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A new type of exact solution of the full 3 dimensional spatial Helmholtz equation for 

the case of non-paraxial Gaussian beams is presented here. 

We consider appropriate representation of the solution for Gaussian beams in a 

spherical coordinate system, then implement it in the full 3 dimensional Helmholtz Eq. 

Analyzing the structure of the final equation, we obtain one of the simple exact 

solutions which is proved to satisfy to such an equation for Gaussian beams. 

Also the proper examples of implementing of the paraxial approximation for Gaussian 

beam could easily be obtained for a new type of exact solution of Helmholtz equation. 

 

 

 

 

 



 

1. Introduction. 

 

The full 3-dimensional spatial Helmholtz equation provides solutions that describe the 

propagation of waves over space (e.g., electromagnetic waves); it should be presented 

in a spherical coordinate system R, ,   as below [1-2]: 

  
 -  where Δ - is the Laplacian, k is the wavenumber, and A is the amplitude. 

 
Besides, in spherical coordinate system [3]: 
 
 

 

 
 
Let us search for solutions of Eq. (1.1) in a form of Gaussian beams, which could be 

presented in Cartesian coordinate system as below [4]: 

 

- where w (z), R (z),  (z) – some functions, describing the appropriate parameters of a 

beam; the last expression could be also represented as below 

 

 

 

- here p (z) - is the complex phase-shift of the waves during their propagation along the 

z axis; q (z) - is the proper complex parameter of a beam, which is determining the 

Gaussian profile of a wave in the transverse plane at position z. 
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If the direction of axis z coincides with the main direction of propagation of a beam, the 

last expression could be transformed in a spherical coordinate system as below: 

 

 

Then having substituted the last expression (for Gaussian beam) into Eq. (1.1), we 

obtain ( ≠ 0): 

 

 

 

 
 

2. Exact solution. 

 

Let us assume:  C  q (R, ) = R²,  C = const. For such a case, Eq. (1.2) could be 

reduced as below ( ≠ 0): 
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- besides, Eq. (1.3) could be presented as a system of two equations: 

 

 

- or 

 

 

 

Let us denote as below  
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- where we could choose C = mi in the expression above; besides, for such a case we 

should choose m ≤ -1 or m > 0. 

 

Then one of the simplest solution of 2-nd equation of the last system is obviously 

presented below 

 

 

 

- where p (R) = p₁ (R) + i p₂ (R), so we obtain from the 1-st equation of system above: 

 

 

 

 

 

Besides, we obviously conclude that one of the simplest solution of 1-st equation of 

system above is p₁ (R) = const = C₁, but function p₂ (R) should be defined from the 2-

nd equation of system above:  
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Finally, one of the simplest exact solution of Eq. (1.2) is presented below: 

 

 

 

 

Let us also imagine the solution above in a spherical coordinate system R, , : 
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As for the proper example of paraxial approximation for such an exact solution of 

Helmholtz equation, it could be easily obtained in the case  → 0 (see the last 

expression above). 
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