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Abstract 

The fractional variational principle represents an important part of fractional calculus and has 
found many applications. There are several versions of fractional variational principles and so 
different kinds of fractional Euler-Lagrange equations. In this paper, we propose the fractional 
sine-Gordon Lagrangian density. Then using the fractional Euler-Lagrange equations we obtain 
fractional sine-Gordon equation. 
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1. Introduction 

Fractional calculus generalizes the classical calculus [1] and has many applications in various 
fields of physics, from classical and quantum mechanics and electrodynamics to field theory and 
cosmology [2-14].The fractional variational principle represents an important part of fractional 
calculus. This subject was initiated by Riewe [15, 16]. Riewe developed fractional Lagrangian, 
fractional Hamiltonian, and fractional mechanics. He has shown that Lagrangian with fractional 
derivative lead directly to equations of motion with non-conservative classical forces such as 
friction. Klimek [17, 18] and Agrawal [19] brought this subject to the main stream and initiated 
the field of fractional variational calculus. Recently Agrawal has written a comprehensive 
reviewing paper on this subject that can be found in [20] and discussed about various features of 
fractional variational calculus. Applications of fractional variational calculus in the field of 
physics have gained considerable popularity and many important results were obtained during 
the last years [21-27]. As a new application, in this paper we propose the fractional sine-Gordon 
Lagrangian density. Then using the fractional Euler-Lagrange equations, we obtain fractional 
sine-Gordon equation. It is well known that sine-Gordon equation is one of the basic equations of 
modern nonlinear wave and field theory and it arises in a large number of areas of theoretical and 
applied physics [28-36]. For example, it includes: Josephson junction theory (propagation of 
fluxons in Josephson junctions between two superconductors), dislocations in solid state physics, 
motion of Bloch magnetic walls in magnetic crystals, stability of fluid motions, nonlinear optics 
etc. Fractional dynamics is related to the study of applications of fractional calculus to describe 
systems with long-term memory, non-local and fractal properties and it is interesting to study 
nonlinear behavior of phenomena in such systems. For this purpose, in recent years researchers of 
the field of fractional dynamics have proposed some fractional generalizations of sine-Gordon 
equation for modeling above mentioned phenomena in complex media [37-40]. 
In the following, mathematical tools are briefly reviewed. Then in Sec. 3 we present a new 
fractional sine-Gordon Lagrangian density. Then using the fractional Euler-Lagrange equations 
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we obtain fractional sine-Gordon equation that has the same form as the fractional sine-Gordon 
equation obtained in [39]. At last, in Sec. 4, we will present some conclusions. 
 
2. Mathematical Tools 

The fractional derivative has different definitions such as: Grünwald–Letnikov, Riemann-
Liouville, Weyl, Riesz, Hadamard and Caputo fractional derivative [1], however in the papers 
cited above, the problems have been formulated mostly in terms of two types of fractional 
derivatives, namely Riemann-Liouville (RL) and Caputo. Among mathematicians, RL fractional 
derivatives have been popular largely because they are amenable to many mathematical 
manipulations. However, the RL derivative of a constant is not zero, and in many applications it 
requires fractional initial conditions which are generally not specified. Many believe that 
fractional initial conditions are not physical. In contrast, Caputo derivative of a constant is zero, 
and a fractional differential equation defined in terms of Caputo derivatives require standard 
boundary conditions. For these reasons, Caputo fractional derivatives have been popular among 
engineers and scientists. In this section we briefly present some fundamental definitions. The left 
and the right partial Riemann–Liouville and Caputo fractional derivatives of order k , 0 1k   
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The Left (Forward) Caputo fractional derivative  
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The Right (Backward) Caputo fractional derivative  
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The fractional variational principle represents an important part of fractional calculus and has 
found many applications in physics. As it is mentioned in [20] there are several versions of 
fractional variational principles and fractional Euler-Lagrange equations due to the fact that we 
have several definitions for the fractional derivatives. In this work we use new approach 
presented in [25] where authors developed the action principle for field systems described in 
terms of fractional derivatives, by use of a functional ( )S  as: 
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where     ( ), ( ), ( ),C C
k k k k k kL x x x x      is a Lagrangian density function. Accordingly, 
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, 1( ) ...k ndx dx dx and the integration is taken over the entire domain . From these definitions, 
we can obtain the fractional Euler-Lagrange equation as: 
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Above equation is the Euler–Lagrange equation for the fractional field system and for , 1   , 
gives the usual Euler–Lagrange equations for classical fields. Also we can study the Hamiltonian 
formulation of the field systems [25]. For this, consider the fractional Lagrangian given in 
equation (5). Then the fractional canonical momentum densities 
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So the fractional canonical Hamiltonian density is: 
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With this fractional canonical Hamiltonian density one can obtain the fractional Hamilton 
equation of motion as: 
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One can prove that above equations can lead to the correct Euler–Lagrange equation of motion. 
 

3. Fractional sine-Gordon equation 

In this section we apply fractional Euler-Lagrange equation to obtain fractional sine-Gordon 
equation. One of the classical Lagrangians where one does this, is  

( )L U
       

Using the standard Euler-Lagrange equation: 

0
( )

L L


 

  
       

 

It is easy to verify that this Lagrangian density’s corresponding equations of motion are: 
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For the sine-Gordon equation, we now just take cos( )U   or 1 cos( )U   , which yield 
identical equations of motion, namely: 
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2 2

2 2 sin( ) 0
t x
   
  

 
 

(6)  

(10)  

(11)  

(12)  

(13)  

(14)  

(7)  

(8)  

(9)  



 

 

This equation is one of the basic equations of modern nonlinear wave and field theory and it 
arises in a large number of areas of physics [28-36].Now let us consider following Lagrangian 
which contains fractional Caputo derivative: 
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Also, note that we have introduced arbitrary quantities   with dimension of [second] and    
with dimension of [meter] to ensure that all quantities have correct dimensions. Using equations 
(6), the Euler–Lagrange equations for variable   is given as: 
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The above equation has the same form as the fractional sine-Gordon equation obtained in 
[39].Now we want to construct the Hamiltonian formulation for this problem. By using (7) the 
fractional canonical momenta are: 
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Making use of (8, 15, 17) we can obtain the fractional canonical Hamiltonian as: 
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Substituting (18) in (9), we can easily obtain the corresponding equation of motion that is the 
same as the equation we obtained using fractional Euler-Lagrange equation.      
 

 

4. Conclusion 

The fractional variational principle represents an important part of fractional calculus and has 
found many applications in physics. As it is mentioned in [20] there are different kinds of 
fractional variational calculus and fractional Euler-Lagrange equations due to the fact that we 
have several definitions for the fractional derivatives. As an example, in this paper, we have 
proposed the fractional sine-Gordon Lagrangian density. Then using the fractional Euler-
Lagrange equations, we have obtained fractional sine-Gordon equation. We can see that this 
result is the same as the sine-Gordon equation obtained in [39]. Also we showed that equation of 
motion obtained by using fractional Hamiltonian formulation has the same form as the equation 
we obtained using fractional Euler-Lagrange equation. 
As we know, sine-Gordon equation is one of the basic equations of modern nonlinear wave and 
field theory and it arises in a large number of areas of theoretical and applied physics such as: 
Josephson junction theory (propagation of fluxons in Josephson junctions between two 
superconductors), dislocations in solid state physics, motion of Bloch magnetic walls in magnetic 
crystals, stability of fluid motions, nonlinear optics etc. In recent years some fractional 
generalizations of sine-Gordon equation have been introduced for modeling the above mentioned 
phenomena in complex media. In this paper we did not study the application of our new model 
for these systems. We hope to report on these subjects in the future. 
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