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Frequent distributions of the databases of the numerical values obtained by resolving
algorithms, which describe physical and other processes, give a possibility for bonding
the probability of that results the algorithms get. In the frequent distribution of the
fractionsof integers (rational numbers), local maxima which meet the ratios of masses
of the elementary particles have been found.

Consider a general case of an arbitrary funcliqr, y,z...). and enforced extracting the probability from chaos, require
Take under consideration a region of the values of this furfaige time of routine job; therefore this job became accessed
tion, split into numerous intervals. Filling up the intervalenly due to the computer techniques.
by item-by-item examination of the possible numerical val- It should be noted that the discrete nature of experimen-
ues of the parametersy, z, . . ., expressed with integers, willtal results was discovered in the background of normal dis-
be non-uniform. tribution of their numerical values (fine structure of the his-
Any algorithm has its own individuarequent distribu- tograms) in already many years ago, by experimental stud-
tion. The distributions can be createdr any formula, which ies conducted, commencing in 1951, by Simon E. Shnoll and
has two or more free parameters (the distributions of the pds experimental team (see his monograph [1] and bibliogra-
rameters can sometimes have unexpected or complicate fgshy; therein). As a result, Shnoll suggested that form of the
containing both minima and peaks of the probability). histograms is connected with the mathematical algorithms,
Frequent distributions give a possibility for bonding thevhich express the respective processes we measure.
probability of the appearance of numerical values of a func- Below are specific examples, which illustrate the connex-
tion in the region of its existence. This is because the numl@t of the frequent distributions and the real physical pro-
of the numerical values of the function, hitting into a respecesses and phenomena.
tive interval, in by item-by-item examination of the possible There is a very interesting property of the frequent dis-
numerical values of the function’s arguments, is proportionabutions: several kinds of the distributions include the
to the probability of an average numerical value of the fungos of masses of the elementary particl&his property is
tion in the interval. The frequent distributions manifest th&tributed to the frequent distributions of the databases of nu-
reproductivity of numerical values of the function due to th@erical values of the functions, constructedfi@ctions We
possible variations of its arguments. A frequent distributigdund these are plain exponential functioh®’, whereA is
itself cannot provide exact numerical solutions. However,gfesented by special numbers: 3.1416..., e=2.17183.. .,
the object or process under consideration is described by i the reverse fine structure constart137.036. . . In afew
a single function but a few ones, the frequent distributiogases (hyperons), we mearthe relative mass of the proton
of these functions can logically be summarized or multiplie;qdp/me =1836.
in order to manifest, more clear, such regions wherein the |n order to be sure in it, we should do follows. Collect a
probability is high to that in the rest regions. Form of th@atabase of numerical values of such a function in the frame-
distribution depends on both the form of the function and thgrk of the complete item-by-item examination of its argu-
dependencies among the positive integers; in the distributiaentsx andy presented by integers, and in the scale which
obtained as above, the properties of the integers becomejge@hough large for covering the necessary scale of masses of
limited by the plain function of their item-by-item examinathe elementary particles (in the units of mass of the electron).
tion, but are more complicate thus dlividualizationof the  Then we should distribute the numerical values along the axis
integers occurs. of abscissas, covering numerous intervals by them. Once the
Once sharp manifested maxima, attractors, or regionsg@dtribution done, we will see that it has local maxima (peaks)
zero probability appear, it is important to find what peculiajn numerous locations of the scale, which meet the numerical
ities the algorithm bears. This however can be done oWilues of masses of the elementary particles. Peaks of the
through respective analysis of a large number of the calcugstributions have a delta-like form.
tion results. In early years, this problem was unable to be con- pjstributions of fractions along the numerical axis are
sidered in serious: processing so large numerical databaggg.similar. They reproduce themselves in the peaks of the
“There is a ready-to-use function “frequency” in MS Excel; another sofif'St, the second and higher orders upto most small segments
ware can be applied as well. of the scale. It is possible to see that there is a fractal struc-

Anatoly V. Belyakov. On the Frequent Distribution and Masses of the Elementary Particles 1



20 22
18 20
S 16 g 18
£ 2 16
£ 14 kS
C C
14
£ 12 2
7] ; 1'\
S 10 j 0
2 s > i
; N i
g 6 g | 1 L
g
z 4 | ‘ 2 4
of Il 1l of o |
0™ e [ «Q 2 = h o [52] e 9] © N~ © o) o - N ) < [te)
& & & & & 3 3 3 & 8 8 8 8 8 &§ & & & & 3
Mass, MeV Mass, MeV
Fig. 1: Mass of the proton (938.27) in distributiors017*". Fig. 2: Mass of the neutron (939.57) in distributiobD1a*".
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cles in distribution G11a".
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Fig. 5: Mass of the (548.8) particle in (511 (mp/rne)x/y distrib- Fig. 6: Masses of th@~, X; (1672, 1670) particles in distribution
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Fig. 7: Mass of thee™- (1321) particle in (11 (m,/me)** dist-
ribution.
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Fig. 9: Mass of ther® (134.9) particle in distribution.611a*".
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Fig. 11: Mass of the R(498.7) particle in distribution.611a*/".
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Fig. 8: Mass of the\ (1115) particle in distribution .811a*/".
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Fig. 10: Mass of th@~ (105.7) particle in distribution.811e¥/".
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Fig. 12: Mass of the\, (2100) particle in G611 (m,/me)*/? distri-
bution.
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Fig. 13: Masses of thelbA; (1233, 1232) particles in distribution  Fig. 14: Mass of the K(892.2) particle in distribution.611a*/v.
0.511a*v.
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Fig. 15: Mass of the B (1230) particle in distributiorb@17*". Fig. 16: Mass of they (782.7) particle in distribution.811e*.
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Fig. 17: Masses of the, (2820),y (3556) particles in distribution  Fig. 18: Mass of the/”” (4414) particle in distribution 811a*¥.
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Fig. 23: Mass of the f (1270) particle in distributiorb@1e*/". Fig. 24: Mass of the (773) particle in distribution 3117*/.
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ture of the distribution, when compressing the scale of tl 55
diagram by respective changing the variations>gnd y 500 - - - -
(with the same number of the interval unchanged). Theig 45
fore, generally speaking, any arbitrary numerical value of t2 40
mass could meet, in the diagram, a peak of the first or higt§ 35
orders. An objective criterion can be a relative error of tfe 30
calculation, which is the ratio of the error of our calculatio§ 5
by the length of the respective local interval (or the distants 5
between the peaks of the same order; the peak heigffiés d% 15
from each other as seen in Fig. 21 and Fig. 22). | check3 10 L || I
about 50 numerical values of the masses; the relative errol 5 II I

:

the calculation was under a few percents only. 0
Figures 1-30 show specific examples of my calculatior 2 2 8 ¥ 8 8
these are frequent distributions, local maxima of which me.. Values
the relative masses of veryftirent particles. The axis OfFig. 31: Distribution on the function 100 e)(p ax(b_y)o.s)’ where
abscissas is given in MeV. The histograms are created in 1€y 001476 =1000.
same way; they have 1000 numerical values distributed along
350 intervals.
It is probable, all the masses meet respective peaks in

80

o
o

Rr@cess is specific to a continuous non-viscous medium, when
distributions. This is not a result of my “passion” to nuperturbations appear in it. We cannot except that physical ex-

merology. This also does not mean that the masses of Qﬁ%r;ents can praduce infinite variety of the elementary par-

particles are expressed just by the same functions. Me %_A th e i ided by f ¢ distributi ¢
while, these correspondences appear with so high precisjon nother examp’e IS provided by frequent distribution o
exponent (Fig. 31)

and so often that they cannot be random, absolutely. on 8
other hand, the num_erlca_\l values _of some masses meet not 100 exd_ ax(b—y)°'5) 7

the peaks, whose height is proportional to the number of the

pairsx andy producing the same fraction, but empty spacesodelling the well-known formula which expresses the trans-
neighbouring the peaks (the spaces are presented by mostgarency of the potential barrier of the tunnellireet, where
appeared ratios of the prime numbers). As is obvious, thandy are variables characterizing mass and energy of the
empty space neighbouring the peaks manifest minima of theaticle. Shape of the distribution is very dependent on the
relative density of rational numbers in their distribution alomgumerical cofficientsa andb. Moreover, several numerical
the numerical axis. Connexion of the spaces with the mesiues of the function are not realized at all. This form of his-
stable states of oscillation processes was shown by Kyritdgrams is specific to those functions, which do not contain
Dombrowski [2, 3]. ratios or fractions.

Is there a spectrum of masses of the elementary particles,In this case, in item-by-item examination of the integers
if we mean it as the presence of the cross-dependency of xtendy along an abstract scale from 1 to 100, there is about
masses, and a possible algorithm of their calculation? | thib® 000 numerical values of the exponent. The axis of ordi-
that not. This is despite we can suppose that the numericates means the number of the coinciding numerical values
values of the masses constitute the “fine structure” of a distrf-the function along the interval.
bution according to an unknown algorithm. As we found, the distribution of the exponent has the most

It is likely as the numerical values of the masses hamember of the intervals (nonzero numerical values of the or-
a probabilistic origin, and are connected somehow with tbaate, whose common number is as well dependent also on
properties of the prime numbers. It is probable,déeris the given length of the unit interval) with several specific nu-
played here by the fact that the prime number fractions merical values andb. For instance, Fig. 31. With=1000
ratios are more fundamental quantities than the prime nuamda=0.00147, diference between the neighboring intervals
bers themselves. This is because each single fraction of (ite the relative length of the interval) is 0.003 of the current
infinite row is a result of ratios of infinite number of the pairaumerical value f the function, while this is in the background
of arbitrary prime numbers. of 1124 nonzero intervals (the graph has 10,000 intervals to-

At present time, many elementary particles were expetaly).
mentally discovered. The particles have verffatent lifes- With these parameters, the term under the exponent ap-
pans. This fact and also the shape of distributions construgbedaches numerically te1l independent from the “size” of
on fractions lead us to a conclusion that the first order mastesdatabase. On the other hand,tilnenelling gfectappears
“create” the second order masses, the second order magsthsthe same conditiorin an analogous physical formula!
“create” the third order masses, and so on to infinity. Such also attempted to employ frequent distributions in order to
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explain the most brighty lines of the radiation spectra for di&case, given a respective algorithm, we could replace the un-
ferent kinds of radiation [4]. known parameters in it with the numbers taken in the respec-

Thus | suggest that, aside for the known physical fieldsje interval then create frequent distributions thus obtaining
the field of the positive integers exists as a physical field of thebabilistic solutions. Experimental tests are needed in this
Nature. Pattern of this field has concentrations (peaks) atigction.
rarefractions of integers, which determine special numbers Finally, | would like to attract attention of physicists to
such ase, =, and, probable, the fundamental physical cothis problem surveyed here. As is probable, this problem
stants (the fine structure constant, the gravitational constainiws that dialectic boundary where chaos meets order, and
and the others). Physical phenomena process in the inhogtance meets regularity.
geneous background of this field; any function using the field
of integers (database of integers) produces surfs of probabil-
ity in it (a relative analogy). We should not except that thReferences
Stat_)le_ orbits of the_ Cqsm_lc bO_dIeS orlglngte_from Fhe prObfL. Shnoll S.E. Cosmic physical factors in random processes. Svenska
abilistic frequent distributions in the gravitational field (the  fysikarkivet, Stockholm, 2009, 388 pages.
field of the gravitational potential) of the attracting masse$  pombrowski K. 1.Bulletin of Soviet Atron. Geodesical Societ@56,
they orbit. no. 17(24), 46-50.

It is obvious that the discrete distributions of experimen-3. Dombrowski K. I. Rational numbers distribution and resonaReceg-
tal data, and also their connexion with the aforementioned ress in Physics2005, v. 1, 65-67.
frequent distributions, are true for the microscales in the first. IBely’;lkOV A-ViDGeom;trodyr}a\r/f;iC; and elem_ernts r?f the matrix calcu-
row. There in the microscales, physical quantities exist in the g;eomﬁi%egaz ngccﬁgur'rr]‘gégozl :o."?,'rzgit; ’ Si‘;sie;my”“’ersme
boundary of their decay, thus the possibility of this solution
is due to the discrete origin of physical phenomena, which is
manifested in the microscales very much. On the other hand,
our conclusion are most probable true for a general case as
well: non-prime numbers can be represented as the ratios of
primes, so the aforementioned frequent distributions are still
true for even smallest intervals.

Are we lawful to claim that the parameters of physical or
other processes, which are described as above, have not only
the quantitative expression but also the probabilistic expres-
sion as just said before?

Should we, within the given dependencies which describe
some processes or phenomena, find out a possibility for the
prediction of the regions of the most probable solutions as
those most rational to the others, or for the prediction of those
intervals of numerical values, where the considered phenom-
enon processes most intense (all these not only in the mi-
croscales)?

If so, we get a possibility for solving the reverse prob-
lems, which target re-construction of the probabilistic distri-
bution of the primary experimental results on the basis of a
respective algorithm. This is related first of all to those prob-
lems, which are based on the discrete data (primes). This is,
for instance, industry or economics: the number of working
sections, workgroups, units of equipment, produced units, the
number of working personell, and so on.

If all that has been said above is true, and the results of
solving similar algorithms (in the case where the algorithms
are expressed by the functions whose arguments are more
than two) can bear not only a numerical meaning but also
a probabilistic meaning, this fact leads to important sequels.
There are many problems where numerous parameters are un-
known, or cannot be determined in exact. This is economics,
game theory, military, meteorology, and many others. In such
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