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Abstract:   
 
We show how the Koide relationships and associated triplet mass matrices can be generalized to 
derive the observed sum of the free neutron and proton rest masses in terms of the up and down 
current quark masses and the Fermi vev to six parts in 10,000, which sum can then be solved for 
the separate neutron and proton masses using the neutron minus proton mass difference derived 
by the author in an recent, separate paper.  The opposite charges of the up and down quarks are 
responsible for the appearance of a complex phase exp(iδ) and real rotation angle which leads 
on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and 
Maskawa (CKM) and which can be used to specify the neutron and proton mass relationships to 
unlimited accuracy and which are shown within experimental errors to be related to the CKM 
mixing angles.  The Koide generalizations developed here enable these neutron and proton mass 
relationships to be given a Lagrangian formulation based on neutron and proton field strength 
tensors that contain vacuum-amplified and current quark wavefunctions and masses.  In the 
course of development, we also uncover new Koide relationships for the neutrinos, the up 
quarks, and the down quarks. 
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1.  Introduction 
 
In an earlier paper [1], the author introduced the thesis that baryons are Yang-Mills 

magnetic monopoles.  One of the relationships predicted in this paper, equation [11.22] therein, 
predicted the electron rest mass as a function of the up and down quark masses, namely: 

( ) ( )
3
23 / 2e d um m m π= − , (1.1) 

with the factor of ( )
3
22π  emerging from a three-dimensional Gaussian integration.  Based on a 

“resonant cavity” analysis of the nucleons whereby the energies released or retained during 
binding are directly dependent upon the masses of the quarks contained within the nucleons, we 
also predicted that latent, intrinsic binding energies of a neutron and proton, as in [12.12] and 
[12.13] of [1], are given by: 

( ) ( )
3
22 4 4 / 2 7.640679P u d d u d uB m m m m m m MeVπ= + − + + =  (1.2) 

( ) ( )
3
22 4 4 / 2 9.812358N d u u u d dB m m m m m m MeVπ= + − + + = . (1.3) 

These predict a latent binding energy of 8.7625185 MeV per nucleon for a nucleus with an equal 
number of protons and neutrons, which is remarkably close to what is observed for all but the 
very lightest nuclides, as well as a total latent binding energy of 493.028394 MeV for 56Fe, in 
contrast to the empirical binding energy of 492.253892 MeV.  This is understood to mean that 
99.8429093% of the available binding energy in 56Fe is applied to inter-nucleon binding, with the 
balance of 0.1570907% retained for the intra-nucleon confinement of quarks.  It was also noted 
that this percentage of energy released for inter-nucleon binding is higher in 56Fe than in any 
other nuclide, which further explains that although the quarks come closer to de-confinement in 
56Fe than in any other nuclide (which also explains the “first EMC effect” [2]), they do always 
remain confined, as emphasized by the decline in this percentage beyond 56Fe. 

In a second paper [3], the author showed how the thesis that baryons are Yang-Mills 
magnetic monopoles together with the foregoing “resonant cavity” analysis can be used to 
predict the binding energies of the 1s nuclides, namely 2H, 3H, 3He and 4He, to at least parts per 
hundred thousand and in most cases parts per million, and also to predict the difference between 
the neutron and proton masses according to: 

( ) ( )
3
23 2 3 / 2N P u d µ d uM M m m m m m π− = − + − . (1.4) 

This relationship, originally predicted in [6.16] of [3] to about seven parts per ten million in 
AMU, was later taken in [9.1] of [3] to be an exact relationship, and all of the other prior mass 
relationships which had been developed were then nominally adjusted to implement (1.4) as an 
exact relationship.  The review of the solar fusion cycle in section 8 of [3] served to emphasize 
how effectively this resonant cavity analysis can be used to accurately predict empirical binding 
energies, and suggested how applying gamma radiation with the right resonant harmonics to a 
store of hydrogen may well have a catalyzing effect for nuclear fusion.  This relationship (1.4) 
will also play an important role in the development here. 
 At the heart of these numeric calculations were the two outer products [3.9] and [3.10] in 
[3] for the neutron and the proton, with components given by [3.11] and related relationships 
developed throughout section 2 of [3].  In particular, the two matrices which stood at the center 
of these successful binding calculations were the 3x3 Yang-Mills diagonalized matrices K of 

mass dimension ½ with components ( ) ( )diag , ,N u d dK m m m=  for the neutron and
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( ) ( )diag , ,P d u uK m m m=  for the proton, where um  is the “current” mass of the up quark 

and dm  is the current mass of the down quark. 

 What is very intriguing about these K matrices (which we designate as such to reference 
Koide), is that although they originate out of the thesis that baryons are magnetic monopoles, 
they have a form very similar to matrices which may be used in the so-called Koide mass 
formula [4] for the charged leptons, namely: 

( )2

1 2 3

1 2 3

3
2

m m m
R

m m m

+ +
= ≅

+ +
. (1.5) 

Above, when we take 1 em m= , 2m mµ=  and 3m mτ=  to be the charged lepton masses, the ratio 

3 / 2R ≅  gives a very precise relationship among these masses.  Indeed, if we use the 2012 PDG 
data 0.510998928 0.000000011em MeV= ± , 105.6583715 0.0000035m MeVµ = ±  and 

1776.82 0.16m MeVτ = ±  [5], we find using the mean experimental data that 1.500022828R =  

which is very close to 3/2.  When we use the extremes of the experimental data ranges, 
specifically, the largest possible tau mass and the lowest possible mu mass, we obtain 
R=1.5000024968.  Although this is an order of magnitude closer to 3/2 than the ratio obtained 
from the mean data, is still outside of experimental errors.  This means that while 3 / 2R ≅  is a 
very close relationship, even accounting for experimental error, it is still approximate.  For this to 
be within experimental errors, it would have to be possible to obtain some 3 / 2R ≤  for some 
combination of masses at the edges of the experimental ranges, and it is not.  So in the 
application of the Koide relationships to various “pole” (low probe energy) mass triplets, the 
question becomes, not whether a triplet has a ratio exactly equal to 3/2, because no triplet does 
have this exact relationship, but rather, how close to 3/2 any given ratio is, and more importantly, 
what the meaning is of this ratio and deviations from this ratio. 
 The similarities between the matrices developed by the author in [1] and [3] and those 
developed by Koide in [4] are highlighted if we define a Koide matrix K generally as: 

1

2

3

0 0

0 0

0 0

AB

m

K m

m

 
 

≡  
 
 
 

. (1.6) 

Then, the two latent binding energy relationships (1.2) and (1.3) may be represented as: 

( ) ( )
( ) ( )

( )

3
2

3 3
2 2

3
2

21 1
( ) ( ) 2 4 4 / 2

2 2

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0

P AB BA AA BB u d d u d u

d d d d

u u u u

u u u u

B K K K K Tr K Tr K K m m m m m m

m m m m

Tr m m Tr m m

m m m m

π
π π

π

= − = − ⊗ = + − + +

      
      

= − ⊗      
      
      
      

,(1.7) 
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( ) ( )
( ) ( )

( )

3
2

3 3
2 2

3
2

21 1
( ) ( ) 2 4 4 / 2

2 2

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0

N AB BA AA BB d u u u d d

u u u u

d d d d

d d d d

B K K K K Tr K Tr K K m m m m m m

m m m m

Tr m m Tr m m

m m m m

π
π π

π

= − = − ⊗ = + − + +

      
      

= − ⊗      
      
      
      

,(1.8) 

where, starting with (1.6), in (1.7) we have set 1 dm m≡  and 2 3 um m m= ≡  and in (1.8) we have 

set 1 um m≡  and 2 3 dm m m= ≡ .  These originate in the author’s thesis in [1] that baryons are 

Yang-Mills magnetic monopoles.  Above, ⊗  designates an outer matrix product. 
 On the other hand, setting  1 em m= , 2m mµ=  and 3m mτ=  in (1.6), we may write: 

2
1 2 3( ) AB BATr K K K m m m= = + + , (1.9) 

( )2

1 2 3( ) AA BBTr K K K K m m m⊗ = = + + . (1.10) 

Then, using (1.9) and (1.10), Koide relationship (1.5) for charged leptons may be written as: 

( )2

1 2 3

2
1 2 3

( ) 3
( ) 2

AA BB

AB BA

m m m K K Tr K K
R

m m m K K Tr K

+ + ⊗= = = ≅
+ +

. (1.11) 

 Clearly then, the Koide matrices (1.6) provide a general form for organizing the study of 
both binding energy and fermion mass relationships which lead to very accurate empirical 
results.  It thus becomes desirable to understand the physical origin of these matrices and tie 
them to a Lagrangian formulation so that they are no longer just intriguing curiosities that yield 
tantalizingly-accurate empirical results, but instead can be rooted in fundamental physics 
principles based on a Lagrangian.  And, it is desirable to see if these matrices can be extended in 
their application to make additional mass predictions and gain a deeper understanding of the 
particle mass spectrum.  
 Because the binding energy formulation in (1.7) and (1.8) has its roots in the thesis that 
baryons are Yang-Mills magnetic monopoles and specifically emerges from the calculation of 

energies via 3E d x= −∫∫∫L , see [11.7] of [1] et. seq., the author’s previous findings will provide 

us with the means to anchor the Koide relationships in a Lagrangian formulation.  And, because 
Koide provides a generalization of the mass matrices derived by the author, these matrices will 
provide us with the means to derive additional mass relationships as well, in particular, and 
especially, the neutron and proton rest masses. 
 Insofar as Koide relations are concerned, in section 2 we shall show how to reformulate 
these in terms of the statistical variance of the Koide terms across the three generations, which 
yields some new Koide relationships for the neutrinos, the up quarks, and the down quarks.  We 
shall then show in section 3 how to recast these Koide relationships into a Lagrangian / energy 
formulation, which addresses the question as to underlying origins of these relationships, so that 
these relationships are not just curious coincidences, but can rooted in fundamental, physics 
principles based on a Lagrangian. 
 Most importantly, in this paper, we shall combine the author’s previous work in [1] and 
[3] as well as [6], using the generalization provided by Koide triplet mass matrices of the form 
(1.6), to deduce the observed rest masses 938.272046 MeV and 939.565379 MeV of the free 
neutron and free proton, as a function of the up and down quark masses and electric charges and 
the Fermi vev.  This mass derivation is presented in sections 4 and 5.  In section 6 we will 
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examine the “constituent” and “vacuum-amplified” quark masses of the neutron and proton.   
Finally, in section 7 we develop a Lagrangian formulation for these neutron and proton masses, 
which underscores that these relationships are not just close numerical coincidences, but 
originate from fundamental Lagrangian-based physics principles.  
 
2.  Statistical Reformulation of the Koide Mass Relationship 
 
 Let us begin by couching the Koide mass relationship (1.5) for the charged leptons in 
statistical terms, using 1 em m= , 2m mµ=  and 3m mτ=  in (1.6).  First, using (1.9), we write the 

average of the masses im  in a Koide mass triplet 1m , 2m , 3m , i.e., the “average of the squares” 

of the matrix elements in (1.6), as: 

( )2 2
1 2 3( ) / 3 / 3 / 3AB BA iK Tr K K K m m m m= = = + + = . (2.1) 

Next, via (1.10), we write the “square of the average” of these matrix elements as: 

( )22

1 2 32 1 2 3( )
9 9 3 9

AA BB
m m mm m mTr K K K K

K
+ + + +⊗= = = =  

 
. (2.2) 

So, combining (2.1) and (2.2) in the form of (1.5) allows us to write: 

( )2
2

1 2 3

22
1 2 3

( ) 3
3

( ) 2
AA BB

AB BA

m m mK Tr K K K K
R

Tr K K K m m mK

+ +⊗= = = = ≅
+ +

. (2.3) 

This allows us to extract the relationship: 
2 2 21

3 2
R

K K K= ≅ , (2.4) 

which naturally absorbs the 3 from the factor of 3/2. 
 Now, we simply use (2.4) to form the statistical variance ( )Kσ  in the usual way, as:   

( ) 2 2 22 2 23 3 1
1 1 1

3 2i i

R
K K K K K m K K m

R R
σ      = − = − = − = − ≅ = =     

     
. (2.5) 

The key relationship here, using the first and last terms, is: 
( ) iK mσ ≅ . (2.6) 

So the average im  of the charged lepton masses is approximately (and very closely) equal to 

the statistical variance ( )Kσ  of Koide matrix (1.6) for the charged leptons.  This is a much 

simpler and more transparent way to express the Koide mass relationship (1.5), and it completely 
absorbs the factor of 3/2.  The key point: (2.6) is an entirely equivalent, and far more transparent 
way to restate the Koide mass relationship (1.5). 
 Of course, as noted after (1.5), this is a very close, but still approximate relationship.  The 
exact relationship, also extracted from (2.5), and using 1.500022828R =  based on the mean 
experimental data, is: 

( ) 0.999969563
3

1 i i iK m m C m
R

σ  = − = ≡ 
 

, (2.7) 

where we have defined the statistical coefficient C and the inverted relationship for R as: 
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3 3
1;

1
C R

R C
≡ − ≡

+
. (2.8) 

Thus, we rewrite the basic Koide relationship (1.5) more generally as: 

( )2

1 2 3

1 2 3

3
1

m m m
R

m m m C

+ +
= =

+ + +
. (2.9) 

In the circumstance where the statistical coefficient C=1, i.e., where the average mass is exactly 
equal to the statistical variance, we have 3 / 2R = .  So the variance of the square roots of the 
three charged lepton masses is just a tiny touch less ( 0.999969563× ) than the average of the 
three masses themselves.  But the factor of 3/2, which is somewhat mysterious in (1.5), is now 
more readily understood when we realize that it corresponds with C=1 in (2.7). 
 This means that the Koide relationship for any given triplet of numbers with mass 
dimension ½, may be most transparently characterized by the coefficient C.  Thus, using (2.7), 
the coefficient for the charged lepton triplet is (we also include R for comparison): 

( ) ( )0.999969563 1; 1.500022828 3 / 2RC e eµτ µτ≅ ≅= = . (2.10) 

So what about some other Koide triplets?  For the neutrinos, PDG in [7] provides upper limits on 
the neutrino masses whereby 2

e
m eVν < , 0.19m MeV

µν <  and 18.2m MeV
τν < .  If we use these 

mass limits in a Koide triplet, we find that R=1.202960231.  But the significance of this is much 
more easily seen by using (2.8) to calculate: 

( ) ( )1.49384803 3 / 2 6 /; 1.202960 31 52e eRC µ τ µ τν ν ν ν ν ν≅ ≅= = . (2.11) 

Here, we have another ratio very close to 3/2, but now it is in the coefficient C rather than the 
coefficient R.  So, for the neutrino mass limits ( ) (3 / 2)K mν νσ ≅ .  This in an interesting 

“coefficient migration” as between the charged and uncharged leptons, wherein for the charged 
leptons masses 3 / 2R ≅  to parts per 100,000, while for the neutrino lepton upper mass limits, 

3 / 2C ≅  within about 0.4%.  As we shall see, this is the start of a new Koide pattern. 
 Turning to quark masses, we use 2.223792405um MeV=  and 4.906470335dm MeV=  

developed in [9.3] and [9.4] of [3] with the conversion 1 u=931.494 061(21) MeV/c2, as well as 
1.275 0.025cm GeV= ± , 95 5sm MeV= ± , 173.5 .6 .8tm GeV= ± ±  and 4.18 0.03bm GeV= ±  

from PDG’s [8].  For Koide triplets of a single electric charge type, we can calculate that: 
( ) ( )1.54688 3 / 2; 1.177913486 6 / 5C uct uR ct≅ = ≅= . (2.12) 

( ) ( )1.18741 6 / 5; 1.371483911 15 / 11C dsb dsbR≅ = ≅= . (2.13) 

So we now see a distinctive pattern of coefficient migration among (2.10) through (2.13).  
For the charged leptons in (2.10) which are the lower members of a weak isospin doublet, 

( ) 3 / 2R eµτ ≅ .  For neutrinos which are the upper members of this doublet, ( ) 3 / 2eC µ τν ν ν ≅ , 

which migrates the 3 / 2 from the R to the C coefficient.  Then, for the up quarks, we find 
another coefficient migration such that ( ) 3 / 2C uct ≅ , which is same as the C for the neutrinos.  

Both the up quarks and the neutrinos are the upper members of weak isospin doublets.  Finally, 
we see that the ( ) 6 / 5R uct ≅  coefficient for the up quarks, now migrates to ( ) 6 / 5C dsb ≅  for 

down quarks.  So the migration is ( ) ( )3 / 2 3 / 2ee CR µ τµτ ν ν ν≅ → ≅  for leptons, 
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( ) ( )3 / 2 3 / 2eC C uctµ τν ν ν ≅ → ≅  providing a “bridge” from “up” leptons to “up” quarks, and 

then ( ) ( )6 / 5 6 / 5uct C dsbR ≅ → ≅  migrating from the up to the down quarks. 

The net upshot of this coefficient migration is that we now have Koide-style close 
relations for all four sets of fermions (and anti-fermions) of like-electric charge Q, namely: 

( )2

( ) ( ) ( )

( ) ( ) ( )

6
( 0)

5

e

e

m m m
R Q

m m m

ν ν µ ν τ

ν ν µ ν τ

+ +
= = ≅

+ +
. (2.14) 

( )2

3
( 1)

2

e

e

m m m
R Q

m m m

µ τ

µ τ

+ +
= ± = ≅

+ +
. (2.15) 

( )2

2 6
( )

3 5

u c t

u c t

m m m
R Q

m m m

+ +
= ± = ≅

+ +
. (2.16) 

( )2

1 15
( )

3 11

d s b

d s b

m m m
R Q

m m m

+ +
= ± = ≅

+ +
. (2.17) 

Each of these relationships takes twelve a priori independent fermion masses and reduces by 1, 
their mutual independence.  So with (2.14) through (12.17), to first approximation, we have now 
eight, rather than twelve independent fermion masses. 
 For some other commonly-studied Koide triplets we have: 

( ) ( ) ( )0.69290 1 / 2; 1.772105341 2 / 23 1C uds udsR ≅=≅= + . (2.18) 

( ) ( )1.00939 1; 1.492994103 3 / 2C ctb ctR b =≅ ≅= . (2.19) 

( ) ( )0.86795; 1.606042302C usc uR sc == . (2.20) 

( ) ( )1.02783 1; 1.479416975 3 / 2 (with )sC csb bR cs m≅ ≅ −= = . (2.21) 

( ) ( )0.81520; 1.652718083C dcs dR cs= = . (2.22) 

We note that the relationship (2.18) for ( ) 1/ 2C uds ≅  is accurate to within experimental 

errors.  Specifically, given the empirical 95 5sm MeV= ± , (2.18) can be made into an exact 

relationship to ten digits (the accuracy of the up and down masses derived in [3]) if we set 
98.95303495sm MeV= .  Of course, even the relationship for the charged leptons is a close but 

not exact relationship, see the discussion following (1.5), so we ought not expect (2.18) to be 

exactly ( ) 1/ 2C uds = .  But, similarly to (1.5), see also (2.10), it may well make sense to regard 

this as a relationship accurate to the first three or four decimal places, which would improve our 
knowledge of the strange quark mass by four or five orders of magnitude. 
  But this main point of the foregoing is not about the specific Koide relationships (though 
the set of relationships (2.14) through (2.17) are important steps forward in their own right), but 
about how the ratio parameter R which for the charged lepton triplet is 3 / 2R ≅ , can be 
reformulated for any fermion triplet into the coefficient C in the statistical variance relationship 

( ) iK C mσ = , which, for the charged leptons, is 1C ≅ .  And, as we see in (2.14) through 

(2.17), this can lead to additional relationships including a cascading migration of coefficients. 
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Turning back to the neutron and proton triplets ( ) ( )diag , ,P d u uK m m m=  and 

( ) ( )diag , ,N u d dK m m m=  which were so central to obtaining accurate binding energy 

predictions in [1] and [3], we find using the mass values 2.223792405um MeV=  and 

4.906470335dm MeV=  obtained in [3] that: 

( ) ( )0.0387876019; 2.8879821000C p duu R p duu= = = = . (2.19) 

( ) ( )0.0298844997; 2.9129480061C n udd n uddR= = = = . (2.20) 

For these triplets which all have a small variance in comparison to the earlier triplets which cross 
generations, the Koide ratio 3R ≅ .  In the circumstance where the variance is exactly zero 
because all three quarks have the same mass, for example, for the triplets uuu+ +∆ =  and 

ddd−∆ = , using the Koide mass relationship for parameterization, we have 0C = ; 3R = . 
 
3.  Lagrangian / Energy Reformulation of the Koide Mass Relationship 
 
 The appearance of Koide triplets originating from the thesis that Baryons are Yang-Mills 
magnetic monopoles can be seen, for example, by considering equation [11.2] of [1] reproduced 
below, for the field strength tensor of a Yang-Mills magnetic monopole containing a triplet of 
colored quarks in the zero-perturbation limit: 

[ ] [ ] [ ]














−/
+

−/
+

−/
−= ∨∨∨

""""""
Tr

BB

BB

GG

GG

RR

RR

mpmpmp
iF

ψγγψψγγψψγγψ νµνµνµ
µν . (3.1) 

If we generalize this to any three fermion wavefunctions 1 2 3, ,ψ ψ ψ  such that (3.1) represents the 

specific case 1 Rψ ψ= , 2 Gψ ψ=  and 3 Bψ ψ= , and, as we did prior to [11.19] of [1], if we 

consider the circumstance in which the interactions shown in Figure 1 at the start of section 3 in 

[1] occur essentially at a point, then ,µ ν µ νγ γ γ γ∨   →     approaches an ordinary commutator, 

each of the 0p →/ , and the “quoted” denominator becomes an ordinary denominator, see [3.9] 

through [3.12] of [1] for further background.  So also setting 1 Rm m= , 2 Gm m=  and 3 Bm m= , 

(3.1) generalizes for a point interaction to a Koide-style field strength tensor: 

1 2 31 2 3

1 2 3

, , ,
TrF i

m m m

µ ν µ ν µ ν
µν ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ            = − + +

 
 

. (3.2) 

Then, we form a pure gauge field Lagrangian ( ) ( )1 1
gauge 2 2Tr F F Tr F Fµν

µν= − = − ⋅L  as 

in [11.7] of [1].  As discussed in section 2 of [3], we consider both inner and outer products over 
the Yang-Mills indexes of F, i.e., we consider both ( )2

AB BC AB BATrF Tr F F F F= ⋅ = ⋅  and 

( ) ( )AB CD AA BBTr F F Tr F F F F⊗ = ⋅ = ⋅ .  Note carefully the different index structures in AB BAF F⋅  

versus AA BBF F⋅ , and also contrast this to (1.7) through (1.10) in this paper, which is where we 

are headed at the moment.   
We then use this Lagrangian to calculate energies according to [11.7] of [1], see also 

[1.1] of [3], which is reproduced below: 
3 31

gauge 2 TrE d x F F d xµν
µν= − =∫∫∫ ∫∫∫L . (3.3) 



9 
 

In the case where 1 dψ ψ= , 2 3 uψ ψ ψ= =  so that PF Fµν µν=  represents the proton, then 

depending on whether we contact indexes using AB BAF F⋅  or AA BBF F⋅ , we obtain the inner and 

outer products [2.8] and [2.6] of [3], respectively.  When 1 uψ ψ= , 2 3 dψ ψ ψ= =  so NF Fµν µν=  

represents the neutron, we obtain the inner and outer products [2.9] and [2.7] of [3], respectively.  
Using (1.6), the Koide-type generalization of the outer products [2.6] and [2.7] of [3] (AA BBK K  

index summation) is: 

( )

( ) ( )
( )

3
2

3 3
2 2

3 3 3 31 1 1 1
2 2 2

2

1 1
2

2 2 1 2 3

3 3

Tr Tr

0 0 0 0
1 1

Tr 0 0 0 0
2 2

0 0 0 0

AB CD AA BB AA BBE d x F F d x F F d x F F d x K K

m m

m m m m m

m m

µν
µν

π

π π

⊗ ⊗= − = ⊗ = ⋅ = ⋅ =

    
    
 = ⊗ = + +   
    
        

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L

,(3.4) 

while the Koide generalization of the inner products [2.8] and [2.9] of [3] ( AB BAK K  index 

summation) is: 

( )

( ) ( )
( )

3
2

3 3
2 2

3 3 3 31 1 1 1
2 2 2

2

1 1

2 2 1 2 3

3 3

Tr Tr

0 0 0 0
1 1

Tr 0 0 0 0
2 2

0 0 0 0

AB BD AB BA AB BAE d x F F d x F F d x F F d x K K

m m

m m m m m

m m

µν
µν

π

π π

= − = = ⋅ = ⋅ =

   
   
 = = + +  
   
      

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L

,(3.5) 

This means that is now becomes possible to express the Koide relationship (2.9) entirely in terms 
of energies E derived from the general integral (3.3) of a Lagrangian density ( )1

2 Tr F F= − ⋅L  

over 3d x .  Specifically, combining (2.9) with (3.4) and (3.5) allows us to write:  

( )

3 3 3 3

3 3 2 3 3

2

1 2 3

1 2 3

Tr Tr

Tr Tr

3
1

AA BB AA BB

AB BAAB BA

d x F F d x F Fd x F F d xE K K

E K Kd x F F d x F d x F F d x

m m m
R

m m m C

µν
µν

µν
µν

⊗⊗
⊗ ⊗ ⋅

= = = = =
⋅⋅

+ +
= = =

+ + +

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫
∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

L

L

. (3.6) 

This expresses the Koide mass relationship in multiple forms, in terms of the energy integral of a 
Lagrangian density of the general form ( )1

2 Tr F F= − ⋅L , with the field strength given by (3.2).  

This means that for any Koide triplet of given empirical R, there is an energy RE  which vanishes 

under the condition: 

( ) ( )3 2 3Tr 0RE R d x F F RF d x⊗= − = ⊗ − =∫∫∫ ∫∫∫L L . (3.7) 

This is the Lagrangian / energy formulation of the Koide relationship (2.9), and although 
different in appearance, it is entirely equivalent.  So, for example, using the symbol ∴  as in 
figure 1 and Table 3 of [6] to represent the three generations of the fermions for any given 
charge, the four Koide relationships (2.14) through (2.17) for the “pole” (low-probe energy) 
masses may be written as in the entirely equivalent, alternative form: 

( ) ( )3 2 36 6
5 5Tr 0E d x F F F d xν∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.8) 
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( ) ( )3 2 33 3
2 2Tr 0eE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.9) 

( ) ( )3 2 36 6
5 5Tr 0uE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.10) 

( ) ( )3 2 315 15
11 11Tr 0dE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.11) 

Whether these become exactly equal to zero for masses at high-probe energies, and whether there 
is an underlying action principle involved here, are questions beyond the scope of this paper 
which are worth consideration. 
 What ties all of this together, is that we model the radial behavior of each fermion in the 
triplet 1ψ , 2ψ , 3ψ  using the Gaussian ansatz introduced in [9.9] of [1] which is reproduced 

below with an added label 1,2,3i =  for each of the fermions and masses in (3.2): 

( ) ( ) ( )23
02 4
2

1
( ) exp

2
i

i i i
i

r r
r u pψ πλ

−  −
 = −
 
 Ż

, (3.12) 

and that we also relate each reduced Compton wavelength iŻ  to its corresponding mass im  via 

the DeBroglie relation /i imc=Ż ℏ , see [1] following [11.18].  This is what makes it possible to 

precisely, analytically calculate the energy in integrals of the form (3.3), specifically making use 
of the basic Gaussian mathematical relation [9.11] of [1]: 

( )
1exp

1 3
2

2
0

32
3 =









 −
−∫∫∫ xd

rr

ŻŻπ
, (3.13) 

and variants thereof.  It is (3.12) and (3.13) and 1/i im=Ż  (in 1c= =ℏ  units) which tie 

everything together and the “nuts and bolts” mathematical level when (3.2) is employed in (3.3) 
through (3.7).  And this is what leads to the accurate mass relationship (1.1) and binding energy 
predictions (1.2) and (1.3), as well as the binding energy predictions for 2H, 3H, 3He and 4He and 
the proton–neutron mass difference (1.4) developed in [3].   

The final piece which also ties this together at nuts and bolts level, is the empirical 
normalization for fermion wavefunctions developed in [11.30] of [1], namely: 

( )
( )

( )
( )2

2

2

2
4

224

1

2

1

m

mE

m

mE

n
N

f

+=+= , (3.14) 

where 24fn =  is the total number of fermions over three generations including three colors for 

each quark.  
 Now, it is important to emphasize that the Gaussian ansatz (3.12) is not a theory, but 
rather, it is a modeling hypothesis that allows us to perform the necessary integrations and 
calculate energies that turn out to correlate very well with empirical data.  That is, explicitly in 
[1] and implicitly in [3], we hypothesized that the fermion wavefunctions can be modeled as 
Gaussians with specific Compton wavelengths 1/i im=Ż  defined to match the current quark 

masses, we performed the integrations in (3.3), and we found that the energies predicted matched 
empirical binding data to – in most cases – parts per million.  This, in turn, tells us that for the 
purpose of predicting binding energies, it is possible to model the current quarks as Gaussians 
(which means they act as free fermions), with masses and wavelengths based on their undressed, 
current masses, and to thereby obtain empirically-validated results.  But, as also discussed at the 
end of section 11 in [1], this use of a current quark mass does not apply when it comes predicting 
the short range of the nuclear interaction which we showed at the end of section 10 in [1] is 
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indeed short range with a standard deviation of Ż
2

1=σ .  For, if we use the current quark 

masses that work so well for binding energies, we find Fu 65.85~Ż  and Fd 04.41~Ż , and the 

predicted short range is still not short enough.  If, however, we turn to the constituent quark 
masses which, at the end of section 11, for estimation, we took to be 939 MeV/3=313 MeV, then 
we have F63.~Ż  and F45.~

2
1 Ż=σ , which tells us that the nuclear interaction virtually ceases 

at about F2~34 Ż≈σ .  This is exactly what is observed. 
 In both cases – for nuclear binding energies and for the nuclear interaction short range – 
we found that the Gaussian ansatz (3.12) does yield empirically-accurate results.  But for binding 
energies, it was the undressed, current quark masses which gave us the right results, while for 
nuclear short range, it was the fully dressed, constituent quarks masses that were needed to 
obtain the correct result.  Because we shall momentarily embark on a prediction of the fully 
dressed rest masses 938.272046 MeV and 939.565379 MeV of the free neutron and free proton, 
what we learn from this is that while we might also be able to approach the neutron and proton 
masses using the Gaussian ansatz for fermion wavefunctions, we will, however, need to be 
judicious in the fermions we choose and in the masses that we assign to the fermions.  That is, 
the focus of our deliberations will be, not whether we can use the Gaussian ansatz, but on how to 
select the fermions and masses that we do use with the Gaussian ansatz. 
 Now, based on all of the foregoing development, let us see how to predict the neutron and 
proton masses. 
 
4.  Predicting the Neutron plus Proton Mass Sum to within about 6 Parts in 10,000 
 
 Because we can connect any Koide matrix products to a Lagrangian via (3.4) and (3.5), 
let us work directly with the Koide matrix (1.6) to determine how to assign the masses 1m , 2m , 

3m  so as to predict the neutron and proton masses.  Then, at the end (in section 7), we can 

backtrack using the development in section 3 to connect these masses to their associated 
Lagrangian.  In other words, we will first fit the empirical mass data, then we will backtrack to 
the underlying Lagrangian. 
 Each of the neutron and proton contains three quarks.  The sum of the current quark 
masses is 12.03673312 d um m MeV+ =  for the neutron and 9.354055142 u dm m MeV+ =  for the 

proton, using 2.223792405um MeV=  and 4.906470335dm MeV=  earlier introduced after 

(2.11).  For a free neutron and proton, none of their rest mass is released as binding energy, and 
so these quark mass sums are included in 938.272046PM MeV=  and 939.565379NM MeV=  

respectively, where we use an uppercase M to denote these fully-dressed, observed masses.  As 
demonstrated in sections 11 and 12 of [1] and throughout [3], these rest masses are reduced when 
the neutron and proton fuse with other nucleons.  But for free protons and neutrons, the entire 
rest mass is retained and all of the latent binding energy is used to confine quarks.  This means 
the “mass coverings” m (using a lowercase m) of the neutron and proton may be calculated to be: 

928.91792 915P P u dm M m em M V≡ − − = , (4.1) 

927.52862 457N N u dm M m em M V≡ − − = . (4.2) 

That is, these m represent observed, fully-dressed neutron and proton masses M, less the sum 

1 2 3AB BAK K m m m= + +  of the current quark masses, with 1 dm m≡ , 2 3 um m m= ≡  for the proton, 
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and 1 um m≡ , 2 3 dm m m= ≡  for the neutron, see (1.9).  One may think of Pm  and Nm  as the 

weight of rather heavy “clothing” “covering” bare quarks.  The sum of these two mass covers is: 
3 1856.443 6637N P N P u dm m M M m m MeV+ = + − − = . (4.3) 

At the end of section 9 of [3], after deriving the neutron minus proton mass difference 
(1.4), we noted that the individual masses for the neutron and proton could now be obtained by 
deriving some independent expression related to the sum of their masses, and then solving these 
two simultaneous equations – sum equation and difference equation – for the two target masses – 
neutron and proton.  We shall do exactly that here.  In particular, it will be our goal to derive the 
sum N PM M+  of these two masses, and then use (1.4) as a simultaneous equation to obtain each 

separate mass.  The benefit of this approach using a sum, referring to the so-called mass 
“toolbox” in [3.11] of [3] and also the discussion of the alpha nuclide following [4.4] of [3], is 
that in selecting mass terms to consider, we can eliminate any candidates that are not absolutely 
symmetric under np ↔  and du ↔  interchange, because the sum N PM M+  contains three up 

quarks and three down quarks, as well as one neutron and one proton.  Our empirical target, 
therefore, is 1877.837425N PM M MeV+ = , or, alternatively, 1856.446637P Nm m MeV+ =  

from (4.3) to which we can then readily add 3 3u dm m+ .  This is what we seek to predict. 

 Now let us return to the “clues” we laid out in [3.6] through [3.8] of [6].  We start in the 
simplest way possible by focusing our consideration on [3.8] of [6], reproduced below, but 

multiplied by a factor of 2 and separated into 4
F uv m  and 4 F dv m in the second term: 

244 42 2 2 MeV1803.670518F u d F u F d F u dv m m v m v m v m d⋅ = = = . (4.4) 

Here, vF=246.219651 GeV is the Fermi vev.  Because this is about 3% smaller than P Nm m+  in 

(4.3) and it is closer to P Nm m+  than either [3.6] or [3.7] of [6], and it is symmetric under 

du ↔  interchange, we shall see if (4.4) can be used, by itself, to provide the foundation for 
reaching the 1856.446637P Nm m MeV+ =  mass target. As we shall, it can be so used! 

 Now, in (3.11) of [3], we developed a “toolkit” of masses which we used for calculating 
the binding and fusion release energies of all the 1s nuclides with very close precision.  We shall 
wish to add to this toolkit here, and in particular, will wish to refine our use of the Fermi vev 
vF=246.219651 GeV beyond what is shown in (4.4).  Specifically, as noted after [3.8] of [6], we 
need to put (4.4) “and like expressions into the right context and obtain the right coefficients.  
And where do such coefficients come from?  The generators of a GUT!”   

Now, we shall use the GUT we developed in [6] to obtain the coefficients needed to bring 
(4.4) closer to the target mass of 1856.446637MeV  in (4.3).  Because the vev that seems to bring 
us into the correct “ballpark” is the Fermi vev, we focus on the electroweak symmetry breaking 
which occurs at the Fermi vev, and which, in [8.2] of [6], is specified by breaking symmetry 
using the electric charge generator Q according to:  

( ) ( ) ( )2 1 1 1 2 2
3 3 3 3 3 3diag diag 0, , , , 1, , , diagi

F iF F FT v v QϕΦ = ≡ − − − − = . (4.5) 

For the proton with a fermion triplet ( ), ,d u u , the corresponding eigenvalue entries in (4.5) 

above are ( )1 2 2
3 3 3, ,F F Fv v v− .  For the neutron and its ( ), ,u d d  triplet, the entries are 

( )2 1 1
3 3 3, ,F F Fv v v− − .  We now wish to use these to establish respective Koide triplet matrices for 

the neutron and proton which can be used to generate the sum of their masses. 
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 Looking at the vacuum triplets ( )1 2 2
3 3 3, ,F F Fv v v−  and ( )2 1 1

3 3 3, ,F F Fv v v− − , we see that to 

match the mass dimension ½ of the terms with 4
uvm  and 4 dvm  in (4.4) and use these as Koide 

triplets, we will need to take the fourth roots of these vacuum triplets.  So we do exactly that, and 
pair these triplets with the mass triplets ( ), ,d u um m m  and ( ), ,u d dm m m  for which we also take the 

fourth root to match (4.4).  Thus, use ( ) ( ).51 2 2 1 2 24 4 4
3 3 3 3 3 3, , , ,F F F F d F u F uv v v i v m v m v m− →  and 

( ) ( ).5 .52 1 1 2 1 14 4 4
3 3 3 3 3 3, , , ,F F F F u F d F dv v v v m i v m i v m− − →  to define two Koide triplets, one for the 

neutron and one for the proton, as follows:  
24
3

.5 14
3

.5 14
3

0 0

( ) 0 0

0 0

F u

AB F d

F d

v m

K N i v m

i v m

 
 
 ≡
 
 
 

, (4.6) 

.5 14
3

24
3

24
3

0 0

( ) 0 0

0 0

F d

AB F u

F u

i v m

K P v m

v m

 
 
 ≡
 
 
 

. (4.7) 

We see that because of the negative charge of the down quark, each of these triplets contains 

components with the coefficient ( ).54 1
2

1 1i i− = = + , which is a complex number.  In recent 

years, consideration has been given to having negative square root terms in Koide mass relations, 

see for example (2.21) in which one uses sm−  to derive a close relation for the ( )csb  triplet.  

The above, (4.6) and (4.7) take this a step further, because they raise the specter of triplets with 
complex square root coefficients!  In the next section we shall explore the implications of these 
complex components, which arise from the oppositely-signed charges of the up and down 
quarks.  But for the moment, let us ignore .5i  in the above so we can look at magnitudes only, 
and let us form and calculate the following Koide matrix product with .5i  excised: 

1 24 4
3 3

2 14 4
3 3

2 14 4
3 3

224
9

0 0 0 0

( ) ( ) 0 0 0 0

0 0 0 0

3

F d F u

AB BA F u F d

F u F d

F u d

v m v m

K P K N Tr v m v m

v m v m

v m m

   
   
   =
   
      

= ⋅ = 1857.570635 MeV

. (4.8) 

 Comparing to (4.3) which tells us that P Nm m+ = 1856.446637 MeV  we see that we have 

hit the target to within about 0.06%!  That is: 
 

( )
Observed

( ) ( )AB BA

N P

K P K N

m m
==

+
1857.570635 MeV

1.000605457
1856.446637 MeV

! (4.9) 

This is extremely close, and in particular, we now see that to within about 6 parts in 10,000, the 
sum of the neutron and proton masses may be expressed completely as a function of the up and 
down quark masses and the Fermi vev!  So if we use this close relationship to hypothesize that a 
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meaningful relationship is given by ( )
Predicted

( ) ( )N P AB BAm m K P K N+ ≅ , then using the above with 

(4.3), we now see that to within about 0.06%: 
224

93 3 3 3 3N P N P u d F u d u dM M m m m m v m m m m+ = + + + ≅ ⋅ + + . (4.10) 

 We have now discovered the correct coefficients for the “clue” in (4.4), which yields our 
neutron plus proton mass sum to 6 parts in 10,000!  Further qualifying (4.10) as a proper and not 
merely coincidental expression for the neutron plus proton mass sum, we see that this is 
symmetric under du ↔  interchange, and that it is formed by taking the inner product 

( ) ( )AB BAK P K N  of a Koide proton matrix ( )1 2 24 4 4
3 3 3diag( ( )) , ,F d F u F uK P v m v m v m=  times a 

Koide neutron matrix  ( )2 1 14 4 4
3 3 3diag( ( )) , ,F u F d F dK N v m v m v m=  and so which product 

( ) ( )AB BAK P K N  is symmetric under np ↔  interchange.  Further, both of these fully embed the 

electric charges and mass magnitudes of the quarks, and.  So in sum, (4.10) makes sense on 
multiple bases: its yields an empirical match to within 6 parts in 10,000, it is the product of a 
proton matrix with a neutron matrix, the proton matrix contains the masses and charges of two 
up quarks and one down quark while the neutron matrix contains the same of two down quarks 
and one up quark, and it is symmetric under both du ↔  and np ↔  interchange. 
 Furthermore, if we divide (4.8) by 2, we see that: 

23 24
2 9 928.7853174( ) ( ) / 2AB BA F u dK P K N v eVm m M= = . (4.11) 

This actually falls between 928.9179915Pm MeV=  and 927.5286457Nm MeV=  from (4.1) 

and (4.2), and so (4.10) clearly appears to be a correct expression for the leading terms in the 
neutron and proton masses.  Based on this close concurrence and “threading the needle” between 
the neutron and proton masses with (4.11) and all of the appropriate symmetries noted in the 
previous paragraph, we now regard (4.10) as a meaningful (rather than coincidental) close 
expression for P NM M+  to 0.06%. 

 It will simplify and clarify the calculations from here to define what we shall refer to as 
“vacuum-amplified” up and down quark masses according to: 

2
3 604.1751345u F u VM v m Me≡ = . (4.12) 

1
3 634.5784463d F d VM v m Me≡ = . (4.13) 

Consequently: 
224

9 619.1902116u d F u dM M eVv m m M= = . (4.14) 

This means that the mass sum (4.10) may be rewritten more transparently as: 

( )3 3 3N P N P u d u d u dM M m m m m M M m m+ = + + + ≅ + + , (4.15) 

while the Koide mass matrices (4.6) and (4.7) for the neutron and proton become: 
 

.5 0 0

( ) 0 0

0 0

d

AB u

u

i M

K P M

M

 
 

=  
 
 
 

, (4.16) 
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.5

.5

0 0

( ) 0 0

0 0

u

AB d

d

M

K N i M

i M

 
 

=  
 
 
 

. (4.17) 

These matrices now restore the ( ).5 1
2

1i i= +  factor that we excised to calculate (4.8).  Thus, as 

in (4.8), but including this complex factor, we now take: 
 

( )

.5

.5

.5

.5 1
2

0 0 0 0

( ) ( ) 0 0 0 0

0 0 0 0

3 1

d u

AB BA u d

u d

u d

i M M

K P K N Tr M i M

M i M

i M M i

   
   
 =   
   
      

= = + 1857.570635 MeV

. (4.18) 

Having found the right magnitude, we could make use of a 2  factor and continue to 

match the empirical data by writing ( )2 Re ( ) ( )AB BA P NK P K N m m≅ + .  But this just sidesteps 

understanding the meaning of this complex factor and it does not help us past the 0.06% 
difference that still remains between the predicted and the empirical data.  We need to find a 
more fundamental way to understand this complex factor.  That will be the subject of the 
discussion in the next section. 
 
5.  Exact Characterization of the Neutron and Proton Masses via a Mixing Angle θ and 
Phase Angle δ  
 

Let us first represent this factor ( ).5 1
2

1i i= +  in terms of a phase angle δ ′  such that: 

( ) ( ).5 1
2

1 exp cos sin ; / 4i i i iδ δ δ δ π′ ′ ′ ′= + = = + = . (5.1) 

Then, we briefly rename K K′→   and use this phase to rewrite (4.18) as: 

( )

0 0 0 0

( ) ( ) 0 0 0 0

0 0 0 0

3exp

i
d u

i
AB BA u d

i
u d

u d N P

e M M

K P K N Tr M e M

M e M

i M M m m

δ

δ

δ

δ

′

′

′

   
   

′ ′  =   
   
      

′ ′ ′= = +

. (5.2) 

with similar updates in (4.16).  Then, we use this to rewrite the mass sum (4.15) as: 

( )( )3 3 3 expN P N P u d u d u dM M m m m m i M M m mδ′ ′ ′ ′ ′+ = + + + ≅ + + , (5.3) 

where we have also briefly renamed M M ′→  and , ,P N P Nm m′→ , all with / 4δ π′ = . 

 Now, (5.3) gives us the opportunity to define a new Koide matrix ABΕ  which we shall 

refer to as the “electron generation matrix” Ε  as such: 
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4 0 0

3 0 0

0 0

u d

AB u

d

M M

m

m

 
 

Ε ≡  
 
 
 

. (5.4) 

Then, making note the phase ( )exp iδ ′  which multiplies u dM M  in (5.3) and keeping in mind 

how the Kobayashi and Maskawa mixing matrices are formed for three generations, we 
introduce a new angle θ  such that 0θ ′ = , and form a unitary matrix U1 including ie δ ′ , as such: 

( )
1 1 1

1 1

exp 0 0

0 cos sin

0 sin cos
AB

i

U

δ
θ θ
θ θ

′ 
 ′ ′≡  
 ′ ′− 

. (5.5) 

Of course, with / 4δ π′ =  and 0θ ′ = , U is diagonal matrix ( ).5diag ,1,1U i= .  So (5.5) multiplied 

by (5.4) simply generalizes the appearance of the term .5
u di M M  in (4.18).  But now, let us 

permit both δ  and θ  to rotate freely, θ θ′ → , δ δ′ → .  Then from (5.4) and (5.5), we may 
form: 

( )

( )

( )

1 1 1

1 1

4 4

1 1

1 1

1

exp 0 0

3Tr 0 cos sin

0 sin cos

0 0 0 0exp 0 0

3Tr 0 0 0 cos sin 0 0

0 sin cos0 0 0 0

3 exp cos co

u d

N P AB BC CA u u d

u d d

u d u d

u u

d d

u d u d

M M i

M M U m m m

m m m

M M M Mi

m m

m m

i M M m m

δ
θ θ

θ θ

δ
θ θ
θ θ

δ θ

 
 

+ ≡ Ε Ε =  
 
 − 

    
    =     
    −       

= + +( )1sθ

. (5.6) 

For the special case where 0θ θ ′→ = , we precisely reproduce (5.3).  But in (5.6) we have 
removed the approximation sign ≅  that was in (5.3), because we are now going to define the 
angles ,θ δ  so as to precisely match up with the empirical values of the neutron and proton 
masses.  That is, just as (1.4) is an exact formula for the proton–neutron mass difference, we 
shall now regard (5.6) as an exact formula for the neutron plus proton mass sum, with the 
numerical values of ,θ δ  defined by empirical data so as to make this an exact fit. 

Before we proceed, let us recap so we are clear what we have just done:  What we have 

done here is to use the matrix ( ).5diag ,1,1U i=  implicit in (5.3) as a hint of a matrix 

( )diag exp( ),1,1U iδ ′=  with / 4δ π′ = , then use ( )diag exp( ),1,1U iδ ′=  as a further hint of a 

matrix ( )diag exp( ),cos ,cosU iδ θ θ′ ′ ′=  with 0θ ′ = , then allowed both of these angles to freely 

rotate yielding (5.5).  Then we have used (5.5) to form (5.6) which generalizes (5.3).  Now, we 
will use these angles to permit the otherwise close relationship (5.3) to be fitted exactly by 
empirically choosing these angles to yield and exact fit. 
 Before we do this, however, there is a final cascade to this hint, which is to recognize that 
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(5.5) with the angles free to rotate is one of the three matrices used to define the Cabibbo 
matrices used for electroweak generation mixing, see [7.11] in [6], and in particular, is the matrix 
that is use to introduce the phase angle responsible for CP violation.  We also note that (5.4) is 
strictly a function of the first (electron generation) quark masses and the Fermi vev which makes 

the upper left component 4
u dM M  containing the “vacuum-enhanced” quark masses 

substantially larger than the middle and lower right components um  and dm .  This is why 

we named this matrix ABΕ  the electron generation matrix.  Because Cabibbo mixing has two 

more matrices and also mixes two more generations, let us now form two more matrices Μ  and
Τ  analogous to (5.4) for the muon and tauon generation of quarks as follows, but following the 
pattern for mixing in the original parameterization of Kobayashi and Maskawa, we put the large 

components 4 c sM M  and 4 t bM M  in the lower right positions.  And, as a matter of convention, 

we keep the up (electric charge = +2/3) series of mass terms in the middle position.  Thus we 
define the muon and tauon generation matrices: 

4

0 0

3 0 0

0 0

s

AB c

c s

m

m

M M

 
 

Μ ≡  
 
 
 

;     

4

0 0

3 0 0

0 0

b

AB t

t b

m

m

M M

 
 

Τ ≡  
 
 
 

, (5.7) 

At the same time, analogously to (4.12) and (4.13), we define: 
2
3 14,467c c ev VM m M≡ = , (5.8) 

1
3 2792s sM evm M V=≡ , (5.9) 

2
3 168,758t tM vm MeV≡ = , (5.10) 

1
3 18,522b b ev VM m M≡ = , (5.11) 

which yields the higher-generation analogues to (4.14): 

6356c sM M MeV= , (5.12) 

55,908t b VM M Me= . (5.13) 

These values are calculated from the PDG data [8] laid out prior to (2.12). and rounded to the 
nearest MeV (recognizing substantial experimental uncertainties).   

We also define two more matrices analogous to (5.5) for the second and third generations 
in same manner as is used to form the Cabibbo mixing matrices, again see [7.11] in [6]: 

2 2

2 2 2

cos sin 0

sin cos 0

0 0 1
ABU

θ θ
θ θ

 
 ≡ − 
 
 

;     
3 3

3 3 3

cos sin 0

sin cos 0

0 0 1
ABU

θ θ
θ θ

 
 ≡ − 
 
 

 (5.14) 

Then, analogously to (5.6), for the second and third generations, respectively, we form: 

( )
2 2

2 2 2 2 2

cos sin 0

3Tr sin cos 0 3 cos cos

0 0

s s c

AB BC CA s c c c s c s

c s

m m m

U m m m M M m m

M M

θ θ
θ θ θ θ

 
 

Μ Μ = − = + + 
 
 
 

, (5.15) 
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( )
3 3

3 3 3 3 3

cos sin 0

3Tr sin cos 0 3 cos cos

0 0

b b t

AB BC CA b t t t b t b

t b

m m m

U m m m M M m m

M M

θ θ
θ θ θ θ

 
 

Τ Τ = − = + + 
 
 
 

. (5.16) 

Then, we multiply all three of (5.6), (5.15) and (5.16) together in the same manner that the 
Cabibbo mixing matrices are formed, again see [7.11] in [6], to obtain a master “mass and 
mixing matrix” Θ  with mass dimension +3, defined as: 

2 1 3

1 2 3 1 2 3

1 2

2 3 2 3

1 2 3 1 2 3

2 32 3

c s s      c s c
s s

c c e c s e

27   c c s            c c c
s

s s es c e

u s c b t u s c t

u d s c t bi i
u d s b u d s b t

u c b t u c t

u d c t bii
u d s c b tu d s c b

U U U

m m m m m m m m m
m m m m M M

M M m m M M m m m

m m m m m m m
m m m M M

M M m m m mM M m m m

δ δ

δδ

Θ ≡ Μ ⋅ ⋅ Μ ⋅ Ε ⋅ ⋅ Ε ⋅ Τ ⋅ ⋅ Τ

−

+ +

= −

−−
1 2

1 3 1 3 1

c

s s s c cu d c s b t u d c s t d c s t bm m M M m m m m M M m m M M M M

 
 
 
 
 
 
 
 
 
 
 
 − 

.(5.17) 

 This matrix contains all six of the quark masses in all three generations, all three of the 
real mixing angles and the one CP violating phase angle that appears when the three generations 
are mixed, and implied in the vacuum-enhanced mass terms, the Fermi vev and the electric 
charges of all of these quarks.  If all of the masses are set to equal 1, this reduces to the usual 
generational mixing matrix in the original parameterization of Kobayashi and Maskawa, seen in, 
e.g., see [7.11] in [6].  In the circumstance where 2 0s = , 3 0s = , this reduces to: 

1 1

1 1

e 0 0

27 0            cos sin

0 sin cos

i
u d s b

u c t u d c t b

u d c s t d c s t b

M M m m

m m m m m m M M

m m M M m m M M M M

δ

θ θ
θ θ

 
 

Θ =  
 
 − 

. (5.18) 

and in the further circumstance where all of the second and third generation masses are set to 1, 
this further reduces to 9 times the matrix shown in (5.6): 

1 1

1 1

e 0 0

27 0 cos sin

0 sin cos

i
u d

u u d

u d d

M M

m m m

m m m

δ

θ θ
θ θ

 
 

Θ =  
 
 − 

. (5.19) 

So that comparing with (5.6), in this particular special case, (5.17) even contains the neutron plus 
proton mass sum: 

( )( )1
1 19 Tr 3 exp cos cosu d u d N PM M i m m M Mδ θ θΘ = + + = + ! (5.20) 

So this puts this nucleon (baryon) mass sum in a broader context that includes all of the 
generational mixing angles and all of the quark masses and their electric charges and the Fermi 
vev.  Certainly, (5.17) can and will be used therefore to gain substantial new insights into 
fermion and baryon masses.  And all of this emerges in cascade fashion from the simple hint of a 

matrix with ( ).5diag ,1,1U i=  in the neutron plus proton mass formula (5.3), with the .5i  itself 
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having emerged from the simple fact that up and down quarks have opposite charges which led 

to terms containing 4 1−  when we formed Koide matrices to represent masses. 
 With this important contextual digression, we now solve (1.4) and (5.6) as simultaneous 
equations, that is, we solve the equation set:   

( )( )
( ) ( )

3
2

3 exp cos cos

3 2 3 / 2       

P N u d u d

N P u d µ d u

M M M M i m m

M M m m m m m π

δ θ θ + = + +



− = − + −


. (5.21) 

It now requires no more than elementary algebra to determine that the neutron and proton 
masses, separately, are each given by: 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

3
2

3
2

1
12

1
12

3 exp cos 3 2 3 / 2

3 exp cos 3 2 3 / 2

N u d u d u d µ d u

P u d u d u d µ d u

M M M i m m m m m m m π

M M M i m m m m m m m π

δ θ

δ θ

= + + + − + −

= + + − + + −
. (5.22) 

These can be made into exact theoretical expressions for the neutron and proton mass by solving 
for ,θ δ , to find their empirical values based on the neutron and proton masses.  Let’s do so. 
 Because each of (5.22) contains a complex phase, we will need to form the square 

modulus magnitude 
2 *M M M=  of these masses.  So first we deduce: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

3
2

3
2

3
2

3
2

2

1

2

1

2

1

2

1

4 9 6cos 3cos 3 2 3 / 2

3cos 3 2 3 / 2

4 9 6cos 3cos 3 2 3 / 2

3cos 3 2 3 / 2

N u d u d u d u d µ d u

u d u d µ d u

P u d u d u d u d µ d u

u d u d µ d u

M M M M M m m m m m m m π

m m m m m m m π

M M M M M m m m m m m m π

m m m m m m m π

δ θ

θ

δ θ

θ

= + + + − + −

+ + + − + −

= + + − + + −

+ + − + + −

.(5.23) 

Now we solve these as simultaneous equations for 1θ  and δ .  First we restructure in terms of δ : 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

3
2

3
2

3
2

3
2

2
2

1

1

2
2

1

1

4 9 3cos 3 2 3 / 2
cos

6 3cos 3 2 3 / 2

4 9 3cos 3 2 3 / 2
cos

6 3cos 3 2 3 / 2

N u d u d u d µ d u

u d u d u d µ d u

P u d u d u d µ d u

u d u d u d µ d u

M M M m m m m m m m π

M M m m m m m m m π

M M M m m m m m m m π

M M m m m m m m m π

θ
δ

θ

θ
δ

θ

− − + + − + −
=

+ + − + −

− − + − + + −
=

+ − + + −

. (5.24) 

We now set these equal to one another to eliminate δ  and solve for θ .  It will be easier 
to see the underlying structure of these equations as well as solve them if we write the above as: 

( )
( )

( )
( )

2 2

1 1

1 1

cos cos
cos

cos cos

N B A P B A
C

B A B A

θ θ
δ

θ θ
− + − −

= =
+ −

 (5.25) 

using the following substitution of variables: 

( ) ( ) ( )
3
2

2 2
4 9 ; 4 9

3 2 3 / 2 ; 3 ; 6

N u d P u d

u d µ d u u d u d

N M M M P M M M

A m m m m m π B m m C M M

≡ − ≡ −

≡ − + − ≡ + ≡
. (5.26) 
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Next, we reduce (5.25) successively in five steps as follows: 

( )( )( ) ( )( )( )
( ) ( )( ) ( ) ( )( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

2 2

1 1 1 1

2 2 2 2 2 2
1 1 1 1 1 1

1 1

2 2 2 2 2 2
1 1

2 2 2 2 2 2
1 1 1 1

1: cos cos cos cos

2 : cos cos cos cos cos cos

cos cos
3 :

cos cos

4 : cos cos cos cos

5 : 0

N B A B A P B A B A

N B A B A B A P B A B A B A

N B A P B A
A A

B A B A

N B A A B A P B A A B A

θ θ θ θ

θ θ θ θ θ θ

θ θ
θ θ

θ θ θ θ

− + − = − − +

− − − + = + − − −

− +
− = +

− −

− − − = + + −

= ( ) ( )2 2 3
1 12 cos cos 2AB N P B N P A Aθ θ− − + + −

.(5.27) 

In the final line, we arrive at a quadratic.  We obtain the solution via the quadratic equation.  
Then, we use the variables (5.26) including the empirical masses of the neutron and proton, to 
calculate that: 

( ) ( )( )2 2 4

1 10.9474
8 2

cos sin
4

541242; 0.31989167
N P N P A N P A

AB
θ θ

− − − − + −
= = = .(5.28) 

In the above, we use the negative root, because this yields a 11 cos 1θ− ≤ ≤ .  This means that the 

empirically-determined value of 1θ  is: 

0.32561515 rad 18.65637386 / 9.64817715πθ = ° == . (5.29) 
 Now, we use (5.28) in (5.25) to solve for δ , and calculate to find that: 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

2
2 2 4

2 2 4

2
2 2 4

2 2 4

8 2 4
cos

8 2 4

8 2 4
1

8 2 4

N N P N P A N P A A A

C N P N P A N P A A A

P N P N P A N P A A A

C N P N P A N P A A A

δ

  − − − − − + − +  
  =

  − − − − + − +  
  

  − − − − − + − −  
  = =

  − − − − + − −  
  

. (5.30) 

The numerical calculation reveals that cos 1δ = , exactly, so the phase factor 0δ = .  This means 
that when the variables in (5.26) are substituted into (5.30), the extremely unwieldy-looking 
resulting expression will reduce to 1 identically!  So to the extent that δ  is a CP-violating phase, 
and given that 0δ =  is a deduced result for the neutron and proton masses (5.22), this tells us 
that there is are no CP-violating effects associated with neutron and proton.  This is validated by 
the empirical data which shows that the mass of the antiproton is equal to that of the proton, and 
the mass of the antineutron is equal to that of the neutron, see, e.g., [9], [10].  So, we take (5.22) 
to now be exact formulations of the neutron and proton masses, in the circumstance where the 
empirically-determined angle 0.32561515θ =  and the CP-violating phase 0δ = . 
 So we now return to (5.22), set 0δ = , and so obtain our final expressions for the neutron 
and proton masses: 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

3
2

3
2

1
12

1
12

3 cos 3 2 3 / 2

3 cos 3 2 3 / 2

N u d u d u d µ d u

P u d u d u d µ d u

M M M m m m m m m m π

M M M m m m m m m m π

θ

θ

= + + + − + −

= + + − + + −
, (5.31) 

which are exact relations with the empirical substitution 0.32561515 / 9.64817715θ π== . 
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 These relationships, in turn, now enable us to go back to the masses for the 1s nuclides 
predicted to high accuracy and rewrite [7.6], [7.1], [7.3] and [7.5] of [3], respectively, as: 

( )( )2
1 13 cosP N u u d u d uM M M m M M m m mθ= + − = + + − , (5.32) 

( )

( )( ) ( )( )( )
3
2

3
2

3
1

1
12

2 4 2 / 2

9 cos 7 3 2 3 2

P N u µ d

u d u d u d µ d u

M M M m m m π

M M m m m m m m m πθ

= + − +

= + + − − − −
. (5.33) 

( )( ) ( ) ( )( )3
2

3
2

1
12

2 2

9 cos 5 2 3 2 3 / 2

P N u u d

u d u d u u d d µ d u

M M M m m m

M M m m m m m m m m m πθ

= + − −

= + + − − + + −
.(5.34) 

( ) ( )

( )( ) ( ) ( )

3
2

3
2

4
2

1

2 2 6 6 10 10 16 / 2 2

6 cos 2 10 10 16 / 2

P N u d d u u d u d

u d u d u d u d d u u d

M M M m m m m m m π m m

M M m m m m m m m m m m πθ

= + − − + + + +

= + + − − + + + +
(5.35) 

The binding energies 1 1
0 1 0

A A A
Z Z P N ZB Z M N M M ZM NM M= ⋅ + ⋅ − = + −  for any given nuclide 

with Z protons and N neutrons and A=Z+N nucleons thus 2N Z A Z− = −  may also be rewritten 
generally in relation to their nuclear weights using (5.31), in the form: 

( )( ) ( )
( )

3
2

0 1

3 2 31
3 cos 2

2 2

d µ d uA A
Z Z u d u d u

m m m m
B M A M M m m A Z m

π
θ

   + −
   + = + + + − −
   

   

(5.36) 

 One final exercise of interest is to return to the mass and mixing matrix Θ in (5.17) and 
set 2 3 0θ θ δ= = =  while using 1 0.947454co 2s 124θ =  found in (5.28).  In this circumstance, 

(5.17) reduces to: 

1

1

     0 0

27   0 cos 0

0 0 cos

u d s b

u c t

d c s t b

M M m m

m m m

m M M M M

θ
θ

 
 

Θ =  
  
 

. (5.37) 

This is in dimensions of mass3.  If we take the cubed root, and divide by 2 (because we 
know that this originated with the neutron plus proton mass sum) to get mass numbers that 
should be related to individual baryons, we find ( )1

2 939.72 ,1163 ,177d 3iag MeV MeV MeVΘ = .  

This first entry is very close to the neutron mass which would not be expected a priori, but this is 

because 630s b Vm m Me=  which is not too far from 619u d VM M Me= .  Perhaps this is yet 

another close relationship among fermion masses.  The second entry at 1163 MeV, which would 
only become smaller when 2 0θ ≠ , 3 0θ ≠ , is only about 4% larger than the mass of the 

0 1115.6 3( 8)uds MeVΛ =  baryon, which could readily be compensated by non-zero 2 3,θ θ  angles 

as well as measurement errors in the charm and top quark masses.  The final entry at 1773 MeV, 
is perhaps suggestive of the ( ) 1672.45sss MeV−Ω =  baryon mass, however, there are no omitted 

angles and somewhere we should expect to come across a baryon with a third generation quark.  
These relationships just noted are simply pointed out in an exploratory spirit, and it is to be noted 
that Θ  in (5.17) is just one representation of a mass / mixing matrix and that one can also vary 
the way in which one sets up the Koide triplets (5.4) and (5.7), so as to be able to obtain this Θ  
matrix in several different forms.  Whatever the correct fits may turn out to be with various 
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higher-generation baryons, it should be clear that the matrix (5.17) and like matrices that can be 
similarly constructed  are an exceedingly useful tool for trying to develop and fit mutual 
relationships among mixing angles, CP violating phases, and quark and baryon masses. 

It is also interesting to see if the empirical 1 0.947454co 2s 124θ =  found in (5.28) turns 

out to be related to the empirically-known Cabibbo, Kobayashi and Maskawa (CKM) mixing 
angles in some representation, which could then relate neutron and proton masses to the CKM 
angles, which is preferable to 1cosθ  being a new, separate parameter.  Toward this end, we first 

write the CKM matrix with the “standard choice” of angles and its empirical values from [11]: 

12 13 12 13 13

12 23 12 23 13 12 23 12 23 13 23 13

12 23 12 23 13 12 23 12 23 13 23 13

0.0.97427 0.00015 0.22534 0.00065 0.00351

i
ud us ub

i i
cd cs cb

i i
td ts tb

V V V c c s c s e

V V V V s c c s s e c c s s s e s c

V V V s s c c s e c s s c s e c c

δ

δ δ

δ δ

−

−

  
  = = − − −  

   − − −   

± ±
=

0.00015
00014

0.0011
0.0005

0.00029 0.0011 0.000021
0.00031 0.0005 0.000046

0.22520 0.00065 0.97344 0.00016 0.0412

0.00867 0.0404 0.999146

+

+
−

+ + +
− − −

 
 − ± ± 
 − − 

. (5.38) 

(Note a negative sign for the three lower-left matrix entries.)  Now, while 1 0.947454co 2s 124θ =  

does not fit any particular one of these elements, what is of interest is the determinant which is: 
1ud cs tb us cb td ub cd ts ub cs td us cd tb ud cb tsV V V V V V V V V V V V V V V V V V V= + + − − − = , (5.39) 

and which contains invariant expressions of interest.  (See also [12] which cleverly connects this 
determinant, when real as in the standard angle choice (5.38), to the Jarlskog determinant.)  
Specifically, if we employ the mean experimental values in (5.38), we find that sum of the three 
positively-signed (+) terms in the determinant,V

+
, which is an invariant containing all nine 

matrix elements, is given by: 
0.947535ud cs tb us cb td ub cd tsV V V V V V V V V V

+
= + + = . (5.40) 

This is very close to 1 0.94cos 7454θ =  determined from the proton and neutron masses, 

truncated to the known precision of V
+
.  In fact we find 1cos0.947192 0.000262V θ

+
= −=  if 

we use the lower bounds of all the experimental error ranges in (5.38), and 

1cos0.947854 0.000400V θ
+

+= =  if we use upper bounds.  Therefore, using 1 0.94cos 7454θ =  

as the baseline against which to compare V
+
, we find that: 

0.000400 0.000400
0.1 000262 0.0002620.947454cosV θ + +

− −+
= = . (5.41) 

This means that in related to the invariant scalar V
+
:  

1cos ud cs tb us cb td ub cd tsV V V V V V V V V Vθ
+

= = + +  (5.42) 

well within experimental errors!  If we now take this to be a meaningful relationship given that it 
falls well within experimental errors, this means that we can go back to (5.31) and use (5.42) to 
rewrite the neutron and proton masses completely in terms of the CKM matrix elements, as: 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

3
2

3
2

1
2

1
2

3 3 2 3 / 2

3 3 2 3 / 2

N u d u d u d µ d u

P u d u d u d µ d u

M M M V m m m m m m m π

M M M V m m m m m m m π

+

+

= + ⋅ + + − + −

= + ⋅ + − + + −
. (5.43) 
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This now connects the proton and neutron masses to an invariant of the CKM matrix V.   
Further, because V

+
 injects into the proton and neutron masses an imaginary term with a 

Jarlskog determinant 2
13 12 23 12 13 23sin CKMJ c c c s s s δ=  (which may be calculated using the angles in 

(5.38) with CKMδ δ→ ), and if we wish to maintain the proton and neutron masses to be entirely 

real based on cos 1δ =  (the “nucleon phase angle” CKMδ δ≠  ) deduced in (5.30), then we can 

achieve this by restoring the phase to the vacuum-enhanced mass term as in (5.21), i.e., by 

restoring ( )expu d u dM M M M iδ→ , and then choosing δ  in sinu di M M δ  to absorb the 

terms with the Jarlskog determinant, again see [12] which shows how the Jarlskog determinant is 
“the imaginary part of any one element among the six components of determinant of V . . . when 
the whole determinant is made real” as it is in (5.39).  Specifically, referring to (5.43), this means 

that one would set ( )sin Im 0u d u di M M V m mδ
+

⋅ + ⋅ + =  to maintain CP symmetry for the 

neutron and proton, and given that Im 3V J
+

= − , this means that: 

2
13 12 23 12 13 23sin 3 3 sinu d u d

CKM

u d u d

m m m m
J c c c s s s

M M M M
δ δ+ +≡ = . (5.44) 

will define a very tiny phase in the term ( )expu dM M iδ  in the proton and neutron masses such 

that these masses remain real and thus obey CP symmetry.  This could provide additional insight 
into the so-called “strong CP problem.” 
 Finally, as regards fermion masses, if we write each elementary fermion mass fm  in 

terms of the Fermi vev using a dimensionless coupling fG  as 2 f f Fm G v≡ , see, e.g., [15.32] of 

[13], then use these relationships in (5.17) for Θ  or a similarly-formed matrix in a CKM 
representation (such as (5.38)), we find that the matrix entries will contain terms of the form 

3 3
f FG v , 3 4

f FG v  and depending on representation, 3 5
f FG v .  This may assist us to gain further 

insight into fermion masses as well as high-order vacuum terms 3φ , 4φ , 5φ  in the Lagrangian. 
 
6.  Vacuum-Amplified and Constituent Quark Masses 
 
 In (4.12) through (4.14) we defined three very helpful mass values all between 604 MeV 
and 635 MeV.  It is natural therefore to inquire whether these “vacuum-amplified” masses might 
be related to the so-called “constituent” quark masses which specify how much mass each quark 
contributes to total mass of a nucleon or baryon, as opposed to the bare “current” quark masses.  
Specifically, recalling that these were the ingredients in the neutron plus proton mass sum, we 
note that 302.087567/ 2 3uM MeV=  and 317.289223/ 2 2dM MeV=  in (4.12) and (4.13), 

which is about 1/3 of the neutron and proton masses.  This suggests that (4.12) to (4.14) may be 
related to the constituent masses of the up and down quarks which specify how much of the 
neutron and proton masses arise from each of the quarks and their interactions with the vacuum.  
The question we now ask, referring to the neutron and proton mass formulas (5.31), is how much 
does each up quark contribute, and how much does each down quark contribute, to these total 
masses?  In other words, what are the “constituent” masses of the up quarks and down quarks in 
each of the neutron and proton, as opposed to their bare “current” masses? 
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 Referring to the neutron and proton masses (5.31), for the square root terms u dM M  and 

µ dm m , we cannot directly segregate the up quark mass contribution from that of the down 

quark.  In these square root terms, the up and down are coequal mass contributors.  So we shall 

allocate instead.   For the term 3 u dM M⋅  in the neutron we shall allocate a 1 u dM M⋅  

contribution to the one up quark and a total2 u dM M⋅  contribution to the two down quarks.  For 

the proton, we allocate 1 u dM M⋅  to the one down quark and 2 u dM M⋅  to the two up quarks.   

We similarly allocate the µ dm m  terms.  But as to the terms which contain um  alone, or dm  

alone, we segregate these and apply them directly to the up and down quarks respectively.  Thus, 
we identically rewrite each of (5.31) as follows, while defining the respective constituent quark 
mass sums 2N NU D+  and 2 P PU D+ :  

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

1

1

2 3
3 cos

3 2 21
2

2 4 3
2 3 cos

3 2 2

µ d u
u d u u

N N N

µ d d
u d d

m m m
M M m m

π π
M U D

m m m
M M m

π π

θ

θ

 
 + + − +
 

= ≡ + 
 

+ − − 
 
 

, (6.1) 

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

1

1

4 3
2 3 cos

3 2 21
2

2 2 3
3 cos

3 2 2

µ d u
u d u u

P P P

µ d d
u d d

m m m
M M m m

π π
M U D

m m m
M M m

π π

θ

θ

 
 + − + −
 

= ≡ + 
 

+ + + 
 
 

, (6.2) 

with the up and down quark contributions respectively specified in the upper and lower lines of 
each of (6.1) and (6.2).  That is, the above represent a deconstruction of the neutron and proton 
masses into the separate contributions emanating from up and down quarks.  We then separate 
out the constituent quark masses and calculate them using 1 0.947454co 2s 124θ = , as follows: 

( ) ( )
3 3
2 2

1

21 3
314.00929873 cos

2 3 2 2

µ d u
N u d u u Me

m m m
U M m m

π π
VM θ

 
 = + + − + =
 
 

, (6.3) 

( ) ( )
3 3
2 2

1

21 3 3
cos

2 2 3 2 2 2
312.7780400

µ d d
N u d d

m m m
D M M

π
MeVm

π
θ

 
 = + − − =
 
 

, (6.4) 

( ) ( )
3 3
2 2

1

21 3 3
cos

2 2 3 2 2 2
310.0274283

µ d u
P u d u u M

m m m
U M M m m

π
eV

π
θ

 
 ≡ + − + − =
 
 

. (6.5) 

( ) ( )
3 3
2 2

1

21 3
3 cos

2 3 2
318.2171900

2

µ d d
P u d d

m m m
D M M m

π π
MeVθ

 
 = + + + =
 
 

. (6.6) 

The first expression (6.3) for NU  is the constituent contribution of the up quark to the mass of 

the neutron.  The second expression (6.4) for ND  is the constituent contribution of each of the 
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two down quarks to the mass of the neutron.  PU  in (6.5) is the constituent contribution of each 

of the two up quarks to the mass of the proton.  Finally, PD  in (6.6) is the constituent 

contribution of the down quark to the mass of the proton.  One can verify that 2N N NM U D= +  

and 2P P PM U D= + , numerically and analytically.  It is important to observe that N PU U≠  and 

N PD D≠ , which is to say that the constituent contribution of each quark to the mass of a nucleon 

is not the same for different nucleons, but rather is dependent upon the particular nucleon in 
question, in this case, a proton or a neutron.  So the lone up quark in neutron makes a slightly 
greater contribution to the overall neutron mass than each of the two down quarks, and the lone 
down quark in the proton makes a slightly greater contribution to the proton mass than each of 
the two up quarks.   

This sort of context-dependent variable behavior depending upon nuclide is to be 
expected based not only on what we uncovered throughout [3], but more generally based on the 
fact that when nucleons bind together, they release binding energy, so that different nuclides 
have different weights per nucleon, and indeed, different nucleons within a given nuclide should 
be expected to have different weights from one another based on their shell characterization.  
Constituent mass equations (6.3) through (6.6) tell us that along these same lines, the constituent 
mass contributions from each quark will differ depending upon the particular nuclide in question, 
and indeed, upon the particular nucleon with which a quark is associated within that nuclide.  
The above, (6.3) through (6.6), make the point that this type of variable mass behavior already 
starts to appear of individual quarks even as between the free neutron and proton. 
 We also see that the “vacuum-amplified” quark masses (4.12) through (4.14), although 
related thereto, are not synonymous with constituent quark masses.  These vacuum-amplified 
masses are ingredients which are used as part of the calculation of the constituent quark masses.  
While the constituent quark masses vary from one nucleon and nuclide and nucleon within a 
nuclide to the next, the vacuum-amplified quark masses do not vary.  They are mass constants (to 
the same degree that current quark masses are constants, recognizing mass screening) which do 
not change from one nucleon or nuclide to the next, and which are used as ingredients for 
calculating the varying constituent quark masses, as we see in (6.3) through (6.6), as well as for 
calculating neutron and proton masses (5.31) and nuclear weights (5.32) through (5.36). 
 
7.  The Lagrangian Formulation of the Neutron plus Proton Mass Sum 
 
 Now we revert to the start of section 4, where we noted that we can connect any Koide 
matrix products to a Lagrangian via (3.4) and (3.5).  Now that we have obtained a theoretical 
expression for the neutron and proton masses, it is time to backtrack using the development in 
section 3 to connect these masses to their associated Lagrangian expression, simply to put all of 
the foregoing into a more formal physics context so that it is understood as going beyond simply 
playing with mass numbers to make them numerically fit an equation with opaque origins.  We 
shall develop such a Lagrangian formulation for the neutron plus proton mass sum (5.6), 
recognizing that a Lagrangian connection for the separate masses of the neutron and proton can 
then be developed using Yang-Mills matrix expressions such as [4.3], [4.4], [5.3] and [6.20] of 
[3] to also develop a Lagrangian formulation of the neutron minus proton mass difference (1.4). 
 Using the Pauli spin matrix 2T , a unitary rotation matrix may of course be written: 
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( ) ( ) ( ) ( )

( )

2 3 41 1 1
2 2 2 2 22! 3! 4!

2 3 4
1 1 1
2! 3! 4!2 3 4

2 4 31 1 1
2! 4! 3!

3 2 41 1 1
3! 2! 4!

exp 1 ...

1 0 0 0 0 0
...

0 1 0 0 0 0

1 ... ... cos sin

sin... 1 ...

iT iT iT iT iTθ θ θ θ θ

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ

= + + + + +

     −   
= + − + + +        −         

 − + + − +
 = =
  −− − + − + + 

cosθ θ
 
 
 

 . (7.1) 

Consequently, the square root of this rotation matrix is: 

( ) ( )
1 1
2 21

2 22 1 1
2 2

cos sin
exp exp

sin cos
iT iT

θ θ
θ θ

θ θ
 

= =  − 
 . (7.2) 

 With this in mind we start with the expression (5.6) including the phase ( )exp iδ  which 

we later found in (5.30) is ( )exp 1iδ = , and write the neutron plus proton mass sum using a 

square root rotation matrix as: 

( ) ( )

( )( )

1 1 1

1 14 4
2 2

1 1 1 1
1 1 1 12 2 2 2

1 1 1 1
1 1 12 2 2 2

1 1

exp 0 0 exp 0 0

3Tr 0 cos sin 0 cos sin

0 sin cos 0 sin cos

3 exp cos cos

ABN P AB BC CA AB DA BABC CD

u d u d

u u u d

d d u d

u d u d

M M U U U

M M i M M i

m m m m

m m m m

i M M m m

δ δ
θ θ θ θ
θ θ θ θ

δ θ θ

′ ′+ = Ε Ε = Ε Ε ≡ Ε Ε

  
  

=   
  
  − −  

= + +

,(7.3) 

in combination with a rotated “electron generation matrix” ′Ε  defined via left multiplication 

with 1U  as: 

( )

( )

14
2

1 1
1 12 2

1 1
1 12 2

41
2

1 1
1 1 12 2

1 1
1 12 2

exp 0 0

3 0 cos sin

0 sin cos

0 0exp 0 0

3 0 cos sin 0 0

0 sin cos 0 0

u d

AB u d

u d

u d

CB uAC

d

M M i

m m

m m

M Mi

U m

m

δ
θ θ

θ θ

δ
θ θ
θ θ

 
 

′Ε =  
 
 − 

  
  = Ε =   
  −    

, (7.4) 

and an adjoint matrix defined via right-multiplication with 1U  as: 

( )

( )

14
2

1 1
1 12 2

1 1
12 2

4 1
2

1 1
1 1 12 2

1 1
1 12 2

exp 0 0

3 0 cos sin

0 sin cos

0 0 exp 0 0

0 0 0 cos sin

0 sin cos0 0

u d

AB u u

d d

u d

AC uCB

d

M M i

m m

m m

M M i

U m

m

δ
θ θ

θ θ

δ
θ θ
θ θ

 
 

′Ε ≡  
 
 − 

  
  = Ε =   
  −   

. (7.5) 

In the above, 1 0.947454co 2s 124θ =  is the empirical number found in (5.28), and 0δ =  is 

identically true as found in (5.30).  The above, AB′Ε  and AB′Ε , are just the Koide triplet matrix 
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ABΕ  for the electron generation rotated into primed state by multiplying from the left and from 

the right via 1 CBAC
U Ε  and 1 CBAC

U Ε . 

 But we know from (3.4) and (3.5) that as soon as we have a Koide matrix, we can 
backtrack into a Lagrangian formulation.  In this case, in (1.6) for a generalized Koide matrix 

ABK , we are setting 1 u dm M M= , 2 um m=  and 3 dm m= , and the only new feature is that we 

are then rotating this matrix both from the left and the right via K U K′ =  and K K U= .  
Consequently, we may use (7.4) and (7.5) to write the mass sum N PM M+  in (7.3) in a 

Lagrangian formulation, using these rotated Koide matrices, via (3.4) and (3.5) as: 

( ) ( ) ( )
( )

( ) ( )

3 3 3
2 2 2

3
2

3 3 31 1
2 2

31
2

1 14 4
2 2

1 1 1 1
1 1 1 12 2 2 2

1 1
12 2

2 2 Tr 2 Tr

2

exp 0 0 exp 0 0

3Tr 0 cos sin 0 cos sin

0 sin cos 0

ABN P BD

ABAB BA BA

u d u d

u u u d

d d

M M d x d x d x

d x

M M i M M i

m m m m

m m m

µν
µνπ π π

π

δ δ
θ θ θ θ

θ θ

′ ′ ′ ′+ = − = = ⋅

′ ′ ′ ′= ⋅ = Ε Ε

 
 

=  
 
 − − 

∫∫∫ ∫∫∫ ∫∫∫

∫∫∫

L E E E E

E E

( )( )
1 1

1 12 2

1 1

sin cos

3 exp cos cos

u d

u d u d N P

m

i M M m m M M

θ θ

δ θ θ

 
 
 
 
 
 

= + + = +

,(7.6) 

by introducing new field strength tensors defined in the manner of (3.2), namely: 

, , ,
Tr

ud uud u d d

u du d

i
m mM M

µ ν µ ν µ ν
µν γ γ ψ γ γ ψ ψ γ γ ψ ′ ′ ′ ′ ′ ′     Ψ Ψ      ′ ≡ − + +

 ′ ′′
 

E , (7.7) 

, , ,
Tr

ud uud u d d

u du d

i
m mM M

µ ν µ ν µ ν
µν γ γ ψ γ γ ψ ψ γ γ ψ ′ ′ ′ ′ ′ ′     Ψ Ψ      ′ ≡ − + +

 ′ ′′
 

E , (7.8) 

where the “vacuum-amplified” masses uM  and dM  as well as the square root mass u dM M  are 

defined as in (4.12) to (4.14), and where the Koide mass matrices are formed for µν′E  using left-

multiplication (7.4) and for 
µν′E  using right-multiplication (7.5).  Referring back to sections 1 

and 3, this means that for the we have now set 1 udψ ′ ′= Ψ , 2 uψ ψ′ ′= , 3 dψ ψ′ ′=  in the field strength 

tensor (3.2) and as just noted, 1 u dm M M= , 2 um m= , 3 dm m=  in the Koide matrix (1.6), then 

followed the remaining development of section 3 with the only addition being that we now are 
also employing the rotations (7.4) and (7.5) on these Koide triplet matrices.  We also now have 
the knowledge which can be exploited for further future development, that (7.3) specifies a 
limiting case of the very general mass and mixing matrix Θ  as specified in (5.17), see (5.20).  So 
we have a hook into a Lagrangian formulation for other generations of fermion, and therefore, 
for formulating other charmed, strange, top and bottom-containing baryons. 
 As a consequence of the foregoing, the unrotated fermion eigenstates used to form the 
(7.8) are a triplet ( ), ,ud u dψ ψΨ  consisting of a wavefunction for a vacuum-enhanced fermion 

udΨ , together with the ordinary fermion wavefunctions ,u dψ ψ  for the up and down current 

quarks.  It is the udΨ  wavefunction that is responsible for generating the vast preponderance of 

the  constituent mass contributions to the neutron plus proton mass sum, see section 6, while 
,u dψ ψ  are responsible for the current mass contributions. 
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 Lastly, as in (3.12) through (3.14), at the nuts and bolts level, we apply the Gaussian 
ansatz (3.12), in the form: 

( ) ( ) ( )23
02 4
2

1
exp

2u u
u

r r
r uψ π

−  −
 = −
 
 

Ż
Ż

, (7.9) 

( ) ( ) ( )23
02 4
2

1
exp

2d d
d

r r
r dψ π

−  −
 = −
 
 

Ż
Ż

, (7.10) 

( ) ( ) ( )23
02 4
2

1
exp

2ud ud
ud

r r
r V π

−  −
 Ψ = Λ −
 Λ 

, (7.11) 

and for the reduced Compton wavelengths, converting to 1c= =ℏ  units, we specify: 
/ 1 /u u um c m= =Ż ℏ , (7.12) 

/ 1 /u u um c m= =Ż ℏ , (7.13) 

/ 1/ud u d u dM M c M MΛ/ = =ℏ . (7.14) 

 So, referring back to the discussion at the end of section 3, as was the case with the short 
range of the nuclear interaction, we can indeed use the Gaussian ansatz to model fermion 
wavefunctions as Gaussians and obtain the fully-dressed neutron and proton masses.  But to do 
so, in the above we are using the undressed “current” quarks ,u dψ ψ  which yielded binding 

energies in [1] and [3], together in the same Koide triplet with a vacuum-amplified quark 
wavefunction udΨ  and associated masses and wavelengths.  So here too, it is not a question of 

whether we can use a Gaussian ansatz, but rather, it is a question of which wavefunctions with 
which masses and wavelengths we need to use in the Gaussian ansatz, in order to obtain a precise 
concurrence with empirical data.   

So, insofar as fully covered protons and neutrons are concerned, it looks as if the 
vacuum-amplified quarks in combination with the current quarks, are behaving as free fermions, 
as specified in detail in all of the foregoing.  This underscores the role of the Gaussian ansatz as 
a modeling tool used to derive effective concurrence with empirical data, rather than as a part of 
the theory per se.  The theory is centered on baryons being Yang-Mills magnetic monopoles, and 
nucleons which release or retain binding energies based on their resonant properties which in 
turn depend upon the current quark content of those nucleons.  For calculations which involve 
the components and emissions of protons and neutrons such as their quarks and their binding 
energies, the current quarks can be modeled as free fermions to obtain empirically-accurate 
results.  For other calculations which involve the bulk behavior of protons and neutrons, accurate 
results may be obtained by modeling vacuum-enhanced quarks together with the current quarks 
as free fermions, in the manner outlined above. 

The whole point of the discussion in this section has been to make clear that the neutron 
plus proton mass sum (and thus the individual neutron and proton masses) developed in this 
paper is not just the result of developing formulas which fit the empirical data but have unclear, 
opaque origins, in the way that the Koide relations have, until the development here, see sections 
2 and 3, also had unclear origins.  Rather, as shown in (7.6) this mass sum can be formulated as 

the energy ( ) ( )
3 3
2 23 31

22 2 TrN PM M d x d xµν
µνπ π ′ ′+ = − =∫∫∫ ∫∫∫L E E  arising from integrating a 

Lagrangian density 1
2

µν
µν′ ′= −L E E  over the entirety of a three-space volume element 3d x .  This 
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puts the neutron and proton masses (and by implication via Θ  as specified in (5.17) other baryon 
masses as well) into the context of fundamental, Lagrangian-based physics, and gives much 
more credence to the proposition that these mass formulas are not just lucky numeric 
coincidences of unexplained origin, but truly are real physics relationships. 
 
8.  Conclusion 
 
 We have shown how the Koide  relationships and associated triplet mass matrices can be 
generalized to derive the observed sum of the free neutron and proton rest masses in terms of the 
up and down current quark masses and the Fermi vev to six parts in 10,000, which sum can then 
be solved for the separate neutron and proton masses using the neutron minus proton mass 
difference earlier derived in [3].  The opposite charges of the up and down quarks are responsible 
for the appearance of a complex phase exp(iδ) and real rotation angle which leads on an 
independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and 
Maskawa (CKM) and which can be used to specify the neutron and proton mass relationships to 
unlimited accuracy and which are shown within experimental errors to be related to the CKM 
mixing angles.  The Koide generalizations developed here enable these neutron and proton mass 
relationships to be given a Lagrangian formulation based on neutron and proton field strength 
tensors that contain vacuum-amplified and current quark wavefunctions and masses.  In the 
course of development, we also uncover new Koide relationships for the neutrinos, the up 
quarks, and the down quarks. 
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