagnetic field
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(4.6.8)

. ( ”zJ
]

that accompanies the material particle in its motion. The (4.6.7) potentials express the
electromagnetic radiation

o (5“)(2 o

a 2
. v-uU\c ¢
v-u
47[50021*(1— j 1 2

(4.6.9)

2
—a
B, = q CU (Exgj—gxa
‘u
4ﬂgor(l—v uj 1-—-\¢ ¢/ ¢
c c
The (4.6.7) potential of the electromagnetic radiation does not depend on the distance
r, while it vanishes for v-a =0. Furthermore, for each couple of the electromagnetic
field we can easily prove that equation (4.2.11) holds

B, =Zxe, (4.6.10)
C

B, =—xe, (4.6.11)
C

We remind the reader that the electromagnetic field can be calculated from the
electromagnetic potentials via equations
8——VV—6—A (4.6.12)
Ot
B=VxA (4.6.13)
_8_V_
ox

where VIV = 8_V ,and VxA=curlA.

oy
a
L Oz |
We shall now prove equation
0A,
© o
and the general equations (4.6.3) and (4.6.4) can be proven similarly. We shall make
use of the equations of paragraph 2.7. From the (4.6.7) potentials we obtain

(4.6.14)
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g, =- o >
dre,c’ (1 P -2uj dre,c’ (1 Y -2uj
c c
g(v-a) o q(v-a q(v-a) ov
fa =T vuY o vuY - v-u > o
4rg, | 1-— j 4re,c | 1-— ) iy N (1— . j
c c c
: o(v-
g, =— (v-a) 2[Vq+ (;ﬂq uj— q 2[V(l)~a)+ (lj a)u}
v-u c ot v-u c ot
A )
¢ ¢ (4.6.15)
2q(v-a vu) O(v-u q(v-a ov
B ( v)-u 3[V[C—2j+ E:“@t )U}_ ( Z-u > or
dng,c’ (1 —) 4rg,c’ (1 —zj
C
Combining equations (4.2.1) and (4.2.2) we get
oq
Vq+ v=0 4.6.16
1 c*ot ( )
Combining equations (2.7.3) and (2.7.4) we get
o(va va
V(u-a)+¥=£a—uv (4.6.17)
c ot r cr
Combining equations (2.7.1) and (2.7.4) we get
o(v-u) c((v-u)
Vivu)+——v=—|—-v-u 4.6.18
( ) c*ot r( c? ( )

We substitute equations (4.6.16), (4.6.17) and (4.6.18) into equation (4.6.15) and we
obtain
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e

_ ¢ _(va) (0-a) [ (ow)
8”4”80@(53;) B "hwoi(lv;j[ o
L4 o) (e (va)

a = 2 2
2 _U«u c C4 I_U'uj cz(l_l)'uj
4re,c r(l 2 j I ( e o2

2
dre,c’r (1 - uc~2u )

which is equation (4.6.9) for the electric field ¢, .
In order to prove equations (4.6.8) we also need equations

6(u2)

V(e )+——Lv=0 4.6.19

(u ) c*ot ( )

Vr+ ?'u=f3 (4.6.20)
c ot c

We can prove equation (4.6.19) as follows
olu? 2 2 2

() Wy O, O O, 0 g, O )y
c ot ow cow Ot ow c ot

This results immediately from the combination of equations (2.2.11) and (2.2.12).
Equation (4.6.20) results from the combination of equations (2.2.9) and (2.2.14).
In order to prove equation (4.6.5), we denote

u’? v
-7 v u 1 (Caj v u
f= € 3( ——j+ . (———)—a 4.621)
47zgr2(1—u'uj ¢ 47&9}’(1—0'”) I_Lzu © ¢
0 cz 0 02 c
and
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u’ v

-7 u v 1 2% (u v) v
g= ¢ Tl —x— |+ 5 ¢ —Xx— |——Xxa |(4.6.22)
v-u c C v-u 1 V-uU\c¢c c¢ c
drgyr| 1——; drgyr| 1——; T2
c c ¢

Using the notation of equations (4.6.21) and (4.6.22), and from equations (4.6.8) and
(4.6.9) we obtain

e=¢,+¢&,=4qf (4.6.23)
B=B,+B, =qg (4.6.24)
From Gauss’s law we have

p=&V-¢&

and using equation (4.6.23) we have

pP=&V: (Qf)

p=&49V-f+e,f-Vq (4.6.25)
From classical electromagnetism we know that

V-f=0

Hence, equation (4.6.25) becomes

p=&f-Vq

Using equation (4.6.16) we obtain

P =—&, %u -f (4.6.26)

From equation (4.6.21) we see that

‘ (U j
I-— 2 U 2
32 ¢ vu 1 c ¢ vu
v f=——""—F=|———|+ 3 | ———|~va
4 1 v-u l_U ul\ c c
e\ —7 c2

rz(l—uf ©
C
uZ
(lj L | ), v
v-f= >+ (1— 2j—uoz
v-u rl_U'u 1_U‘u C
47[807" 1—7 6'2 c2
2
v f=—J 40 (4.6.27)

vu\
P 1-= j
(%
Combining equations (4.6.26) and (4.6.27) we get
u2
¢ %
uY ot
4re, (1 - vzuj
c
and with equation (4.2.1) we finally obtain

1—

P ==&
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oq g

0 S
W47zr2 (l_uzuj
c

which is equation (4.6.5), since

p:

Similarly we can prove equation

V-B=0

From equation (4.2.24) we have that

V-B=V- (qg)

V-B=¢V-g+g-Vgq

From classical electromagnetism we know that

V-g=0

Thus, equation (4.6.29) becomes

V-B=g-Vqg

and with equation (4.6.16) we obtain

v.p=_4

c ot

From equation (4.6.22) it immediately can be seen that

v-g=0

and from equation (4.6.30) we also obtain

V-B=0

Combining equations (4.6.30) and (4.6.24) we have that
9q

c’qot

From equation (4.6.31) it follows that

V-B=0

if and only if

v-B=0

From equations (4.6.10) and (4.6.11) we get

v-g

V-B=- v-B

v
B:—zxe
c

Therefore, it holds that
v-B=0
or equivalently
V-B=0
Combining equations (4.6.26) and (4.6.23) we get
p=—E iu ¥
 Pqot
From equation (4.6.33) it follows that
p=0
if and only if
v-e=0

(4.6.28)

(4.6.29)

(4.6.30)

(4.6.31)

(4.6.32)

(4.6.33)

From equation (4.6.9) for the electric field &, , we can immediately deduce that

77



v-eg,=0 (4.6.34)
Therefore, the electromagnetic radiation does not contribute to the charge density p .
On the contrary, for the electric field g that accompanies the material particle, it
holds that

v-eg #0

as follows from equation (4.6.8).

From equation (4.6.32) we obtain

v
B:—zxg
c

2
(s
c
B = Zxel ixgj
G

After performing the necessary calculations we finally get
2
& =c'B+ (ﬁj (4.6.35)
c

We end this paragraph with an interesting observation. Comparing equations (4.6.8)
for the electric field g, with equation (2.4.11), we conclude that the vectors ¢ and g,
are parallel. Then, the “trajectory representation theorem” informs us that the
direction of the electric field g, represents the tangential vector ¢, of the trajectory

C, of the material particle.

4.7 The energy-momentum tensor of the electromagnetic field at macroscopic
scales

The equations of this paragraph as well as of the remaining paragraphs of this chapter,
could be stated differently, so that they also hold for non-inertial reference frames.
However, such a formulation does not serve the purposes of the present edition.
Therefore, we will formulate the equations for an inertial reference frame, while
simultaneously suggesting the way in which the same equations can also be
formulated for a non-inertial reference frame.

From the axiomatic foundation of the theory of selfvariations, as stated in paragraph
2.2, we have that

ds’ =0

or, equivalently,

gudx'dx" =0 0123 (4.7.1)
where

(xo,xl,xz,x3)=(ct,x,y,z) 4.7.2)

and g, are the components of the metric tensor. In equation (4.7.1) we use the

Einstein summation convention for the indices i and k.
We denote
-
i
that is,

i=0,1,2,3 4.7.3)
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(00,01,02,1)3) =(c,ux,uy,uz) 4.7.4)

From equation (4.7.1) we obtain

&t
8 =0 ar

and with equation (4.7.3) we get

gikuluk =0 ik=0,1,2,3 4.7.5)

Using this notation, all the equations we will formulate also hold for non-inertial
reference frames if we replace differentiation with respect to x* with covariant
differentiation with respect to x", k=0,1,2,3.

We now denote the four-vector of velocity as

19) C
1
19 U
v=|"|=| " (4.7.6)
v v,
3
v v,

71 [po'] [ pe
.| pU pU,
i=|"|= RE 4.7.7)
J pv PU,
71 L] Lev.
as results from equations (4.2.6) and (4.2.7). Also, according to equations (4.6.1) and
(4.6.2), the four-vector of the electromagnetic potential is

KUO N
1 v | |7
Al _Ul C !
4= _| ¢ =y (4.7.8)
2
A KUZ ?U)’
A c
8 Kuz
_U _C |
Lc

Subsequently we will symbolize the differentiation with respect to a—ak with
X

(,k), k=0,1,2,3.
We now consider the tensor of the electromagnetic field

Y o

where g is the inverse of the matrix g,,, g, gV =0 »
1 for u=v

O, = (4.7.10)

0 for u=#v

and F*" is the Maxwell stress tensor
F™ = 4" — 4" 4.7.11)
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Using this notation and taking into account that in the surrounding spacetime of the
material particle there is an electric current j, as given by equation (4.7.7), the
energy-momentum tensor of the electromagnetic field is given by the tensor
oY =T - j"4" (4.7.12)
We now write the tensor 7*" in the form

wo oS, oS, S,

N A
"= * (4.7.13)
cSy Oup
cS,
S=¢6xB 4.7.14)

where S is the Poynting vector, and & and B are the intensities of the electric and
magnetic field, respectively. Taking into account equations (4.6.10) and (4.6.11), as
summarized in equation

B="x¢ (4.7.15)
c
equation (4.7.14) becomes
2
S=g¢, (g—zju—eo (“—f)g (4.7.16)
c c
The Maxwell stress tensor o, is given by relation
O,y =& (-¢,6,—C’B,B, +W5,,) (4.7.17)
where &, is given by relation (4.7.10), and
w :%‘90 (6 +c’B*) (4.7.18)
£, &
e=|¢e, |=|¢
&, &
Bx B]
B=|B, |=|B,
B, B,
Combining equations (4.7.12) and (4.7.13), we arrive at the energy-momentum tensor
wo S, S, S, & cv, co, v,
|cS, o, o, O ve U LwL, LY
(Dy: X 11 12 13 _p_Iz/ X X x2y x7z (4719)
¢S, 0, 0y, O0y| ¢ |bc LU U, VLD,
¢S, o0y Oy Oy v.ec v, LU, Uzz

We shall now prove that the scalar potential, as given by equation (4.6.1), satisfies the
relation

%—It/H)-VV:—v-g (4.7.20)
From equation (4.6.12) we have that
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—v-& z—v[—VV—a—A}
ot

—u'azu(VV+a—Aj
ot

Using equation (4.6.2) we have

cotc c oOt\c

ot ¢ oOt\c

2

—U'EZU'VV-Fa—V-FKg U_

ot 2cot\ ¢
—v-gzu-VV+a—V
ot

since v*> =c”.
We will now prove the conservation of energy and momentum, as expressed by

equation
. aq)i/’
o7 = P =0 (4.7.21)

We begin with an observation which allows us to avoid complex calculations.
Equation (4.7.21) holds in classical electromagnetic theory, i.e. if we ignore the
consequences of the selfvariations and consider the electric charge ¢ constant, both in
the electromagnetic potential, as well as in the intensity of the electromagnetic field.
Furthermore, p =0 in equation (4.7.19). Therefore, it is enough to prove that in
equation (4.7.21) the factors resulting from the selfvariation of the electric charge ¢,
also vanish. Certainly, in equation (4.7.19) it holds that p #0, where the charge
density p is given by equation (4.6.5).

The energy density W of the electromagnetic field as given by equation (4.7.18), as
well as the Poynting vector S, given by equation (4.7.16), are proportional to ¢°.
Therefore, in our calculations we will have to take into consideration the rate of
change of the factor ¢”. From equations (4.2.1) and (4.2.2) we have

o _, 00 2 &

o o _vwow

2

c

2qg 0Oq v

Vg* =2¢qVg=——"" L=

1 va 1_U'le@wc2
c

Thus, we arrive at equations
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= =-21q"
ot b q@wq 7
cZ
oq’ 2
—— =21
ox c’ 1
2
v
gL:2ﬁ%q2 (4.7.22)
Oy c
aqz 2
A _yp=
0z c’ 1
Ao 1 oq
Lou qow

2
C

From equation (4.7.20), and for i =0, we have that
&DW::a®m)+a®m_+a®m_+a®“‘:

ox/ ' o' ot ox

0 0

0 0
E(w)a(ch)+5(cSy)+§(CSZ)

__z{i(plf&)+6—i(chux)+%(chuy)+%(chuz)}

and using relations (4.7.22), which we apply on the quantities 7, S_,S,S., which are

proportional to ¢*, we get

oY’

P =2AW +220,8, +240,8 +240.8.

- )

viop o d 0
[5+§(pux)+5(puy)+a(puz)}

p(oVv oV oV oV
= —+v,—+v,—+0,—
c\ ot ox oy 0z

C

oY’
ax.i

—K[a—p+V(pU)}—£(a—V+UVVJ
c| ot c\ ot

and from the equation of continuity, as well as equation (4.7.19), we get

oD’/ e,
&jzld—W+%%+%%ﬁv§)+?ﬁrﬂ

and with equations (4.7.16) and (4.7.17) we get

=2A(-W +v,S,+0v,S, +v.5S.)
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0 2 . v’
oD =21¢, g —le -t =& -ve, D g
2 2 :

L& vé +UZZ.€ L&,
yoy CZ CZ

0/ 2 2
a(I)j’ =-2M¢ {—%e —; ’B* + VHo t e -(v-¢)(ve, +v,6, +v.e.)

2
C

a2 2 22
X y z x“x y<y z%z —
0j £Y :
6(1)» =-21¢, —132 —lczBZ— ve +p ve
ox’ 2 2 c c
From equation (4.6.35) we obtain
0j eY :
6<I)j :_2/1801(0 SJ +p(v .s‘j
ox 2\ ¢ c

oY (v-g v-€E
> :(TJ[/"*%T}:O

since
p— /130 =0 (4.7.23)
c
Indeed, substituting the factor A from equations (4.2.22), we have
/1500'8:— 1 oq Ou~£
c 1 gow ¢
2
c
. 1
/15008:— aqgg(e +&,)
c j_bu qow
CZ
From equation (4.6.34) we have
v-eg,=0
Hence, we see that
c _bu qow ¢
CZ

and with equation (4.6.8) for the electric field g, we get
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c
2
e 8__@ 1_02 (I—U uj
0 2
0 .
¢ e 2(1—” 2”) ¢
c
2
1-=
/1502——2—(] €
¢ W47zr2 (l_u‘zu)
c
Applying equation (4.6.5) we get
1,28 = p
c
p-le, 2 =0
c

The validity of equation (4.7.21) for i =1,2,3 is proven similarly.

In paragraph 4.5 we proved that the selfvariations are in agreement with the
conservation of energy and momentum. The proof was done in two different ways: by
direct calculation, and by applying the continuity equation. While it is of interest that
the two different proofs, both lead to the conclusion that the selfvariations are
compatible with the conservation principles of Physics, the calculation for the energy-
momentum tensor was done for a completely different, and very substantial, reason.
At macrocosmic scales, that is at large distances from the material particle, where

equations (4.2.1) and (4.2.2) hold, the energy-momentum tensor ®’, as given by
equation (4.7.19), indeed contains all the information about the energy content of
spacetime. At microcosmic scales the equations of the theory of selfvariations
highlight additional parameters about the energy content of spacetime. These
parameters bring the quantum phenomena to the forefront.

4.8 The energy-momentum tensor of the generalized photon at macrocosmic
scales

In this paragraph we shall study the energy-momentum tensor for the generalized
photon that balances the selfvariation of the rest mass of the material particle. Using

our notation the energy-momentum tensor is given by

2
c co, cv, cv,
2
B D|vc U LY, LY,
-2 2
c e vu v LU

y vz

P’ 4.8.1)

v.e Vv, LU, U

z

with the energy density D given by equation (4.3.7).
We shall prove the conservation of energy and momentum as given by equation
. a(Di/’
o7 = o - 0 (4.8.2)
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For i =0 we have
opY D" o0 00" oD
— = + + +
ox’ ox’ ox' ox* ox’

od" 0 ( Dc? o(D o(D o(D
; =— 3 +— — ¢V, +— —ZCUy +— — ¢V,
ox cot\ ¢ ox\c oy\c oz\c

0j
@ 11D .v.(pv)
ox’  c| ot
and with equation (4.3.8) we get
0j
oD "o
ax.l

For i =1 we have
oD? B o' N o' N o' N op"
o' oo axt oot ox?

oo’ 110 0 0 0

o~ =?{E(DUX)"‘a(DUxe)"‘a(DUXUy)"‘E(DUXUZ)}
Ez% Ux(a—D+V~(DU)j+D(aUX+U'Vl)xj

ox’ ¢ ot ot

and with equation (4.3.8) we get

i
acI)» =v, (a—D+V«jj+%D(aU" +u~Vij
ox’ ot

ot c
and with (4.5.5) we arrive at
i
0P _ Vs v, (4.8.3)
ox/ o\ ot
From equation (2.3.1) we have
o, +v-Vo, zg(ccosé')ﬂ)-V(ccosé)
ot ot
o, +v-Vu, :—csiné‘(ﬁﬂ)-Vé‘j
ot ot
and with equation (2.5.2)(b) we get
% Vo, =0 (4.8.4)
ot ’
Combining equations (4.8.3) and (4.8.4), we see that
i
6d>‘ 0
ox’

We can similarly prove the validity of equation (4.8.1) for i =2,3.

By comparing the results of the last two paragraphs we find substantial differences
between the generalized photon that counterbalances the selfvariation of the electric
charge and the generalized photon that counterbalances the selfvariation of the rest
mass of the material particle. Within the energy-momentum tensor of the first, there
appears the electromagnetic field, as expressed by the first matrix of the second part
of equation (4.7.19). On the contrary, in the expression of the energy-momentum
tensor of equation (4.8.1), no corresponding matrix appears. Therefore, the
generalized photon counterbalancing the rest mass does not correspond to a kind of
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field with the structure and content of the electromagnetic field. Furthermore, by
comparing the second matrix of equation (4.7.19) with the matrix of equation (4.8.1),
we observe that in place of the potential ¥ in the first, the factor ¢* appears in the
second. These observations hold even if we formulate the equations for a non-inertial
reference frame (we have already suggested a way for formulating the equations in
non-inertial reference frames). By careful observation of the equations appearing in
paragraphs 4.2, 4.3 and 4.4, we realize that the difference in the “behavior” of the

couples ( 0, j) and (D,J ) is the result of the different way the electric charge and the

energy transform according to Lorentz-Einstein. It is exactly this difference that is
captured on tensors (4.7.19) and (4.8.1). The generalized photon gives us the exact
mechanism of transport of energy and momentum from one material particle to the
other. At the same time, it highlights the similarities and differences between the
electromagnetic and the gravitational interaction.

We could call the generalized photon that counterbalances the selfvariation of the rest
mass by a different name. In any case it is obvious when we refer to the electric
charge and when we refer to the rest mass. We shall, therefore, keep the name
“generalized photon” for both cases.

The observation we made at the end of the previous paragraph regarding the tensor
given by equation (4.7.19), also holds for tensor (4.8.1). It is valid at macrocosmic
scales. At microcosmic scales, further parameters emerge from the theory of
selfvariations, which cannot be given by the energy-momentum tensor.

4.9 The internality of the universe to the measurement procedure

The selfvariations hypothesis brings to the foreground the “internality of the Universe
to the measurement procedure”. Usually, in order to measure a physical quantity, we
define as unit an arbitrary quantity with which we compare other physical quantities
of the same kind. If the defined unit of measurement depends on the rest mass or the
electric charge, then it is itself subject to the selfvariations. This fact must be taken
into account every time we perform a measurement.

The photon does not have rest mass or electric charge and is, therefore, not affected
by the selfvariations. The evidence we have suggests that the selfvariations take place
at extremely slow rates. Therefore, the first consequence of the selfvariations we
expect to observe is the following: photons with great lifetimes will be measured to
have less energy than expected.

The extremely slow rate of evolution of the selfvariations, combined with the
“internality of the Universe to the measurement procedure”, do not allow their
immediate observation in the laboratory. In the laboratory we only observe the
consequences of the selfvariations. These consequences are the potential fields and
the quantum phenomena.
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CHAPTER 5

The quantitative determination of the selfvariations

5.1 Introduction

In the present chapter we develop the main axis of the structure of the theory
of selfvariations. We determine quantitatively the rate of evolution of the
selfvariations, and formulate the law of selfvariations.

The law of selfvariations dominates from the microcosmic scales up to the
observations we conduct billions of light years away. It reveals the causes of quantum
phenomena, while it contains as physical information the totality of the cosmological
observational data. At the same time, it sets the path for understanding the interactions
between material particles.

The equations resulting from the law of selfvariations are of fundamental
nature for the science of Physics and the related Physical Sciences. They contain a
large amount of physical information, which permits the full understanding of
physical reality.

5.2 The law of selfvariations
The conclusions derived in the previous chapters refer to the surrounding
spacetime of the material particle. These conclusions are grounded on the second
proposition-axiom of the theory of selfvariations, which states that
ds’ =0 (5.2.1)
This
proposition is equivalent to the relation ||1)|| = ¢ which holds in every inertial system of

reference.
In figure 2.2.1 the rest mass m, and the electric charge ¢ of the material

. : . : r
particle act at point A(x, y,z,t) with the value they acquired at the moment w=¢——.
c

Thus, we have that m,=m,(w) and g =gq(w). For the relevant calculations and

proofs we have taken into consideration the axioms of the theory of selfvariations, but
we have not yet defined the rate of evolution of their manifestation. In order to study
the consequences of the selfvariations we have to determine quantitatively the first
proposition-axiom of the theory of selfvariations.

Equation (5.2.1), combined with the first proposition-axiom of the
selfvariations, leads directly to the concept of the “generalized photon”. The material
particle emits generalized photons, and each generalized photon carries energy £ and
momentum P, in order to counterbalance the change in energy and momentum that
results from the selfvariations of the rest mass of the material particle. If the material
particle also carries electric charge, then the generalized photon carries electric charge
as well, in order to counterbalance the variation of the electric charge of the material
particle due to the selfvariations.

The rate of evolution of the selfvariations is determined axiomatically with the
help of the total energy E, and the total momentum P, which is emitted

simultaneously and in all directions by the material particle, according to the
following proposition-axiom:
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«The rest mass m, and the electric charge ¢ of every material particle vary
according to the action of the operators

o i
J— % J— s
o h (509
V>_P
h
where £, and P, denote the total energy and total momentum of the generalized
photons emitted simultaneously by the material particle in all directions, and 7 = 2i ,
V4

where £ is Planck’s constant » .
Stated in the form of equations, relations (5.2.2) can be written as

amo :_iEsmO

A (5.2.3)
1

vmo:gl)smo

and

%) i

T
_ (5.2.4)
1

Vg=—P

q 7 54

In equations (5.2.3) and (5.2.4) we use the same symbol for the energy E_  and the
momentum P,. But these are not the same physical quantities. In equations (5.2.3) the

energy E  and the momentum P, counterbalance the consequences of the

selfvariations of the rest mass. In equations (5.2.4) they counterbalance the
consequences of the selfvariations of the electric charge. Later, we shall modify
equation (5.2.4) in order to make this difference transparent.

The emission of generalized photons by the material particle comes about,
initially, as a consequence of the principles of conservation of energy, momentum and
electric charge. The operators given in relations (5.2.2) determine the relation between
the material particle and the generalized photons, independently from the principles of
conservation. Equations (5.2.3) and (5.2.4) express in a quantitative manner the law of
selfvariations.

According to the law of selfvariations the rest mass m, and the electric charge

g are functions of time ¢, as well as of the position of the material particle
mo = mO(XpJYpJZth)

(5.2.5)
q9=q(X,.Y,,Z,,1)
The dependence of the rest mass and the electric charge, not only on time, but also on
the spatial position, is to be expected. Even if in some inertial frame of reference they
only depend on time, in another inertial frame of reference they will also depend on
the position, according to the Lorentz-Einstein transformations.
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From equation (4.5.20), and for u=0_we take that P, =0, so that the second

equation of the couple of equations (5.2.3) gives Vm, =0, whereas the first equation
can be written as

dm, i
-LEg
dt P
m= —%Eom0
E, =in™ (5.2.6)
mO

Here, we denote the differentiation with respect to time by (), and we set £ = E|

(the necessity of denoting E = E, will become apparent later on).

Furthermore, from the principle of conservation of energy at the instant of emission of
the generalized photons, we obtain that

(myc® +E,) =0 (5.2.7)
Combining
equations (5.2.6) and (5.2.7) we arrive at equation

(moczﬂ'hﬂj -0 (5.2.8)

0

Equation (5.2.8) both contains as physical information, and justifies, the whole
corpus of the current cosmological observational data, as described in chapter 7.

5.3 The “percentage function” O
The law of selfvariations expresses the total interaction of the generalized
photons, which are emitted simultaneously by the material particle, with its rest mass

and electric charge. However, in a particular direction —, the material particle emits
c

generalized photons of energy £ and momentum P Therefore, we have to derive
quantitatively the partial contribution of a single generalized photon of energy E and
momentum P to the law of selfvariations.

We have to answer the following question:
“Which mathematical equation correlates the energy E£ and the momentum P of a

. : : . N )
single generalized photon emitted towards a particular direction —, to the
c

selfvariations of the rest mass m, and the electric charge ¢ of the material particle?”

Thus, we are seeking the form of equations (5.2.3) and (5.2.4) that correspond
to a single generalized photon.

Based on the law of selfvariations, the answer to this physical problem can
only be given by the following statement:
“The partial contribution of a single generalized photon to the selfvariations of the
rest mass m, and the electric charge g of the material particle is given by any

mathematical expression which agrees with the operators defined in equations (5.2.2).
If we sum the contributions of the single generalized photons towards all directions,
during their simultaneous emission by the material particle, we have to end up with
the equations given in (5.2.3) and (5.2.4)”.
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Considering this physical problem from its mathematical aspect, we can
choose arbitrarily any mathematical expression giving the partial contribution of a
single generalized photon according to the law of selfvariations, which satisfies the
operators (5.2.2). Then, we can compare the results obtained by our particular choice
with physical reality. On the other hand, we can choose the mathematical expression
taking into account some specific physical criteria beforehand.

A fundamental case for the partial contribution of a generalized photon
according to the law of selfvariations arises from the following observation: A single
generalized photon counterbalances only a percentage of the total energy, momentum
and electric charge that result from the selfvariations. Therefore, we must examine
whether the contribution of a single generalized photon to the law of selfvariations is
correlated with a percentage @ of the rest mass m, and electric charge ¢q. In this

case, the partial contribution to the law of selfvariations for a single generalized
photon of energy £ and momentum P will be given by the set of equations

omy) __1 gy
A (5.3.1)
V(Om,) =%Pm0
APy __ip
o h (530
l
V(D@q) ZEPQ

Summing in all directions of emission of generalized photons in the first
equation of the set of equations (5.3.1), we obtain relations

8(d>m0)__i'
2 o hZEmO

S (Zom)=—m¥E

£ (my0)=—tm X E

Since it holds that Z E = E_ and the total percentage of the contributions is 1, that is

ZCD =1, we get
amo = _imOEv
ot h ‘

This is the first equation of the set of equations (5.2.3).
Also, from the second equation of the set of equations (5.3.1) we obtain relations

ZV(@mO):%ZPmO
V(Z((I)mo)):%mOZP
V(mOZd)):%mOZP

Since ZCD =1 and ZP =P, we see that
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i
Vm, =—m,P
0 h 0

s

This is the second of the equations given in (5.2.3).

We can perform the same procedure for equations (5.3.2) as well. Therefore, a
single generalized photon can contribute to the selfvariation with a percentage ® of
the rest mass or the electric charge, and then this contribution is expressed by
equations (5.3.1) and (5.3.2).

From equations (5.3.1) we obtain

() am, +m08£ = —iEm0
ot ot h

@VmNH%V®:éPmO

From equations (4.3.9) we also obtain

1 Om, oD i
+my—=——FEm,
_ou oy ot h
CZ
oL MY vo-Lpm,
|- U cow ¢ h

2
C

Eliminating from the equations the quantity m,, we obtain
1 Om, N oo i £

_vumow ot T
2
c

1

L_0m Y, yp-lp
1 YU mycow ¢ h

2
c

Finally, we arrive at the set of equations
ih  Om, oD

E=® +ih—
| m,ow ot
2
,; 5 (5.3.3)
P00 imvo

1 U mycow ¢

2
C

The function @ can be any mathematical function, defined on the material particle
and obeying relation

> =1 (5.3.4)

However, it has to be considered a function depending on the direction in space, since
this is implied by the summation given in equation (5.3.4).

According to the operators defined in (5.2.2), the continuous evolution of the
selfvariations with the passage of time is assured by the condition

E #0  (53.5)

This condition is a straightforward consequence of the first proposition-axiom of the
theory of selfvariations.
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We are seeking now to derive the relation between the total momentum P,

and the total energy E_ . According to equation (4.5.20) this relation can be written as
u
P =Esc—2 (5.3.6)

Here,
u denotes the velocity of the material particle at the moment of the emission of the
generalized photons.

This relation has to be reconsidered for the following reason: During the proof
of this relation in paragraph 4.3 of chapter 4, we have taken into consideration
equation (4.3.8), that is equation

v
J= DC—2
This equation presupposes the validity of the condition

v
P=E~ (537

for every single generalized photon emitted towards any direction defined by L , as
c

depicted in figure 3.2.1. However, equations (5.3.3) reveal a more complex, and
certainly different relation, between the momentum P and the energy £ of a single
generalized photon. Therefore, we have to reconsider the validity of equation (5.3.6),
since we cannot base its proof on equation (5.3.7). As we shall see immediately,
equation (5.3.6) is of general validity, and is compatible with the set of equations
(5.3.3).

We consider a material point particle at rest, as depicted in figure 3.3.1. In
order for this particle to remain at rest, the total momentum emitted simultaneously
and towards all directions has to vanish, that is

P =0 (53.8)

If the case were different, the material particle would undergo an arbitrary
motion, as a consequence of the principle of conservation of momentum. From

equation (5.3.8), and from the set of transformations (4.3.3) for the total energy £

and the total momentum P,, we arrive at equation (5.3.6). Thus, we have

E, =y(E, +uP,)

sx 2

Since, according to equation (5.3.8) it holds that (P P ,P. ) = (0, 0,0) , we obtain the

sy27 s

following relations
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.7
P .= —

C
P, =0
P.=0

u
We also have that u=| 0 |, thus we obtain

0
EY = JE;
S u
Po=0E—~
C
Finally, we have
ES = JE;
P-E
C
This is equation (5.3.6). Furthermore, we also obtain equation
: E
E =)E =yE, = k (5.3.9)
e
CZ

Here, we denote
E =E, (53.10)

A material particle at rest can emit generalized photons of different energies
for different directions. If the generalized photons emitted in opposite directions have
opposite momenta, the material particle will remain at rest. But the momentum of a
generalized photon can also be balanced by two other generalized photons emitted
towards appropriate directions and with appropriate energies. In reality, there is an
infinite number of combinations of emmision of generalized photons, with infinite
combinations of energies and directions of emission. In each of these cases where
equation (5.3.8) holds, the particle remains at rest. The case of emission of identical
generalized photons in all directions by a material particle at rest is only one among
the infinite number of cases satisfying equation (5.3.8).

. . ) . .
Therefore, by rotating the unit vector — around the point particle at rest, as
c

depicted in figure 3.3.1, we expect a change in the energy of the generalized photons.
Exactly this is shown by equations (5.3.3), while at the same time they highlight the
factors defining the energy and momentum of