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Abstract:

We show how the Koide relationships and associated triplet mass matrices can be generalized to
derive the observed sum of the free neutron and proton rest masses in terms of the up and down
current quark masses and the Fermi vev to six partsin 10,000, which sum can then be solved for
the separate neutron and proton masses using the neutron minus proton mass difference derived
by the author in an recent, separate paper. The opposite charges of the up and down quarks are
responsible for the appearance of a complex phase exp(id) and real rotation angle which leads
on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and
Maskawa (CKM) and which can be used to specify the neutron and proton mass relationships to
unlimited accuracy and which are shown within experimental errorsto be related to the CKM
mixing angles. The Koide generalizations devel oped here enabl e these neutron and proton mass
relationships to be given a Lagrangian formulation based on neutron and proton field strength
tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the
cour se of development, we also uncover new Koide relationships for the neutrinos, the up
guarks, and the down quarks.
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1. Introduction

In an earlier paper [1], the author introducedttiesis that baryons are Yang-Mills
magnetic monopoles. One of the relationships ptediin this paper, equation [11.22] therein,
predicted the electron rest mass as a functioheotip and down quark masses, namely:

m, =3(m, -m,) /(2x)*, (1.1)
with the factor of(27r)% emerging from a three-dimensional Gaussian integra Based on a

“resonant cavity” analysis of the nucleons wheret®yenergies released or retained during
binding are directly dependent upon the massdseofiiarks contained within the nucleons, we
also predicted that latent, intrinsic binding emesgf a neutron and proton, as in [12.12] and
[12.13] of [1], are given by:

B, =2m, +m, - (m, + 4fmm, + 4m,} /( 27)' = 7.64067BleV (1.2)
B, =2m, +m, —(m, + 4/mm, + 4m,) /(27)" = 9.81235BleV . (1.3)

These predict a latent binding energy of 8.7623%8% per nucleon for a nucleus with an equal
number of protons and neutrons, which is remarkalalye to what is observed for all but the
very lightest nuclides, as well as a total laténtimg energy of 493.028394 MeV fdiFe, in
contrast to the empirical binding energy of 4928%3MeV. This is understood to mean that
99.8429093% of the available binding energy’fe is applied to inter-nucleon binding, with the
balance of 0.1570907% retained for the intra-nutkeanfinement of quarks. It was also noted
that this percentage of energy released for inteteon binding is higher itfFe than in any
other nuclide, which further explains that althoulyd quarks come closer to de-confinement in
*%Fe than in any other nuclide (which also explaires“first EMC effect” [2]), they do always
remain confined, as emphasized by the declineinpigrcentage beyonfre.

In a second paper [3], the author showed how tegishthat baryons are Yang-Mills
magnetic monopoles together with the foregoingdnesit cavity” analysis can be used to
predict the binding energies of the 1s nuclidemels®H, °H, *He and'He, to at least parts per
hundred thousand and in most cases parts per midind also to predict the difference between
the neutron and proton masses according to:

MN—MP:rrL—(Bmd+ mﬂmd—:m)/(Zr)z. (1.4)
This relationship, originally predicted in [6.16][8] to about seven parts per ten million in
AMU, was later taken in [9.1] of [3] to be &wact relationship, and all of the other prior mass
relationships which had been developed were themmally adjusted to implement (1.4) as an
exact relationship. The review of the solar fusigole in section 8 of [3] served to emphasize
how effectively this resonant cavity analysis carubed to accurately predict empirical binding
energies, and suggested how applying gamma radliaitb the right resonant harmonics to a
store of hydrogen may well have a catalyzing effechuclear fusion. This relationship (1.4)
will also play an important role in the developmbate.

At the heart of these numeric calculations weeettto outer products [3.9] and [3.10] in
[3] for the neutron and the proton, with componegiten by [3.11] and related relationships
developed throughout section 2 of [3]. In partacuthe two matrices which stood at the center
of these successful binding calculations were #8Yang-Mills diagonalized matricés of

mass dimension %2 with componemliag(K, ) = (\/ﬁ ,\/ﬁ ,\/ﬁ) for the neutron and
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diag(K,) = (\/E,\/ﬁ ,\/ﬁ) for the proton, wheren, is the “current” mass of the up quark

and m, is the current mass of the down quark.

What is very intriguing about thegematrices (which we designate as such to reference
Koide), is that although they originate out of thesis that baryons are magnetic monopoles,
they have a form very similar to matrices which rbayused in the so-called Koide mass
formula [4] for the charged leptons, namely:

2
R= (ﬁ +ym, + \/Ha) 13
m +m, +m, 2
Above, when we taken =m,, m, =m, andm, =m, to be the charged lepton masses, the ratio

R 3/ 2 gives a very precise relationship among these @sadadeed, if we use the 2012 PDG
datam, =0.51099892& 0.0000000M&V , m, =105.658371% 0.000008%V and

m =1776.82+ 0.181eV [5], we find using the mean experimental data fRa&t1.50002282:

which is very close to 3/2. When we use the exé®of the experimental data ranges,
specifically, the largest possible tau mass andavest possible mu mass, we obtain
R=1.5000024968. Although this is an order of magietcloser to 3/2 than the ratio obtained
from the mean data, is stdutside of experimental errors. This means that wiRlé]3/ 2 is a
very close relationship, even accounting for experital error, it is still approximate. For this to
bewithin experimental errors, it would have to be posdiblebtain someR< 3/ 2 for some
combination of masses at the edges of the expetainemges, and it is not. So in the
application of the Koide relationships to variop®le” (low probe energy) mass triplets, the
guestion becomes, nahether a triplet has a ratio exactly equal to 3/2, beeawstriplet does
have this exact relationship, but rather, how ctos&?2 any given ratio is, and more importantly,
what the meaning is of this ratio and deviatioasrfithis ratio.

The similarities between the matrices developethbyauthor in [1] and [3] and those
developed by Koide in [4] are highlighted if we ithefa Koide matriX generally as:

Jm 0 o
Keg=| 0 Jm, 0 | (1.6)

(1.5)

Then, the two latent binding energy relationshith2) and (1.3) may be represented as:

1 1 3
BP = KABKBA_WKAAKBB =TI’(K2)— (ZIT)%Tr(K 0 K) =2”L +md _(md + I‘\/med + 4mi) /( ZT)2

Jmo o o)ym o o Jnooo o) (ym o o)D)
=Tr| 0 Jm, 0O 0o Jm 0 |- !l oo Jm, ool o Jym o0
o o0 Jmjl 0o o Jm (27) o 0 Jm 0 0 Jm,



By = KABKBA—%KAAKBB =Tr(K?) - 1 STr(K OK) =2m, +m, —(mu +4/mm, + 4md) I( )
(27)° (27)°

Jm o o})ym 0o o Jm, o o) (ym o0 0 (1.8)
= o ym o 0o ym o0|-—t.T o Jm oo o ym o

o o Jmjl o o Jm A Jm, o o Jm
where, starting with (1.6), in (1.7) we have sg=m, andm, =m, =m, and in (1.8) we have
setm =m, andm, =m, =m,. These originate in the author’s thesis in [Httharyons are
Yang-Mills magnetic monopoles. Above, designates aouter matrix product.

On the other hand, settingy =m,, m, =m, andm, =m, in (1.6), we may write:

Tr(K?) =K, gKga=m+m, +m,, (1.9)

Tr(K 0 K) = KoK =+, +m,) (1.10)

Then, using (1.9) and (1.10), Koide relationshigp)Tor charged leptons may be written as:

R= (yfm +Jm, + Jm,) _KuKe _Tr(KOK) 3

m +m, +m, KieKea  Tr(K*) 2

Clearly then, the Koide matrices (1.6) providesagyal form for organizing the study of
both binding energy and fermion mass relationsiipish lead to very accurate empirical
results. It thus becomes desirable to understamg@tiysical origin of these matrices and tie
them to a Lagrangian formulation so that they aréonger just intriguing curiosities that yield
tantalizingly-accurate empirical results, but iastean be rooted in fundamental physics
principles based on a Lagrangian. And, it is @ddé to see if these matrices can be extended in
their application to make additional mass predidiand gain a deeper understanding of the
particle mass spectrum.

Because the binding energy formulation in (1.4 @n8) has its roots in the thesis that
baryons are Yang-Mills magnetic monopoles and $ipally emerges from the calculation of

energies viaE = —Msd&, see [11.7] of [1] et. seq., the author’s previbndings will provide

3
2

3

(1.11)

us with the means to anchor the Koide relationsim@sLagrangian formulation. And, because
Koide provides a generalization of the mass marieived by the author, these matrices will
provide us with the means to derive additional miakgionships as well, in particular, and
especially, the neutron and proton rest masses.

Insofar as Koide relations are concerned, in se@iwe shall show how to reformulate
these in terms of the statistical variance of tlogdi€ terms across the three generations, which
yields some new Koide relationships for the newosijrthe up quarks, and the down quarks. We
shall then show in section 3 how to recast thesd&ielationships into a Lagrangian / energy
formulation, which addresses the question as teulyidg origins of these relationships, so that
these relationships are not just curious coincidenbut can rooted in fundamental, physics
principles based on a Lagrangian.

Most importantly, in this paper, we shall combihe author’s previous work in [1] and
[3] as well as [6], using the generalization pre@ddy Koide triplet mass matrices of the form
(1.6), to deduce the observed rest masses 938.8 &Y and 939.565379 MeV of the free
neutron and free proton, as a function of the updown quark masses and electric charges and
the Fermi vev. This mass derivation is presenteskctions 4 and 5. In section 6 we will
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examine the “constituent” and “vacuum-amplified’agkimasses of the neutron and proton.
Finally, in section 7 we develop a Lagrangian folation for these neutron and proton masses,
which underscores that these relationships ar@guabtlose numerical coincidences, but
originate from fundamental Lagrangian-based phygicxiples.

2. Statistical Refor mulation of the Koide Mass Relationship

Let us begin by couching the Koide mass relatignéh5) for the charged leptons in
statistical terms, usingy =m,, m, =m, andm, =m_ in (1.6). First, using (1.9), we write the

average of the mass(am) in a Koide mass tripletn, m,, m,, i.e., the “average of the squares”
of the matrix elements in (1.6), as:
<K2>:Tr(K2)/3:KABKBA/S:(rnl+mZ+m3)/3:<m>. (2.1)
Next, via (1.10), we write the “square of the ageraof these matrix elements as:
2

<K>2:Tr(KDK):KAAKBB:(\/ﬁ+\/@+\/ﬁf:(ﬁ+\/@+\/ﬁ) | 2.2)

9 9 3 9
So, combining (2.1) and (2.2) in the form of (1alpws us to write:

2
Q<K>2:Tr(KDK):KMKBB:(ﬁW@ﬂ/E) _rp3 2.3)
(K2 Tr(K?) KK, m+m,+m, 2’ '
This allows us to extract the relationship:

2 R 1
(K) :§<K2> DE<K2>, (2.4)

which naturally absorbs the 3 from the factor &.3/
Now, we simply use (2.4) to form the statisticatisncec(K) in the usual way, as:

o(Kk) = (k)= (k)" =[1- B (k) = 2 -1k = 2-1)(m) 03 (k) = ()" =(m). (25)
The key relationship here, using the first and tasns, is:

o(K)O(m). (2.6)
So the averagém> of the charged lepton masses is approximately yangiclosely) equal to
the statistical variance(K) of Koide matrix (1.6) for the charged leptons.isTis a much

simpler and more transparent way to express thd&imiass relationship (1.5), and it completely
absorbs the factor of 3/2. The key point: (2.@nsentirely equivalent, and far more transparent
way to restate the Koide mass relationship (1.5).

Of course, as noted after (1.5), this is a veoge] but still approximate relationship. The
exact relationship, also extracted from (2.5), asithig R =1.50002282i based on the mean
experimental data, is:

J(K)z(%— j<m>=o.999969563n>zc<m>, 2.7)

where we have defined the statistical coefficiérsnd the inverted relationship fBras:
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C=—-1 R= . (2.8)
R 1+C
Thus, we rewrite the basic Koide relationship (Iribye generally as:
2
(o, + )5 .

m+m,+m, 1+C
In the circumstance where the statistical coefficte=1, i.e., where the average mass is exactly
equal to the statistical variance, we hd&¥e 3/ 2. So the variance of the square roots of the
three charged lepton masses is just a tiny tolsh(#9.99996956) than the average of the
three masses themselves. But the factor of 3/&hnk somewhat mysterious in (1.5), is now
more readily understood when we realize that itesponds witlC=1 in (2.7).

This means that the Koide relationship &y given triplet of numbers with mass
dimension Y2, may be most transparently charactetbyehe coefficienC. Thus, using (2.7),
the coefficient for the charged lepton tripletuge(also includéR for comparison):
C(eur)=0.999969563] 1, R(eur)= 1.500022828 3. (2.10)
So what about some other Koide triplets? For #th@nmos, PDG in [7] provides upper limits on
the neutrino masses whereby <2eV, m, <0.19MeV andm, <18.2MeV . If we use these

mass limits in a Koide triplet, we find thB£1.202960231. But the significance of this is much
more easily seen by using (2.8) to calculate:

C(vov,v,) =1.493848031 3/2 R(vy,v,)=1.20296@ 3116 /5. (2.11)

e’ u’'r e’ u’'r

Here, we have another ratio very close to 3/2nlowt it is in the coefficien€ rather than the
coefficientR. So, for the neutrino mass limits(K, ) 0(3/2)(m,) . This in an interesting
“coefficient migration” as between the charged andharged leptons, wherein for the charged
leptons masseR [13/ 2 to parts per 100,000, while for the neutrino leptpper mass limits,

C 03/ 2 within about 0.4%. As we shall see, this is ttagtof a new Koide pattern.

Turning to quark masses, we usg = 2.223792400MeV and m, =4.90647033b1eV
developed in [9.3] and [9.4] of [3] with the consiem 1 u=931.494 061(21) MeVY/as well as
m. =1.275+ 0.02&eV , m, =95+ 5MeV , m =173.5+ .6 .&eV andm, =4.18+ 0.0&eV
from PDG's [8]. For Koide triplets of a single etéc charge type, we can calculate that:
C(uct) =1.546880 3/2; R(uct) = 1.177913486 6. (2.12)

C(dsb)=1.187410 6/5; R(dsb)= 1.371483911 15/. (2.13)
So we now see a distinctive pattern of coefficiaigration among (2.10) through (2.13).

For the charged leptons in (2.10) which are theslomvembers of a weak isospin doublet,

R(eur) 03/2. For neutrinos which are the upper members sfdb'ublet,C(v VY ) 03/2,

el u’r
which migrates th&/ 2 from theR to theC coefficient. Then, for the up quarks, we find
another coefficient migration such trﬁ(uct) 03/ 2, which is same as th@for the neutrinos.
Both the up quarks and the neutrinos are the upgenbers of weak isospin doublets. Finally,
we see that th&®(uct) 06/ 5 coefficient for the up quarks, now migratesGgdsb) 06 /5 for

down quarks. So the migration ®{eur) 03/2 - C(V vV ) 03/ 2 for leptons,

e ulr



C(u % ) 03/2 - C(uct) 03/ 2 providing a “bridge” from “up” leptons to “up” quks, and

el u’r
then R(uct) 06/5 — C(dsb) 0 6/5 migrating from the up to the down quarks.

The net upshot of this coefficient migration istthee now have Koide-style close
relations for all four sets of fermions (and amtirhions) of like-electric charg®@, namely:

R(Q=0)= (\/mu@ VMg * Mo ) ol (2.14)
My ¥ My + My 5
R(Q=+1)= (V. +Jm, +/m,) 03 (2.15)

m+m, +m 2

R(Q=¢3)=(ﬁ+ﬁ+ﬁ) nd. (2.16)
3 m,+m +m 5

i+ em) s (2.17)

m +m +m, 11
Each of these relationships takes twedy®iori independent fermion masses and reduces by 1,
their mutual independence. So with (2.14) thro(ligh17), to first approximation, we have now
eight, rather than twelve independent fermion nesse

For some other commonly-studied Koide tripletshage:

R(Q:t§)=(

C(uds) =0.692900 1A/ 2; R(uds) = 1.7721053413/ 41+ ). (2.18)
C(ctb) =1.009390 1; R(ctb) = 1.492994103 3. (2.19)
C(usc) =0.86795; R(usc)= 1.6060423C. (2.20)
C(csb) =1.027830 1, R(csh) = 1.479416975 3/2 (withm, . (2.21)
C(dcs) =0.81520; R(dcs)= 1.6527180¢. (2.22)

We note that the relationship (2.18) fﬁ(uds) 01/~/2 is accurate tavithin experimental

errors. Specifically, given the empiricah, =95+ SMeV , (2.18) can be made into axact
relationship to ten digits (the accuracy of theanp down masses derived in [3]) if we set
m, =98.95303498eV . Of course, even the relationship for the chatgptbns is a close but
not exact relationship, see the discussion follgwih5), so we ought not expect (2.18) to be
exactIyC(uds) =1/y/2. But, similarly to (1.5), see also (2.10), it magll make sense to regard
this as a relationship accurate to the first ttmefour decimal places, which would improve our
knowledge of the strange quark mass by four ordiekers of magnitude.

But this main point of the foregoing is not abthe specific Koide relationships (though
the set of relationships (2.14) through (2.17)iamgortant steps forward in their own right), but

about how the ratio paramefmwhich for the charged lepton triplet R[13/ 2, can be
reformulated forany fermion triplet into the coefficienC in the statistical variance relationship

o(K)=C(m), which, for the charged leptons,@&1. And, as we see in (2.14) through
(2.17), this can lead to additional relationshipduding a cascading migration of coefficients.



Turning back to the neutron and proton trlpldtag (\/_ \/_ Niul ) and
dlag (\/_ WMy A/My ) which were so central to obtalnlng accurate bigdinergy

predlctlons in [1] and [3], we find using the masduesm, = 2.223792408eV and
m, =4.90647033bleV obtained in [3] that:
C( p= duu) =0.0387876019; R( p= duu) = 2.88798210. (2.19)

C(n=udd)=0.0298844997; R(n=udd) = 2.91294800. (2.20)

For these triplets which all havesmall variance in comparison to the earlier tripletsahhtross
generations, the Koide ratig L13. In the circumstance where the variancex&tly zero

because all three quarks have the same mass,dopée, for the tripleté\** =uuu and
A =ddd, using the Koide mass relationship for paramea¢ion, we haveC =0; R=3.

3. Lagrangian / Energy Reformulation of the Koide Mass Relationship

The appearance of Koide triplets originating fritma thesis that Baryons are Yang-Mills
magnetic monopoles can be seen, for example, bsidening equation [11.2] of [1] reproduced
below, for the field strength tensor of a Yang-Blithagnetic monopole containing a triplet of
colored quarks in the zero-perturbation limit:

S (w oy ]t/IR +t//G[y A ]t//G o v oy ]t/IBJ (3.1)
Pr —Mg" P —Mg” "Ps Mg

If we generalize this to any three fermion wavetions ¢,,¢,.,¢, such that (3.1) represents the

specific casey, =y, Y, =y, andy, =y, , and, as we did prior to [11.19] of [1], if we

consider the circumstance in which the interactsimswyn in Figure 1 at the start of section 3 in

[1] occur essentially at a point, th%p{”uy’] - [y”,y’] approaches an ordinary commutator,

each of thep - 0, and the “quoted” denominator becomes an ordidanominator, see [3.9]
through [3.12] of [1] for further background. Seasettingm =m,, m,=m, andm, =m;,
(3.1) generalizes for a point interaction to a Koglyle field strength tensor:
N AT AV N A
rr!L m2 m3

Then, we form a pure gauge field Lagrangigg, .= —%Tr(FWF””) =—3Tr (F EF) as
in [11.7] of [1]. As discussed in section 2 of,[8}e consider both inner and outer products over
the Yang-Mills indexes of, i.e., we consider botfirF? =Tr (F,; [(Fy. ) = Fy 0Fy, and
Tr(FOF)=Tr(Fu Fep ) = Fax (Fs . Note carefully the different index structuresfg, OF,,

versusF,, [(F,;, and also contrast this to (1.7) through (1.1Ghis paper, which is where we

are headed at the moment.
We then use this Lagrangian to calculate energiesrding to [11.7] of [1], see also
[1.1] of [3], which is reproduced below:

E =[] Spupdx = 1Tr[[[ F,, F#dx. (3.3)

(3.2)



In the case whergy, =y, , ¥, =¢, =y, so thatF* =F*_ represents the proton, then
depending on whether we contact indexes usigdF;, or F,, [F5;, we obtain the inner and
outer products [2.8] and [2.6] of [3], respectiveMheny, =¢,, ¥, =@, =y, SOF*" =F*

represents the neutron, we obtain the inner arel udducts [2.9] and [2.7] of [3], respectively.
Using (1.6), the Koide-type generalization of theew products [2.6] and [2.7] of [SK(,,Kgs

index summation) is:
E, =~[[[e.d>x=4Tr[[[F,, OF“d)=3Tr[[[ Fpg TFepd ™= 4[[[ Fup TFapd X ==K K g

271)

Jm o 0 Jm o 0 ,(3.4)
=1 S Tr|| O Jm, o |0 o Jm o %(\/_ Jm, + \/—)
(27) 0 0 \/E 0 0 \/ﬁ (

while the Koide generalization of the inner prody@.8] and [2.9] of [3] K ;zKy, index
summation) is:

E=~[[[ed*x=4Tr[[[F, F"d*x=4Tr[[[ Fpg TFapdx = [[[ Fog TFaud :ﬁ KasKea

Jm o o) Jym o0 o (35)
=1 1| o Jm, ol o Jym 0 ||= 1 (m,+m,+m,)
C o 0 ym)lo o ym)| &

This means that is now becomes possible to expiedsoide relationship (2.9) entirely in terms
of energie€ derived from the general integral (3.3) of a Lagian density® = -4 Tr (F [F)

[N

over d®x. Specifically, combining (2.9) with (3.4) and%Ballows us to write:

e _[[[e.d’x_Tr[[[F, DF”d TrmFDFdx [[[Fan Feed ™ K,,Kq,

E i J..[ £d3X TI’IIJ.F FWd X TI'J.J.IFZd3X ”.J. I:AB [FBAdax KAB D<BA

_(Ym e ym s m)

m+m, +m, “1+C
This expresses the Koide mass relationship in plalforms, in terms of the energy integral of a
Lagrangian density of the general fottn= -1 Tr (F EF) , with the field strength given by (3.2).

(3.6)

This means that fany Koide triplet of given empiricaR, there is an energi, which vanishes
under the condition:

E—” (£, - Re)d* = Trﬂj(FDF RF*)d=0. (3.7)
This is the Lagranglan / energy formulation of Keade relationship (2.9), and although
different in appearance, it is entirely equivale8b, for example, using the symholas in
figure 1 and Table 3 of [6] to represent the thgererations of the fermions for any given

charge, the four Koide relationships (2.14) thro(@hi7) for the “pole” (low-probe energy)
masses may be written as in gmtirely equivalent, alternative form:

= [[[(2, - 2)d°x=Tr[[[(F O F -£F?)d°x 0. (3.8)
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Iﬂ -3e)dx=Tr[[[(F OF -$F*)d% 0o, (3.9)
L= [[[ (g, ~g2)d*x=Tr[[[(F OF -2F?)d*xD0. (3.10)

E,. 15£dx-Tr FOF-3F2)d*00. (3.11)
=[IJ (e I £F)

Whether these becomagactly equal to zero for masses at high-probe energeswaether there
is an underlying action principle involved hereg guestions beyond the scope of this paper
which are worth consideration.

What ties all of this together, is that wedel the radial behavior of each fermion in the
triplet ¢, ¢,, Y, using the Gaussiamsatz introduced in [9.9] of [1] which is reproduced

below with an added lab&l=1,2,3 for each of the fermions and masses in (3.2):

0 (1) =u(p)(7?) *ex r{ ;(r;) ] (3.12)

and that we also relate each reduced Compton wavdiengto its corresponding masg via

the DeBroglie relatiork; =%/ mc, see [1] following [11.18]. This is what makepdssible to

precisely, analytically calculate the energy iregrals of the form (3.3), specifically making use
of the basic Gaussian mathematical relation [90f11]:

mmx?’ ;{ x—ZO)ZJan:L (3.13)

and variants thereof. lItis (3.12) and (3.13) &d&1/m (in 72 =c=1 units) which tie

everything together and the “nuts and bolts” matigral level when (3.2) is employed in (3.3)
through (3.7). And this is what leads to the aateimass relationship (1.1) and binding energy
predictions (1.2) and (1.3), as well as the bindingrgy predictions fdH, *H, *He and’He and
the proton—neutron mass difference (1.4) develap¢a].

The final piece which also ties this together asrand bolts level, is the empirical
normalization for fermion wavefunctions developed11.30] of [1], namely:

,_1(E+mf _ 1 (E+m)
N*=— 2 T o 2
n, (2mf 24 (2m)
wheren, =24 is the total number of fermions over three genenatincluding three colors for

each quark.

Now, it is important to emphasize that the Gausaregatz (3.12) is not aheory, but
rather, it is anodeling hypothesis that allows us to perform the necessary integnatand
calculate energies that turn out to correlate vezl} with empirical data. That is, explicitly in
[1] and implicitly in [3], wehypothesized that the fermion wavefunctions can be modeled as

Gaussians with specific Compton wavelengths=1/m defined to match theurrent quark

masses, we performed the integrations in (3.3) vanébund that the energies predicted matched
empirical binding data to — in most cases — pagtsmllion. This, in turn, tells us thér the
purpose of predicting binding energies, it is possible to model theurrent quarks as Gaussians
(which means they act as free fermions), with maasel wavelengths based on their undressed,
current masses, and to thereby obtain empiricallidated results But, as also discussed at the
end of section 11 in [1], this use of a currentrguaass doesot apply when it comes predicting
the short range of the nuclear interaction whichsiwewed at the end of section 10 in [1] is

(3.14)
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indeed short range with a standard deviationrof%x . For, if we use the current quark

masses that work so well for binding energies, we &, ~8565~ andi, ~4104F, and the

predicted short range is still not short enoughhdwever, we turn to theonstituent quark
masses which, at the end of section 11, for esomatve took to be 939 MeV/3=313 MeV, then
we havei ~63F andg = 1 ~45F, which tells us that the nuclear interaction \atty ceases

at about4o =3k ~2F . This is exactly whas observed.

In both cases — for nuclear binding energies anthe nuclear interaction short range —
we found that the Gaussiansatz (3.12) does yield empirically-accurate resultsit #r binding
energies, it was the undresseatrent quark masses which gave us the right results evbil
nuclear short range, it was the fully dressmedstituent quarks masses that were needed to
obtain the correct result. Because we shall moangyembark on a prediction of the fully
dressed rest masses 938.272046 MeV and 939.5658VY%khe free neutron and free proton,
what we learn from this is that while we might alspable to approach the neutron and proton
masses using the Gaussansatz for fermion wavefunctions, we will, however, ndede
judicious in the fermions we choose and inntesses that we assign to the fermions. That is,
the focus of our deliberations will be, neliether we can use the Gaussiamsatz, but onhow to
select the fermions and masses that we do use with the Gaussian ansatz.

Now, based on all of the foregoing developmentigesee how to predict the neutron and
proton masses.

4. Predicting the Neutron plus Proton Mass Sum to within about 6 Partsin 10,000

Because we can connect any Koide matrix prodocasliagrangian via (3.4) and (3.5),
let us work directly with the Koide matrix (1.6) tietermine how to assign the massgs m,,

m, so as to predict the neutron and proton massksn, &t the end (in section 7), we can

backtrack using the development in section 3 tcmeohthese masses to their associated
Lagrangian. In other words, we will first fit tleenpirical mass data, then we will backtrack to
the underlying Lagrangian.

Each of the neutron and proton contains threekguafhe sum of the current quark

masses i2m, +m, =12.036733MeV for the neutron an@m, + m, =9.354055141eV for the
proton, usingm, = 2.22379240MeV andm, =4.90647033MeV earlier introduced after
(2.11). For dree neutron and proton, none of their rest mass &asad as binding energy, and
so these quark mass sums are includeld p= 938.2720461eV and M, =939.56537%MeV

respectively, where we use an upperddge denote these fully-dressed, observed massges. A
demonstrated in sections 11 and 12 of [1] and tyirout [3], these rest masses are reduced when
the neutron and proton fuse with other nucleonst f& free protons and neutrons, the entire

rest mass is retained and all of the latent bindmgrgy is used to confine quarks. This means
the “mass coveringsh (using a lowercase) of the neutron and proton may be calculated to be

m, =M, -2m, —m, =928.917915VieV , (4.1)
m, =M, —2m, —my =927.528@5MeV . (4.2)
That is, thesen represent observed, fully-dressed neutron andpnmiassed, less the sum

K &Kga =M +m, +m, of the current quark masses, with=m,, m, =m, =m, for the proton,
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andm =m,, m, =m, =m, for the neutron, see (1.9). One may thinkmf and m, as the
weight of rather heavy “clothing” “covering” bareiarks. Thesum of these two mass covers is:
m,+m, =M, +M, -3m, —3m, =1856.44663 MeV . (4.3)
At the end of section 9 of [3], after deriving theutron minus proton mass difference
(1.4), we noted that the individual masses formtéetron and proton could now be obtained by
deriving some independent expression related teutimeof their masses, and then solving these
two simultaneous equations — sum equation andrdrifte equation — for the two target masses —
neutron and proton. We shall do exactly that hémeparticular, it will be our goal to derive the
sum M, + M, of these two masses, and then use (1.4) as ataimeals equation to obtain each
separate mass. The benefit of this approach assugn, referring to the so-called mass
“toolbox” in [3.11] of [3] and also the discussiohthe alpha nuclide following [4.4] of [3], is
that in selecting mass terms to consider, we damredte any candidates that are not absolutely
symmetric underp - n andu - d interchange, because the sy, + M, contains three up
guarks and three down quarks, as well as one meatrd one proton. Our empirical target,
therefore, isM, + M, =1877.83742B8leV , or, alternativelym, + m, =1856.44663KeV

from (4.3) to which we can then readily a8ieh, + 3m,. This is what we seek to predict.

Now let us return to the “clues” we laid out ingBthrough [3.8] of [6]. We start in the
simplest way possible by focusing our consideratinij3.8] of [6], reproduced below, but

multiplied by a factor of 2 and separated im and {/v-m, in the second term:

2\Ve Qimm, = 2¢vem, gvem, = 2/v.’m,d, =1803.670518VieV. (4.4)
Here,v,=246.219651 GeV is the Fermi vev. Because thabait 3% smaller tham, + m in
(4.3) and it is closer ton, + my than either [3.6] or [3.7] of [6], and it is symtrie under

U « d interchange, we shall see if (4.4) can be usedsbif, to provide the foundation for
reaching them, + m, =1856.44663K1eV mass target. As we shall, it can be so used!

Now, in (3.11) of [3], we developed a “toolkit” afasses which we used for calculating
the binding and fusion release energies of alllhauclides with very close precision. We shall
wish to add to this toolkit here, and in particulail wish to refine our use of the Fermi vev
VE=246.219651 GeV beyond what is shown in (4.4). cBigally, as noted after [3.8] of [6], we
need to put (4.4) “and like expressions into tigatrcontext and obtain the right coefficients.
And where do such coefficients come from? The ganes of a GUT!”

Now, we shall use the GUT we developed in [6] ttaobthe coefficients needed to bring
(4.4) closer to the target massl@56.44663KeV in (4.3). Because the vev that seems to bring
us into the correct “ballpark” is the Fermi vev, feeus on the electroweak symmetry breaking
which occurs at the Fermi vev, and which, in [&R]6], is specified by breaking symmetry
using the electric charge generaﬂ)according to:

diag(® dlag(T ¢,F) (02 7151+ 5129 =v,. di@. (4.5)
For the proton with a fermion trlpleéﬂ,u,u) , the corresponding eigenvalue entries in (4.5)
above are(—lvF SV EVe ) For the neutron and ifs1,d,d) triplet, the entries are

(2ve,~1v,—1v. ). We now wish to use these to establish respektbige triplet matrices for
the neutron and proton which can be used to gem#ratsum of their masses.
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Looking at the vacuum triplefs-1v,2v; ,2v, ) and (2v,,~1v.,~1v; ), we see that to

match the mass dimension %2 of the terms @fin, and<{/vm, in (4.4) and use these as Koide
triplets, we will need to take the fourth rootsloése vacuum triplets. So we do exactly that, and
pair these triplets with the mass tripl¢ts,,m,,m,) and(m,,my,m,) for which we also take the

fourth root to match (4.4). Thus, ufeiv.,2v,,2v.) - (i'5(‘/—§)vad A2vem, ,(‘/—ngmJ) and

(2vp,=2ve,—2v.) - ((‘/—ngnL i3y m, ,i'5<‘/—:1;va,) to define two Koide triplets, one for the

neutron and one for the proton, as follows:

YEvem, 0 0
Ke(N)=| 0 i°41v.m, 0 , (4.6)
0 0 i°4ivem,

i°4ivem, 0 0

Kg(P)= 0 Javem, 0 : 4.7)

0 0 Y3vem,
We see that because of the negative charge obte duark, each of these triplets contains
components with the coefficiedf-1=i° :%(1+i) , Which is a complex number. In recent
years, consideration has been given to hameggtive square root terms in Koide mass relations,
see for example (2.21) in which one usgﬁ to derive a close relation for tr(esb) triplet.

The above, (4.6) and (4.7) take this a step furtecause they raise the specter of triplets with
complex square root coefficients! In the next sectionshall explore the implications of these
complex components, which arise from the opposseiyed charges of the up and down

quarks. But for the moment, let us ignarein the above so we can look at magnitudes only,
and let us form and calculate the following Koidatrix product withi® excised:

om0 0 \({zwm O 0

K s (P)Kga(N) =Tr 0 {3vom, 0 0 ivem, 0
. 4.8
0 0 {3vem, 0 0 3vem, (48

=302v,*mm, =1857.570635 MeV

Comparing to (4.3) which tells us that, + m, =1856.446637 MeV we see that we have
hit the target to within about 0.06%! That is:

K,e(P)Kgs(N) _ 1857.570635 MeV
(my+m.),,.., 1856446637 MeV

This is extremely close, and in particular, we reme that to within about 6 parts in 10,000, the
sum of the neutron and proton masses may be expressnpletely as a function of the up and
down quark masses and the Fermi vev! So if wethiseclose relationship to hypothesize that a

=1.000605457 ! (4.9)
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meaningful relationship is given Hyn, +m,),
(4.3), we now see that to within about 0.06%:
M, +M, =m, +m, +3m, +3m, Dsq/nganrrh+3m+3nd. (4.10)
We have now discovered the correct coefficientste “clue” in (4.4), which yields our
neutron plus proton mass sum to 6 parts in 10,088ther qualifying (4.10) as a proper and not

merely coincidental expression for the neutron pitedon mass sum, we see that this is
symmetric undeu ~ d interchange, and that it is formed by taking theerproduct

K & (P)Ka(N) of a Koide proton matrixdiagK (P))= ({‘/%VFmd J2vem, ,(‘/—ngmu) times a

Koide neutron matrixdiagl (N ))= ((‘/%va, ,(‘/%vaj ,(‘/—évaj) and so which product

UK 5 (P)Kga(N), then ing the above with

K s (P)KgA(N) is symmetric undeip ~ n interchange. Further, both of these fully emibed t

electric charges and mass magnitudes of the quamkis, So in sum, (4.10) makes sense on
multiple bases: its yields an empirical match tthwma 6 parts in 10,000, it is the product of a
proton matrix with a neutron matrix, the proton matontains the masses and charges of two
up quarks and one down quark while the neutronimedntains the same of two down quarks
and one up quark, and it is symmetric under hoth d and p - n interchange.

Furthermore, if we divide (4.8) by 2, we see that:

K s (P)Kga(N) /2 =24/2y.2mm, =928.785317¥eV . (4.11)
This actually falldetween m, =928.917991bleV and m, =927.528645KeV from (4.1)

and (4.2), and so (4.10) clearly appears to baracioexpression for the leading terms in the
neutron and proton masses. Based on this closigence and “threading the needle” between
the neutron and proton masses with (4.11) and #leoappropriate symmetries noted in the
previous paragraph, we now regard (4.10) aeaningful (rather than coincidental) close
expression foM, + M, to 0.06%.

It will simplify and clarify the calculations frorere to define what we shall refer to as
“vacuum-amplified” up and down quark masses acogrti:

M, =,/3v.m, =604.175134B8eV . (4.12)
M, = /3V:m, =634.578446BeV . (4.13)
Consequently:

JM M, =42y, 2mm, =619.1902116eV . (4.14)

This means that the mass sum (4.10) may be rewnittwe transparently as:

My +M, =m, +m,+3m, +3m, O MM, +m, +m,), (4.15)

while the Koide mass matrices (4.6) and (4.7) ierheutron and proton become:

i*/M, 0 0
0

Ku(P)= 0 M, :

SIS

(4.16)

<
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M, 0 0
Ke(N)=| 0 i%/M, 0 | (4.17)
0 0o i*/M,
These matrices now restore ﬂ?ezﬁ(lﬂ) factor that we excised to calculate (4.8). Tlass,
in (4.8), but including this complex factor, we ntake:

i*/M, 0 0 )Jm, 0O 0
K(P)Kaa(N)=Tr|| 0 M, 0 o i*/M, O
0 o JM,|| o 0o "M, | (4.18)

=3° MM, =1(1+i)1857.570635 M eV

Having found the right magnitude, we could makeafse~/2 factor and continue to
match the empirical data by writing2 Re(K ; @ g, (N ) Om, +m, . But this just sidesteps

understanding the meaning of this complex factoriadoes not help us past the 0.06%
difference that still remains between the predieted the empirical data. We need to find a
more fundamental way to understand this completofacThat will be the subject of the
discussion in the next section.

5. Exact Characterization of the Neutron and Proton Massesvia a Mixing Angle § and
Phase Angle

Let us first represent this factor :%(1+i) in terms of a phase angt® such that:
i®=24(1+i)=expid) = co®y +i sid ;=7 /. (5.1)
Then, we briefly renam& - K' and use this phase to rewrite (4.18) as:

é’ /M, 0 0 )M, 0 0
Kls(P)Kgi(N) =Tr 0 JM, 0 0 €% JyM, 0
0 o M, || © o €& ym, ||
=3exp(id)yM M, =nf, +ni,

with similar updates in (4.16). Then, we use thisewrite the mass sum (4.15) as:
M, +Mp =+t +3m, +3m, 03 exid’) (MM, +m, +m,), (5.3)
where we have also briefly renambtl - M" andm, , - m, , all with &' =77/ 4.

Now, (5.3) gives us the opportunity to define aviéoide matrixE,,; which we shall
refer to as the “electron generation matrix"as such:

(5.2)
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0 0
o Jm o0 | (5.4)
0 0 Jm,
Then, making note the phaeezp(icf’) which multiplies\/m in (5.3) and keeping in mind

how the Kobayashi and Maskawa mixing matrices anmeéd for three generations, we
introduce a new anglé such that? =0, and form a unitary matril; including € , as such:

exp(id) 0 0
Ui = 0 cosfd, sirg, |. (5.5)
0 -sing co¥,

Of course, withd' = 77/ 4 and @ =0, U is diagonal matrixdiagJ = (i'5 1]) So (5.5) multiplied

sIM M,

u

EAB E\/é

by (5.4) simply generalizes the appearance ofegha t°,/M M, in (4.18). But now, let us
permit bothd and @ to rotate freelyd - 8, & - d. Then from (5.4) and (5.5), we may

form:
JM M, exp(id) 0 0
My + M, =E, U, Ec, =3Tr 0 m, cos, Jmm, sirg,

0 -J/mm, sind,  m, cog,

4I\/Iul\/ld 0 0 eXp(ld) 0 0 4\/'Vlul\/ld 0 0
=37y 0 Jm 0O 0 cod,  sil, o Jm 0| (56
0 0 \/ﬁ 0 -sing, co9¥, 0 0 \/ﬁ

= 3(exp(i5),/MuMd +m, cog, +m, cs@l)
For the special case wheée— & =0, we precisely reproduce (5.3). Butin (5.6) weéa

removed the approximation sign that was in (5.3), because we are now goirdgtime the
anglesé,d so as tgrecisely match up with thempirical values of the neutron and proton

masses. That is, just as (1.4) iseaact formula for the proton—neutron mass difference, we
shall now regard (5.6) as aract formula for the neutron plus proton mass sum, With
numerical values of,o defined by empirical data so as to make this an exact fit.

Before we proceed, let us recap so we are clear whdave just done: What we have
done here is to use the matdiagJ = (i'5 ,1,j implicit in (5.3) as a hint of a matrix

diagu = (exp(d’ ),1,) with &' =77/ 4, then usediagl =(exp{J’ ),1} as a further hint of a
matrix diagl = (exp{J' ),co8’ ,ca®) with & =0, then allowed both of these angles to freely

rotate yielding (5.5). Then we have used (5.9ptm (5.6) which generalizes (5.3). Now, we
will use these angles to permit the otherwise ctetaionship (5.3) to be fitted exactly by
empirically choosing these angles to yield and ekac

Before we do this, however, there is a final cdeda this hint, which is to recognize that
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(5.5) with the angles free to rotate is one ofttiree matrices used to define the Cabibbo
matrices used for electroweak generation mixing,[8€l1] in [6], and in particulars the matrix

that is use to introduce the phase angle responsible for CP violation. We also note that (5.4) is
strictly a function of the first (electron geneoat) quark masses and the Fermi vev which makes

the upper left componer{fMuMd containing the “vacuum-enhanced” quark masses

substantially larger than the middle and lower rigtmponents/m, and,/m, . This is why

we named this matri¥,; the electron generation matrix. Because Cabibbamhas two

more matrices and also mixes two more generatienas now form two more matricéd and
T analogous to (5.4) for the muon and tauon germrati quarks as follows, but following the
pattern for mixing in the original parameterizatminiKobayashi and Maskawa, we put the large

components/M M, and{/M,M, in the lower right positions. And, as a mattecofivention,

we keep the up (electric charge = +2/3) seriesadaterms in the middle position. Thus we
define the muon and tauon generation matrices:

Jm o 0 Jm 0 0
Mge=v3 0 Jm 0 | Te=v3 0 ym 0 |, (5.7)
0 0 MM, 0 0 MM,

At the same time, analogously to (4.12) and (4.48)define:

M, =,/2vm, =14,46MeV , (5.8)
M, =,/2vm, =2792MeV , (5.9)
M, =,/5vm =168, 758/eV , (5.10)
M, =,/2vim, =18,52MeV , (5.11)
which yields the higher-generation analogues tb44.
MM, =6356VeV (5.12)
MM, =55,908VieV . (5.13)

These values are calculated from the PDG datai@]dut prior to (2.12). and rounded to the
nearest MeV (recognizing substantial experimentakuainties).

We also define two more matrices analogous to frshe second and third generations
in same manner as is used to form the Cabibbo gixiatrices, again see [7.11] in [6]:

cosd, sing, cosf, sing,
U, =| -sing, cod, 0; U,,=|-sing, cod, 0O (5.14)
0 0 1 0 0 1

Then, analogously to (5.6), for the second andlthenerations, respectively, we form:
m, cosd, m sirg, 0
M oUsecM ey =3Tr -/mm sing,  m, cod, 0 |= M + cogm + cc@ms), (5.15)
0 0o WM,

17



m, cosg, Jmm sing, 0
TaeUsscTen =3Tr| —/mm sind, m cod, 0 |= é,/Mth + cogm + c@mo)- (5.16)
0 0 JMM,

Then, we multiply all three of (5.6), (5.15) and1) together in the same manner that the
Cabibbo mixing matrices are formed, again see JrlL[B], to obtain a master “mass and
mixing matrix” © with mass dimension +3, defined as:

O=MU, MENU,(ETMU,T

—MyMmmmc,s, s, mymmm ¢35 ¢

+ /M M ;mmc, c, & +M M m/mm ¢ 5 €

Jmmy Jmm MM, s,

(5.17)
=27 -mmymmgc s mmm C£ £

-/M M, Jmmms,c & -MM,/mm mms,s, &
JmmJyMM_ Jmmsss,  —/mmJMMm s g MMM MM, ¢

This matrix contains all six of the quark masseali three generations, all three of the
real mixing angles and the one CP violating phaggeathat appears when the three generations
are mixed, and implied in the vacuum-enhanced itesisss, the Fermi vev and the electric
charges of all of these quarks. If all of the neassre set to equal 1, this reduces to the usual
generational mixing matrix in the original paranmetagtion of Kobayashi and Maskawa, seen in,
e.g., see [7.11] in [6]. In the circumstance whgre 0, s, =0, this reduces to:

JM M mm €’ 0 0
0 mmm co§  JmmmMM, s |. (5.18)

0 _\/rnurnd \/McMsmSinel rnd\/McMs\/Mth Cosel

and in the further circumstance where all of theose and third generation masses are set to 1,
this further reduces to 9 times the matrix show(big):

JM M, €° 0 0

Jmmm MM, sc,

0=27

©=27 0 m, co%, Jmm, sid, |. (5.19)
0 —-Jmm, sing, m, co9,

So that comparing with (5.6), in this particulaesjal case, (5.17) even contains the neutron plus
proton mass sum:

iTro =3(«/MUMd exp(io) + m, cod, +m, coél) =M, +M,! (5.20)
So this puts this nucleon (baryon) mass sum iroad®r context that includes all of the
generational mixing angles and all of the quarksaasand their electric charges and the Fermi

vev. Certainly, (5.17) can and will be used therefto gain substantial new insights into
fermion and baryon masses. And all of this emengeascade fashion from the simple hint of a

matrix with diagu = (i'5 ,1,:) in the neutron plus proton mass formula (5.3)hwliei* itself

18



having emerged from the simple fact that up andrdquarks have opposite charges which led

to terms containiné/—_l when we formed Koide matrices to represent masses.
With this important contextual digression, we nenive (1.4) and (5.6) asmultaneous
equations, that is, we solve the equation set:

M, +M, :B(Q/MUMd exp(id) + m, cod +m, coé)
MN—MP:nL—(Bmd+2/mﬂmd—SrnJ)/(Zr)% .

It now requires no more than elementary algebgetermine that the neutron and proton
masses, separately, are each given by:

M, =3(3(yM M, exp(io) + cog(m, +m,))+m,~( &, + gmm, - &) ( 2)')
. =2(a{FH )+ cos(m +m))-m +( 3+ gmim - ) ( 2))

These can be made ingxact theoretical expressions for the neutron and pratass by solving
for 6,0, to find theirempirical values based on the neutron and proton massé's. diceso.

Because each of (5.22) contains a complex phasgilvneed to form the square
modulus magnitud@\/l |2 =M'M of these masses. So first we deduce:

4|MN|2=9MUI\/Id+60035«/MuMd( 3CO€(”L+md)+nL‘( B, + \imﬂmd B 'ﬁJ) (/7@2)
+(3cos€l(nL+md)+nL_(3nd+ gmm, - BL) { 2)2)2

4||\/|P|2:9|\/|uMd+6c035«/MuMd(3CO§1(nL+md)—”L+( B, + \;émﬂmd - ra,) (/@g)
+(3cos€l(nL+md)—nL+(3nd+ gmm, - BL) { 2)2)2

Now we solve these as simultaneous equationgfand o . First we restructure in terms of:

4||\/|N|2—9|\/|u|\/|d—(SCosﬂl(rrL+md)+rrL_( B, + m_ BL) ( 2)3)2

(5.21)

(5.22)

(5.23)

C0SO = 3
6 MuMd(e’COSﬁ’l(”L*md)*"L_(md“L 3mm, - BL) ( 2)2) (5.24)
C085:4|MP|2_9MuMd —(300591(WL +md)_m‘ +( By + %m“md - BL) ( 2)3)2

6/M M, (3c0391(rm +m,)-m, +( By + mmy - BL) ( 2)2)
We now set these equal to one another to elimidasad solve ford. It will be easier
to see the underlying structure of these equatgnsell as solve them if we write the above as:
N - (Bcosf, + A)* _ P —(B cod, - A)’°

Ceoss= N7 (BeosA+ A _ P (B cod— A) (5.25)
(Bcosg, + A) (B co®, - A)

using the following substitution of variables:

N=4M[-MM,; P=4M | - M M,

A=m -(3m +2/mm -am ) /(2)'; B=dm +m); C= gMM,

(5.26)
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Next, we reduce (5.25) successively in five stepfhows:

1: (N-(Bcoss, +A))(B cos, - A)=(P-(B cog - A))(B cat+A)

2: N(Bcosg, - A)-(B? cod6, - A*)(B cod,+A)=P(B cak+A)-(B* cb8,-A)(B s A)
N(Bcos, - A) A= P(B cod, + A)
(Bzcoszel—AZ) (Bzco§6?1—A2)

4: N(Bcoss, - A)- A(B’ cod6,- A*) = P(B co8, + A)+A(B* cd¥, - A?)

5: 0=2AB’cosf, —-(N-P)B co#, +(N+P)A- &

In the final line, we arrive at a quadratic. Weanbh the solution via the quadratic equation.

Then, we use the variables (5.26) including theigogb masses of the neutron and proton, to

calculate that:

N =P [(N-P)*-8(A(N +P)-24)

4AB

In the above, we use the negative root, becausegittlds a—1< cosd, < .. This means that the

empirically-determined value of g, is:

6=0.32561515 rad 18.65637386/7 [/9.64817. (5.29)
Now, we use (5.28) in (5.25) to solve for, and calculate to find that:

N —((N -P-J(N-P)*-8(A*(N + P)—2A4)j/4A+ Ajz
C((N -P-(N-P)*-8(A%(N +P)—2A4))/4A+ Aj

) p—((N —P—\/(N —P)2—8(A2(N + P)—2A4))/4A—Aj2

i C((N -P-(N-P)*-8(A%(N +P)—2A4)j/4A—Aj -

The numerical calculation reveals thaiso = 1, exactly, so the phase fact@r=0. This means
that when the variables in (5.26) are substitutéal (5.30), the extremely unwieldy-looking
resulting expression will reduce to 1 identicallgb to the extent thal is a CP-violating phase,
and given thav =0 is a deduced result for the neutron and protorsesab.22), this tells us
that there is are no CP-violating effects assodiatéh neutron and proton. This is validated by
the empirical data which shows that the mass oétitigroton is equal to that of the proton, and
the mass of the antineutron is equal to that oh#héron, see, e.g., [9], [10]. So, we take (5.22)
to now beexact formulations of the neutron and proton massethearcircumstance where the
empirically-determined anglé = 0.3256151! and the CP-violating phas®=0.

So we now return to (5.22), sét=0, and so obtain our final expressions for the rmeutr
and proton masses:

=2 (S, +cos(m +m) +m (s, + e - ) ( 3))
1, =48I, + o (m +m) -m 30+ 3, - o) ( 2))

which areexact relations with the empirical substitutiagh= 0.32561515= 77 /9.648177.

P A (5.27)

cosd, =

=0.9474641242; sing, = 0.319891¢.(5.28)

COSO =

(5.30)

(5.31)
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These relationships, in turn, now enable us tbayk to the masses for the 1s nuclides
predicted to high accuracy and rewrite [7.6], [/[1]3] and [7.5] of [3], respectively, as:

fM:MP+MN—m,:3(JMuMd+cos€(nL+n1d)) (5.32)

3

M =M, +2M - 4m, + 2 /mm, /(2r)*

- (5.33)
=%(9(1/Mu|\/|d +cost91(rTL+md))— m—(?md— m,m, — EL)( 2)2)
3M =2M, +M,, - 2m, - /mm,
= 30N, +cosg (m, +m)) - 5, - Zmm, +( &, + gmm, - &) (2)) 7
M =2M, + 2V, - 6m, - &m, +(10m, + 160, + 1gmm,) ( 2)°+ gmm, -
5.35

=6(M,M, +cosg, (m, +m,)-m, —m,) + 2/mm, +( 16, + 16, + 1§mm,) ( 2
The binding energiesB, =Z M + N[JM — 2M =ZM_ + NM,, — 2M for any given nuclide

with Z protons andN neutrons anéd=Z+N nucleons thusN - Z = A—2Z may also be rewritten
generally in relation to their nuclear weights @s{6.31), in the form:

2B, + M :% 3A(,/|\/|u|\/|d + cosg, (m, +md))+(A— Z)[nL —[3m“ i (Zm“)r;" - mm (5.36)

One final exercise of interest is to return tomess and mixing matri©in (5.17) and
setd, =6, =0 =0 while usingcosg, =0.947454242 found in (5.28). In this circumstance,
(5.17) reduces to:

«/MuMdemD 0 0

0=27 0 m,m.m co%j 0 : (5.37)

0 0 m, MM, /MM, cod,

This is in dimensions of masslIf we take the cubed root, and divide by 2 (bseawe
know that this originated with the neutron plustpromassum) to get mass numbers that
should be related to individual baryons, we fidiago = (939.7MeV ,116BleV ,173MeV).
This first entry is very close to the neutron maksch would not be expectedpriori, but this is
because/mm, =630MeV which is not too far from/M M, =619MeV . Perhaps this is yet

another close relationship among fermion massé® sécond entry at 1163 MeV, which would
only become smaller whef}, # 0, &, # 0, is only about 4% larger than the mass of the

N\, (uds) =1115.8 3eV baryon, which could readily be compensated by zeno-6,,6, angles

as well as measurement errors in the charm anquagk masses. The final entry at 1773 MeV,
is perhaps suggestive of tlike (sss) =1672.4MeV baryon mass, however, there are no omitted
angles and somewhere we should expect to comesagitwaryon with a third generation quark.
These relationships just noted are simply pointgdroan exploratory spirit, and it is to be noted
that © in (5.17) is just one representation of a massinm matrix and that one can also vary
the way in which one sets up the Koide tripletd)and (5.7), so as to be able to obtain @is
matrix in several different forms. Whatever thereot fits may turn out to be with various
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higher-generation baryons, it should be clear ti@imatrix (5.17) and like matrices that can be
similarly constructed are an exceedingly usefal for trying to develop and fit mutual
relationships among mixing angles, CP violatingg@sa and quark and baryon masses.

It is also interesting to see if the empiricakd, = 0.947454242 found in (5.28) turns
out to be related to the empirically-known Cabibkobayashi and Maskawa (CKM) mixing
angles in some representation, which could thextegleutron and proton masses to the CKM
angles, which is preferable twsg, being a new, separate parameter. Toward thisveméirst
write the CKM matrix with the “standard choice” afigles and itempirical values from [11]:

Vi Ve Vi CioCas $1£1s .6
V=IVy Vs Vg = _§2C23_C12323S1§i5 CiSS 3 g5 S &,
Vie@ Vs Vo %2523_C1§2331§i5 C155SE 3 %id C G,
0.97427 0.00015 0.22534 0.00065 0.0035%° '
=| -0.22520 0.00065 0.97344 0.00016  0.04%2:

—0.008670052  — 0.040%q0;  0.99918G 00,

(Note a negative sign for the three lower-left mxagintries.) Now, whilecosé, = 0.947454242
does not fit any particular one of these elememitst is of interest is the determinant which is:
|V| =VigVeVip TVieVerVia T VioVeaVis ~VioVesVia ~VisVeaVio ~ViaVeoVis =1 (5.39)
and which contains invariant expressions of inter€See also [12] which cleverly connects this

determinant, when real as in the standard angleel{.38), to the Jarlskog determinant.)
Specifically, if we employ the mean experimentdlesa in (5.38), we find that sum of the three

positively-signed (+) terms in the determinMg,, which isan invariant containing all nine
matrix elements, is given by:
V[, = VooV, +V, Vi Vig +V,, VooV, = 0.94753E, (5.40)

(5.38)

us 'cb 't

This isvery close to cosg, = 0.947454 determined from the proton and neutron masses,
truncated to the known precision|¥f, . In fact we find\V|, =0.947192=cos§, - 0.0002€ if

we use the lower bounds of all the experimentaraganges in (5.38), and
V|, =0.947854=cosf, + 0.0004C if we use upper bounds. Therefore, ustugd, = 0.947454

as the baseline against which to comp¥te, we find that:

V|, =cost, 0 o00ses = 0.947454 500070, (5.41)
This means that in related to the invariant scar.
Cosel = |V|+ =Vudvcs\/tb +Vuchthd +Vuchd\/ts (542)

well within experimental errors! If we now take this to be a meaningful relatiapsfiven that it
falls well within experimental errors, this meahattwe can go back to (5.31) and use (5.42) to
rewrite the neutron and proton masses completeigrims of the CKM matrix elements, as:

=2 S, em))em-(am -2 -on) 2)
= {3, .+ +{am  2fimm, - an) (2))
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This now connects the proton and neutron massas itovariant of the CKM matri¥.

Further, becaus|é:7’|+ injects into the proton and neutron masses aniimaagterm with a
Jarlskog determinani = ¢,;’c,.C,S,S,$ ,SiNd,,, (Which may be calculated using the angles in
(5.38) withd - J,, ), and if we wish to maintain the proton and nemtmasses to be entirely
real based orcosd = 1 (the “nucleon phase angl& # J,,, ) deduced in (5.30), then we can
achieve this by restoring the phase to the vacunihamsced mass term as in (5.21), i.e., by
restoringM,M, — /M M, exp(id), and then choosing in i\/M M, sind to absorb the

terms with the Jarlskog determinant, again seeWt2¢th shows how the Jarlskog determinant is
“the imaginary part of any one element among tkesmponents of determinantdf. . . when
the whole determinant is made real” as it is i89}. Specifically, referring to (5.43), this means

that one would seitsind /M M, + ImV|, [{m, +m) = 0 to maintain CP symmetry for the

neutron and proton, and given tHat|V|+ =-3J, this means that:

. + . +
sind = 3 ml\l/l—l\r;E = 3;132C12C23512S1§ ZSSIMCKM ml:/l—lvnllz' (5-44)

u u
will define a very tiny phase in the tergfivi M, exp(id) in the proton and neutron masses such

that these masses remain real and thus obey CPetyynThis could provide additional insight
into the so-called “strong CP problem.”

Finally, as regards fermion masses, if we writetheglementary fermion mass, in

terms of the Fermi vev using a dimensionless cogpB, as«/Emf =G, Vv, see, e.g., [15.32] of

[13], then use these relationships in (5.17)@or a similarly-formed matrix in a CKM
representation (such as (5.38)), we find that th&imentries will contain terms of the form

G,%;*, G,%,* and depending on representati@®)v.°. This may assist us to gain further
insight into fermion masses as well as high-ord@uum termsg’, ¢, ¢ in the Lagrangian.

6. Vacuum-Amplified and Constituent Quark M asses

In (4.12) through (4.14) we defined three veryphdlmass values all between 604 MeV
and 635 MeV. ltis natural therefore to inquireetifer these “vacuum-amplified” masses might
be related to the so-called “constituent” quark seasvhich specify how much mass each quark
contributes to total mass of a nucleon or barysm@posed to the bare “current” quark masses.
Specifically, recalling that these were the ingeads in the neutron plus proton mass), we
note thatM, / 2=302.087563MeV and M, /2=317.289222MeV in (4.12) and (4.13),

which is about 1/3 of the neutron and proton mas3éss suggests that (4.12) to (4.14) may be
related to theonstituent masses of the up and down quarks which specifyrhagh of the
neutron and proton masses arise from each of thkkgjand their interactions with the vacuum.
The question we now ask, referring to the neutrah@oton mass formulas (5.31), is how much
does each up quark contribute, and how much dadsdeEavn quark contribute, to these total
masses? In other words, what are the “constitumasses of the up quarks and down quarks in
each of the neutron and proton, as opposed tolthedr “current” masses?
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Referring to the neutron and proton masses (5f8d)he square root terrr1$MuMd and

,/m#md , We cannot directlgegregate the up quark mass contribution from that of therdo
guark. In these square root terms, the up and doe/coequal mass contributors. So we shall
allocate instead. For the ter®{/M M, in the neutron we shall allocatela/M M,
contribution to the one up quark and a t@taf/M M, contribution to the two down quarks. For

the proton, we allocaté[{/M M, to the one down quark arﬂﬂ/m to the two up quarks.

We similarly allocate thg/m m, terms. But as to the terms which contaipalone, orm,

alone, we segregate these and apply them directhetup and down quarks respectively. Thus,
we identically rewrite each of (5.31) as followdjile defining the respective constituent quark

mass sum$J +2D, and2U, + D, :

JM M, +3m, cosf, + _vaﬂm, + 3m,
u d ITL 1 ”L 3 3
1 3(2e) () |_
M, =3 4\/m_ =U, +2D,, (6.1)
2 /MM, +3m, cog, - L v _ M,
32x)  (2)
4
2 MM, +am, cosd, ~m, + Vv ST,
M, =1 @) (&) 4o 6.2)
P = P P .
2 2./
JMM, +3m, cosg, + V0, ST
3(2x) ()

with the up and down quark contributions respedtyigeecified in the upper and lower lines of
each of (6.1) and (6.2). That is, the above regmmea deconstruction of the neutron and proton
masses into the separate contributions emanatng @ip and down quarks. We then separate
out the constituent quark masses and calculate tisemy cosé, = 0.947454242, as follows:

1 2,ymm,  3m,
U, ==| MM, +3m, cosd, +m, ———~ -~ + =L | =314.009298WeV , (6.3)
NTS g Tom, 1T, 3(20)’ (2;:)}
1 3 2,/m,my m,
D, ==| /MM, +~m, cosf, - - - |=312.7780400eV , (6.4)
1 3 2ymm, a3,
U,==| /MM, +=m,cosf, —m, + L~ — - |=310.027428BleV . (6.5)
P75 d Z”L 1~ M, 3(20)’ 2(2:)2J
2/ 3am
D, =1 JM_ M, +3m, cosd, + m””;" +-28_1=318.2171900eV . (6.6)
2 3(2x)  (2¢)

The first expression (6.3) fdd, is the constituent contribution of the up qurkhe mass of
the neutron. The second expression (6.4) By, is the constituent contribution e&ch of the
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two down quarks to the mass of teeitron. U, in (6.5) is the constituent contribution esich
of the two up quark® the mass of the proton. Finally, D, in (6.6) is the constituent
contribution of the down quark to the mass ofgheton. One can verify thaM  =U  + 2D,
and M, =2U, + D, numerically and analytically. It is importantabserve that, ZU, and

D, # D,, which is to say that the constituent contributtdreach quark to the mass of a nucleon

is not the same for different nucleons, but rather issdelent upon the particular nucleon in
guestion, in this case, a proton or a neutronth8done up quark in neutron makes a slightly
greater contribution to the overall neutron mass téach of the two down quarks, and the lone
down quark in the proton makes a slightly greatertrgbution to the proton mass than each of
the two up quarks.

This sort of context-dependent variable behavigedeing upon nuclide is to be
expected based not only on what we uncovered thamud3], but more generally based on the
fact that when nucleons bind together, they relbas#ing energy, so that different nuclides
have different weights per nucleon, and indeedeiht nucleons within a given nuclide should
be expected to have different weighism one another based on their shell characterization.
Constituent mass equations (6.3) through (6.6)utethat along these same lines, dbrestituent
mass contributions from each quark will differ degi&g upon the particular nuclide in question,
and indeed, upon the particular nucleon with wiaauark is associated within that nuclide.
The above, (6.3) through (6.6), make the point thiattype of variable mass behavior already
starts to appear of individual quargen as between the free neutron and proton.

We also see that the “vacuum-amplified” quark raagg.12) through (4.14), although
related thereto, amot synonymous with constituent quark masses. Thaseum-amplified
masses are ingredients which are used as part chthulation of the constituent quark masses.
While the constituent quark masses vary from oreéemn and nuclide and nucleon within a
nuclide to the next, the vacuum-amplified quark seasdo not vary. They are mass constants (to
the same degree that current quark masses areants)secognizing mass screening) which do
not change from one nucleon or nuclide to the nexd,vanich are used as ingredients for
calculating the varying constituent quark massgesyeasee in (6.3) through (6.6), as well as for
calculating neutron and proton masses (5.31) aokbauweights (5.32) through (5.36).

7. The Lagrangian Formulation of the Neutron plus Proton Mass Sum

Now we revert to the start of section 4, wherenwted that we can connearty Koide
matrix products to a Lagrangian via (3.4) and (3/8pw that we have obtained a theoretical
expression for the neutron and proton massestimesto backtrack using the development in
section 3 to connect these masses to their assddiaggrangian expression, simply to put all of
the foregoing into a more formal physics contexthat it is understood as going beyond simply
playing with mass numbers to make them numeridalpn equation with opaque origins. We
shall develop such a Lagrangian formulation forritagron plus proton mass sum (5.6),
recognizing that a Lagrangian connection for thpasste masses of the neutron and proton can
then be developed using Yang-Mills matrix exprassisuch as [4.3], [4.4], [5.3] and [6.20] of
[3] to also develop a Lagrangian formulation of tieaitron minus proton mass difference (1.4).

Using the Pauli spin matriX,, a unitary rotation matrix may of course be writte
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exp(iT,0) = WH+iT,9+4(iTH) +4(iT0)° +&(iTH) +...

1 0 0 4 6> 0 0 -& 6* 0
= + —i' +i| +—l, +.... 7.1
PE I A g @

(1-36°+58'+..  0-56°+.. ) (cosf sif
| —(0-46°)+.. 1-262+16%+ ) |-sind cosd

Consequently, the square root of this rotation mar

costd sintd
Jexp(iT,8) = exdiT, @) = 2 27 . 7.2
iT:0) {3iT.6) {—sin%é’ cos%@] (7.2)
With this in mind we start with the expressior6ancluding the phasexp(id) which

we later found in (5.30) iexp(id) =1, and write the neutron plus proton mass sum using
square root rotation matrix as:
My +M, = E,gUscEca = Epg U govUspEon = E e,
M M, exp(1id) 0 0 IM M, exfiio) 0 0
=3Tr 0 Jm costg Jm, sing, 0 Jm cosg, m, sibg, (7:3)
0 —\/ﬁsin%el \/E cos @ 0 —\/ﬁ SiB g, \/ﬁ cos6,
:3(exp(i5)\/m+ m, co®, +m, coél)
in combination with a rotated “electron generatiatrix” E' defined via left multiplication
with \JU, as:
M M, exp(1id) 0 0

Ejs =3 0 Jm costg  \m, sing,

0 ~Jm sing, \m, cosé, , (7.4)

exp(1id) 0 o YiMM, O 0
= JU, o Ees =43 0 cos,6,  sin6 0o Jm 0

0 -sinig cos6) o 0 Jm

and an adjoint matrix defined via right-multiplicat with \/U_l as:

YM M, exp(id) 0 0

Ene =43 0 Jm costg Jm, sifg,
0 ~Jm sinid, fm, cosd . (7.5)
VMMg 0 0 |fexp(Lid) 0 0
=ExUi,=| 0O Jm, 0 0 cosd, siAg,

0 0 \/ﬁ 0 -sintg, cosg
In the abovegcosd, = 0.947454242 is the empirical number found in (5.28), add& 0O is
identically true as found in (5.30). The abo#, and E e, are just the Koide triplet matrix
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E,s for the electron generation rotated into primedesby multiplying from the left and from

the right via\/U_lACECB and \/U—lAcECB'

But we know from (3.4) and (3.5) that as soon adhewve a Koide matrix, we can
backtrack into a Lagrangian formulation. In thése, in (1.6) for a generalized Koide matrix

K., we are settingn = /M M, , m, =m, andm, =m,, and the only new feature is that we
are then rotating this matrix both from the leftlahe right viakK' = JUK andK =K+/U .
Consequently, we may use (7.4) and (7.5) to whiéenbass sunM  + M, in (7.3) in a
Lagrangian formulation, using these rotated Koiddrices, via (3.4) and (3.5) as:

M, +M, = —(27‘[)% _msd3x = %(271)% Trm.gwg"“’d& :%(277)% Tr_mgAB [Bypd°X

= %(2”)% J‘J‘J.gAB @gAdsx = EABE'BA

M M, exp(1io) 0 0 MM, exiglio) 0 o ):(7.6)
=3Tr 0 Jm costq, Jm, sirg, 0 Jm, cos6, Jm, sibg,
0 -Jm sintg, /m, costd 0 ~Jm sin36, Jm, cosié,
=3(exp(i5)1/MuMd +m, cod, +m, coél) =M, +M,
by introducing new field strength tensors definedhe manner of (3.2), namely:

T [ Twr Ry lw Al o
Tre = i Wi _y#,yv_’l'pud +¢/u_y IV/_wu +¢Id _Vu"V/_wd , (77)
JM M, m, my
o (Va2 Wy Gy e el vy e
Tre"" =i = = +t— —t— ) : 8
MM, ! ! "

where the “vacuum-amplified” massé4, and M, as well as the square root mqm are
defined as in (4.12) to (4.14), and where the Kaoidess matrices are formed for" using left-

multiplication (7.4) and fos™" using right-multiplication (7.5). Referring batksections 1
and 3, this means that for the we have nowgetW,, , ¢, =, ¢, =4, in the field strength

tensor (3.2) and as just noted,=\/M ,M,, m, =m,, m, =m, in the Koide matrix (1.6), then

followed the remaining development of section 3wtite only addition being that we now are
also employing the rotations (7.4) and (7.5) orsé¢hi€oide triplet matrices. We also now have
the knowledge which can be exploited for furthé¢ufa development, that (7.3) specifies a
limiting case of the very general mass and mixirajrim © as specified in (5.17), see (5.20). So
we have a hook into a Lagrangian formulation fdreotgenerations of fermion, and therefore,
for formulating other charmed, strange, top anddmtcontaining baryons.

As a consequence of the foregoing, the unrotaedibn eigenstates used to form the

(7.8) are a triple(Wud W, ,wd) consisting of a wavefunction for a vacuum-enharfeeahion
WY, together with the ordinary fermion wavefunctiafagy, for the up and down current
quarks. Itis thed , wavefunction that is responsible for generatirggstast preponderance of

the constituent mass contributions to the neutron plus proton reassg see section 6, while
Y, @, are responsible for trerrent mass contributions.
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Lastly, as in (3.12) through (3.14), at the nutd holts level, we apply the Gaussian
ansatz (3.12), in the form:

2 1(r-r)
— 2\ 4 _- 0 , 7.9
w,(r) u(n?;u) ex;{ 2 (7.9)
a1
t//d(r)—d(anZ) 4exp[—2 Kdg : (7.10)
-3 1(r-n)’
W (1) =V(K,2) “exg -~ o) | (7.11)
0=V e 510
and for the reduced Compton wavelengths, convettirig=c =1 units, we specify:
K,=hlimc=1/m,, (7.12)
K,=hlimc=1/m,, (7.13)
Ky =nl MM, c=1/ MM, . (7.14)

So, referring back to the discussion at the ergkofion 3, as was the case with the short
range of the nuclear interaction, we can indeedhsé&aussiaansatz to model fermion
wavefunctions as Gaussians and obtain the fullgs#r@ neutron and proton masses. But to do
so, in the above we are using the undressed “diimearks¢,,,¢, which yielded binding

energies in [1] and [3], together in the same Karg®et with a vacuum-amplified quark
wavefunctionW , and associated masses and wavelengths. So bereisonot a question of

whether we can use a Gaussiamsatz, but rather, it is a question which wavefunctions with
which masses and wavelengths we need to use in thei@aassatz, in order to obtain a precise
concurrence with empirical data.

So, insofar as fully covered protons and neutreasancerned, it looks as if the
vacuum-amplified quarks in combination with theurrent quarks, are behaving as free fermions,
as specified in detail in all of the foregoing. i§binderscores the role of the Gaussiasatz as
a modeling tool used to derive effective concureewth empirical data, rather than as a part of
the theory per se. The theory is centered on Ibarpeing Yang-Mills magnetic monopoles, and
nucleons which release or retain binding energaset on their resonant properties which in
turn depend upon the current quark content of thoséeons. For calculations which involve
the components and emissions of protons and neusch as their quarks and their binding
energies, theurrent quarks can be modeled as free fermions to obtapirecally-accurate
results. For other calculations which involve bk behavior of protons and neutrons, accurate
results may be obtained by modeling vacuum-enhagaatks together with the current quarks
as free fermions, in the manner outlined above.

The whole point of the discussion in this sectias been to make clear that the neutron
plus proton mass sum (and thus the individual oeuind proton masses) developed in this
paper is not just the result of developing formwidmch fit the empirical data but have unclear,
opaque origins, in the way that the Koide relatibage, until the development here, see sections
2 and 3, also had unclear origins. Rather, as sho7.6) this mass sum can be formulated as

the energyM , + M, = —(271)% ” £d®x :%(Zﬂ)g Trﬂ_fgwg’”vd3x arising from integrating a

Lagrangian density = —%5,”8'”” over the entirety of a three-space volume elendért This
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puts the neutron and proton masses (and by imjaicaia © as specified in (5.17) other baryon
masses as well) into the context of fundamentajrdmgian-based physics, and gives much
more credence to the proposition that these massifas are not just lucky numeric
coincidences of unexplained origin, but truly agalmphysics relationships.

8. Conclusion

We have shown how the Koide relationships andaated triplet mass matrices can be
generalized to derive the observed sum of therfeesron and proton rest masses in terms of the
up and down current quark masses and the Ferntovex parts in 10,000, which sum can then
be solved for the separate neutron and proton rmaséeg the neutron minus proton mass
difference earlier derived in [3]. The oppositaudes of the up and down quarks are responsible
for the appearance of a complex phase éxpfid real rotation angle which leads on an
independent basis to mass and mixing matricesairnalthat of Cabibbo, Kobayashi and
Maskawa (CKM) and which can be used to specifyniigtron and proton mass relationships to
unlimited accuracy and which are shown within expental errors to be related to the CKM
mixing angles.The Koide generalizations developed here enabietheutron and proton mass
relationships to be given a Lagrangian formulabased on neutron and proton field strength
tensors that contain vacuum-amplified and curresarkjwavefunctions and masses. In the
course of development, we also uncover new Koitigioaships for the neutrinos, the up
qguarks, and the down quarks.
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