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A new type of exact solutions of the full 3 dimensional spatial Helmholtz equation 

for the case of non-paraxial Gaussian beams is presented here. 

We consider appropriate representation of the solution for Gaussian beams in a 

spherical coordinate system by substituting it to the full 3 dimensional spatial 

Helmholtz Equation. 

Analyzing the structure of the final equation, we obtain that governing equations for 

the components of our solution are represented by the proper Riccati equations of 

complex value, which has no analytical solution in general case. 

But we find one of the possible exact solution which is proved to satisfy to such an 

equations for Gaussian beams. 

 

 

 



 

1. Introduction. 

 

The full 3-dimensional spatial Helmholtz equation provides solutions that describe 

the propagation of waves over space (e.g., electromagnetic waves); it should be 

presented in a spherical coordinate system R, ,   as below [1-2]: 

  
 -  where Δ - is the Laplacian, k is the wavenumber, and A is the amplitude. 

 

Besides, in spherical coordinate system [3]: 
 
 

 

 
 
Let us search for solutions of Eq. (1.1) in a classical form of Gaussian beams [4-8], 

which could be presented in Cartesian coordinate system as below [9]: 

 

- where w(z), R(z), (z) – are some functions, describing the appropriate parameters 

of a beam; the last expression could be also represented as below 

 

- here p(z) is the complex phase-shift of the waves during their propagation along 

the z axis; q(z) is the proper complex parameter of a beam, which is determining the 

Gaussian profile of a wave in the transverse plane at position z. 
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The last expression could be transformed to the form below in a spherical 

coordinate system: 

 

Then having substituted the expression (*) into Eq. (1.1), we should obtain ( ≠ 0): 

 

 

 

 

2. Exact solutions. 

 

Let us re-designate appropriate term in (*) as below: 

 

In such a case, Eq. (1.2) could be transformed as below ( ≠ 0): 

(*)
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Thus, all possible solutions for representing of Gaussian beams in a form (*) are 

described by the Equation (2.1). 

 

Let us assume as below: 

 

- here C – is a constant of complex value. For such a case, Eq. (2.1) could be 

reduced as below ( ≠ 0): 

 

 

 

Besides, one of the obvious solutions of PDE-equations (2.2)-(2.3): 

 

   f (R, )  =  f₁ (R)  +  f₂ ()            (**) 

 

- where f₁ (R), f₂ () – are the functions of complex value. 
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3. Presentation of exact solution. 

 

In such a case, Eq. (2.2) could be represented as below: 

 

 

 

- where the last equation is known to be the Riccati ODE [3], which has no solution 

in general case. But if C = 0, Eq. (3.1) has a proper solution (C₀ = const): 

  

 

Besides, Eq. (2.3) could be presented as below (C = 0): 

 

- where the last Riccati ODE (3.3) has a proper solution below in case of C = 0 (see 

[3], the case 1.104). 
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Indeed, let us assume (k ≠ 0; R₀ = const): 

 

 

 

- then, we obtain (R₀ = 0): 

 

 

 

Taking into consideration the expression (**) for the solution as well as (3.2)-(3.4), 

let us finally present a new type of non-paraxial Gaussian beams, which is proved 

to satisfy to the Helmholtz equation (1.1), as below: 
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4. Discussions & conclusion. 

 

A new type of exact solutions of the full 3 dimensional spatial Helmholtz equation 

for the case of non-paraxial Gaussian beams is presented here. 

We consider appropriate representation of the solution for Gaussian beams in a 

spherical coordinate system by substituting it to the full 3 dimensional spatial 

Helmholtz Equation. 

Analyzing the structure of the final equation, we obtain that governing equations for 

the components of our solution are represented by the proper Riccati equations of 

complex value, which has no analytical solution in general case. 

But we find one of the possible exact solution (3.5) which is proved to satisfy to 

such an equations for Gaussian beams (*). 

Indeed, since the functions g(R) = sin (kR)/R or g(R) = cos (kR)/R in (3.5) are itself 

an exact solutions of the full Helmholtz equation (1.1), the formula for the 

Laplacian in spherical coordinates gives for A = h()g(R), h() = ln tg (/2): 

 

- which is obviously valid. 

As for the appropriate example of paraxial approximation for such a non-paraxial 

exact solution (3.5) of the full Helmholtz equation (1.1), it could be easily obtained 

in the case  → 0 (see the expression above). 
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